1 Language I
October 23, 2008

3 Why is Language Important?
• Represents unique form of abstraction in human species
• Language influences perception and memory
• Relevant to the form and manner of information storage
• Relevance to thinking and problem-solving is unquestioned
• Chief means of human communication

4 Key Terminology
• **Phonology**: (the way sounds function in the language) basic unit = phoneme
 - single speech sound
 - English has about 45; 9 make up half our words
 - dimensions: voiced (“a”); unvoiced (“s”); fricatives (“sh”), plosives (“t”); place of articulation (palate v. lips)
• **Morphology**: (study of the internal structure of words) basic unit = morpheme
 - smallest unit of meaning (words, parts of words, etc.)
 - free (e.g., “old”, “the”) vs. bound (e.g., “er”, “ist”)
 - over 100,000 words formed by morpheme combinations
• **Semantics**: (study of meaning)
 - denotation vs. connotation
 - words as economic labels; link between language and concepts
• **Syntax**: (study of rules that govern combination of morphemes in phrases and sentences; interdependency)
 - prescriptive vs. descriptive grammar
 - “Daddy, what did you bring that book that I don’t want to be read to out of up for”?

5 Linguistic Relativity
• Whorf (1956)
 - Language determines or influences thinking
• Miller and McNeill (1969)
 - Strong hypothesis
 • Language determines thinking
 - Weak hypothesis
 • Language influences perception
 - Weakest hypothesis
 • Language influences memory

6 Evidence
• Regional/cultural differences in language
 - Hanuxoo have 92 different names for various types of rice
 • Could be that language evolution enables fine distinctions among types of rice
 - Could be that different environmental conditions influence the things people think about
• Colour categorisation
 - Heider (1972) - color categories are universal – Dani (2 colors) v. American errors similar
 - Failures to replicate (Roberson, Davies, and Davidoff, 2000)

7 Influence of language (English vs. Berinmo) on choice of similar pairs of stimuli by English and Berinmo participants.

Data from Roberson et al. (2000).
Evaluation

- Harley (2001, p. 87)
 - “There is now a considerable amount of evidence suggesting that linguistic factors can affect cognitive processes. Even colour perception and memory . . . show some influence of language.”
- The evidence supports the weak and the weakest versions

Language Comprehension

Speech Perception

- Input rapid (≈10 phonemes/sec)
- “Non-invariance” - speech sounds affected by sounds which proceed and follow; also different voices
- Segmentation problem - how to separate sounds in a continuous flow
- Use of prosody
- Definite left-hemisphere advantage

Auditory Word Recognition: Basic Processes

- Bottom-up: processing of individual phonemic features
- Top-down: conceptual processing
 - phonemic restoration effect:
 - probably affects response bias, not sensitivity
 - “the *eel was on the axle” - hear “wheel”
 - “the *eel was on the shoe” - hear “heel”
 - “the *eel was on the orange” - hear “peel”

Theories of Auditory Word Recognition I

- Motor Theory of Speech Perception (Liberman et al., 1967)
 - during listening, listeners mimic articulatory movements of speaker and depend on this for recognition
 - Supported by PET studies showing ↑motor activation during speech perception
 - noninvariance is a problem, as is infant data
- Cohort Theory (Marslen-Wilson & Tyler, 1980)
 - activation of word cohort as speech signal arrives
 - some activated words eliminated on basis of context; continues until “recognition point” is achieved
 - assumes that lexical, syntactic, and semantic information interact to analyze speech signal; context effects are probably late
 - e.g., “The police indicated that excessive SP--- was a factor in the fatal accident.”

Auditory Word Recognition: Theories II

- TRACE Model (McClelland, 1991)
 - three units of levels: features, phonemes, words
 - between-level connections excitatory
 - within-levels inhibitory
 - excitation in the network produces pattern, or “trace” of activation
 - recognized word is that which is highest among candidate words

Auditory Word Recognition: Theories III

- Cognitive Neuropsychological Models
 - derive from studies of how word recognition fails after brain injury
- make use of “box models” of cognitive processing popular in mainstream cognitive psychology
- basic structural features:
 • domain-specific systems
 • lexicons

17

18 Stages in Lexical Processing (Single Word Recognition)
• Contact of the analyzed waveform with the lexicon
 - Spectrographic (LAFS)
 - Motor theory
 - Phonemic theories
• Activation of specific lexical entries
• Selection of appropriate lexical entry from set of activated candidates
• Access to the full information from the lexical entry

19

20

Reading (Visual Word Comprehension)
• Similar processes likely, but entry into the system is a visual (graphemic), not an acoustic (phonemic) representation
• Transformation from grapemes to phonemes is critical
• Two routes to reading
 – Grapheme-phoneme conversion
 – Lexical (whole word) reading

21

22 How Reading is Studied
• Eye movement recordings
• Reading aloud
• RSVP (rapid serial visual presentation)
• Subject-controlled presentation
• Word-identification techniques
 - lexical decision
 - naming

23 Eye-Movement Research
• Emphasizes a “word-identification” vs. “meaning construction” approach to reading
• Asymmetric perceptual span (3-4 letters to the left of fixation and 15 letters to the right)
• Parafoveal preview allows for skipping words
• Fixations may be affected by context and meaning
 - predictable words receive less fixation
 - “garden path” sentences:
 “The young man turned his back on the rock concert stage and looked across the resort lake. Tomorrow was the annual one-day fishing contest and fishermen would invade the place. Some of the best bass guitarists would come to this spot”
 - derivation of meaning occurs early (parafoveally? instantaneously?)

24

25 Visual Word Identification
• Rapid (200ms)
• Automatic (e.g., Stroop effect)
• Basic effects:
 - word-letter effect: letters identified better if in words than if alone (e.g., TAKE v. _ _ K _)
 - word-superiority effect: letters identified better when in real word (e.g., TAKE v. PAKE)
 - These effects imply that “word environment” influences recognition

Visual Word Identification: Models I
• Serial Letter Model
 • Parallel Letter Model

Visual Word Identification: Models II
• Direct Word Model
 • Interactive Activation Model

Route 1 (Grapheme–Phoneme Conversion)
• Converting spelling (graphemes) into sound (phonemes)
 • Marshall and Newcombe (1973)
 - Surface dyslexia – poor reading of irregular words; strong reliance on Route 1
 • McCarthy and Warrington (1984)
 - KT read 100% of nonwords accurately, and 81% of regular words, but was successful with only 41% of irregular words
 - Over 70% of the errors that KT made with irregular words were due to regularisation
 • Significant variability in performance, suggesting that this is not a clear dissociation

Route 2 (Lexicon Plus Semantic System)
Event sequence
- Representations of familiar words are stored in an orthographic input lexicon; activation leads to...
- Meaning is activated by the semantic system and...
- Sound pattern is generated in the phonological output lexicon

Beauvois and Dérouesné (1979)
- Phonological dyslexia - impaired Route 2; use Route 1; 100% real words; 10% nonwords

Coltheart (1996)
- General phonological impairments, not just problems with phoneme-phoneme conversion

Route 3 (Lexicon Only)
- Like Route 2 but the semantic system is bypassed - printed words are pronounced but not understood

Funnell (1983)
- Phonological dyslexia with poor ability to make semantic judgments about words

Coslett (1991)
- Reasonably good at reading irregular words, but had no understanding of them

Deep Dyslexia
- Characteristics
 - Particular problems in reading unfamiliar words
 - An inability to read nonwords
 - Semantic reading errors (e.g., "ship" read as "boat")
- Damage to the grapheme–phoneme conversion and semantic systems

Patterson, Vargha-Khadem, and Polkey (1989)
- Studied left hemispheric removal, producing all of these symptoms; generated right-hemisphere hypothesis

Laine et al. (2000) used MEG
- Activation mainly in the left hemisphere

Surface Dyslexia and Phonological Dyslexia
- Lesions to the Plaut et al. model simulated performance in surface dyslexia
- Alzheimer's disease
 - Progressive dementia
 - Deep dyslexia
 - Plaut and Shallice (1993)
 - Developed the model further
 - Virtually all the main symptoms of deep dyslexia could be simulated

Language Comprehension
- Parsing: analysis of syntactical (grammatical) structure of the sentence
- Analysis of literal meaning (semantics)
- Analysis of intended meaning (pragmatics)

Parsing
- Four major possibilities:
 - Syntactic analysis generally precedes (and influences) semantic analysis
 - Semantic analysis usually occurs prior to syntactic analysis
 - Syntactic and semantic analysis occur at the same time, in parallel
 - Syntax and semantics are very closely associated, and have a hand-in-glove relationship

Grammar or Syntax
- Syntax – word order and combination critical to meaning:
 - "He showed her the boys pants."
“He showed her boys the pants.”

- An infinite number of sentences is possible in any language
- Sentences are nevertheless systematic and organised
- Chomsky (1957, 1959)
 - Rules to take account of the productivity and the regularity of language
 - A grammar should be able to generate all the permissible sentences in a given language

Syntactic Ambiguity

- “They are flying planes”
 - The grammatical structure is ambiguous
- Global and local levels
- Making use of prosodic cues
 - Stress and intonation (illustrate with above example)
- Allbritton, McKoon, and Ratcliff (1996)
 - Doubts about the use of prosodic cues
- Snedeker and Trueswell (2003)
 - Listeners’ interpretation of ambiguous sentences was influenced by prosodic cues even before the start of the ambiguous phrase

Garden-path Model

- Frazier and Rayner (1982)
 - Only one syntactical structure is initially considered for any sentence
 - Meaning is not involved in the selection of the initial syntactical structure
 - The simplest syntactical structure is chosen, making use of two general principles: minimal attachment and late closure
 - According to the principle of minimal attachment, the grammatical structure producing the fewest nodes is preferred
 - The principle of late closure is that new words encountered in a sentence are attached to the current phrase or clause if grammatically permissible

Evidence for the Garden-Path Model

“Put the apple on the towel in the box”

Based on data in Spivey et al. (2002).

Constraint-based Theory

- MacDonald et al. (1994) – all relevant information/constraints are available – various possibilities influence comprehension to the extent they are activated
 - Grammatical knowledge constrains possible sentence interpretations
 - The various forms of information associated with any given word are typically not independent of each other
 - A word may be less ambiguous in some ways than in others (e.g., ambiguous for tense but not for grammatical category)
 - The various interpretations permissible according to grammatical rules generally differ considerably in frequency and probability on the basis of past experience

Unrestricted Race Model

 - All sources of information are used to identify a syntactic structure, as is assumed by constraint-based models
 - All other possible syntactic structures are ignored unless the favoured syntactic structure is disconfirmed by subsequent information
 - If the initially chosen syntactic structure has to be discarded, there is an extensive process of re-analysis before a different syntactic structure is chosen

Evidence for the Unrestricted Race Model

- Data from van Gompel et al. (2001).
46 **Inference Drawing**
- Rumelhart and Ortony (1977)
 1) Mary heard the ice-cream truck coming
 2) She remembered the pocket money
 3) She rushed into the house
- Logical inferences
 - Depend on the meaning of the words
- Bridging inferences
 - Establish coherence between the current part of the text and the preceding text
- Elaborative inferences
 - Serve to embellish or add details to the text

47 **Drawing Inferences in Language Comprehension**
- “She took out an apple and ate it.”
- Anaphora: “Bob told Bill about his serious illness”
 - “his” refers to “Bob”
 - depends on distance between Bob and “his” (probably not)
 - depends on “Bob” as topic of discourse
- Three models:
 - constructivist: full mental model formed
 - minimalist: only limited, constrained, inferences are formed (automatic vs. strategic distinction)
 - search-after-meaning: meaning constructed ‘after the fact’ in accordance to goals

48 **Search-after-Meaning Theory**
- Graesser, Singer, and Trabasso (1994)
 - The reader goal assumption
 - The reader constructs a meaning for the text that addresses his/her goals
 - The coherence assumption
 - The reader tries to construct a meaning for the text that is coherent locally and globally
 - The explanation assumption
 - The reader tries to explain the actions, events, and states referred to in the text

49 **Minimalist Hypothesis**
- McKoon and Ratcliff (1992)
 - Inferences are either automatic or strategic (goal directed)
 - Some automatic inferences establish local coherence; these inferences involve parts of the text in working memory at the same time
 - Other automatic inferences rely on information readily available because it is explicitly stated in the text
 - Strategic inferences are formed in pursuit of the reader’s goals; they sometimes serve to produce local coherence

50 The types of inferences normally drawn, together with the predictions from the S-A-M and minimalist perspectives. Adapted from Graesser et al. (1994).

51 **Semantic System**
- Meaning stored separately from form
- Models of representation in semantics
 - Feature-based models (see categorization)
 - Nondecompositional meaning
- Modality-specific semantic deficits: optic aphasia as an example