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136 SOME WELL-KNOWN SURVIVAL DISTRIBUTIONS AND THEIR APPLICATIqQNg

analyze carcinogenesis experiments by Pike (1966), Peto et al. (1972)
and Lee (1973), and Williams (1978), to characterize early radiat
sponse probabilities by Scott and Hahn (1980), and to model
disease-specific mortality by Juckett and Rosenberg (1990).

The Weibull distribution is characterized by two parameters, Y and ),
The value of y determines the shape of the distribution curve and the valye
of A determines its scaling. Consequently, y and A are called the shape ang
scale parameters, respectively. The relationship between the value of ¥ and
survival time can be seen from Figure 6.4, which shows the hazard rate of
the Weibull distribution with y = 0.5, 1, 2, 4. When y = 1, the hazard rate
remains constant as time increases: this is the exponential case. The hazarg
rate increases when y >1 and decreases when y < 1 as ¢ increases. Thus, the
Weibull distribution may be used to model the survival distribution of a
population with increasing, decreasing, or constant risk. Examples of in-
creasing and decreasing hazard rates are, respectively, patients with lung
cancer and patients who undergo successful major surgery.

The probability density function and cumulative distribution functions
are, respectively,
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Flt)=1—¢ ™ (6.10)
The survivorship function is therefore
S(t)=e A (6.11)
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Figure 6.4 Hazard functions of Weibull distribution with A = 1.
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Where (. \ -
() is the well-known gamma function defined as
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