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Abstract

In general, the change point problem considers inference of a change in
distribution for a set of time-ordered observations. This has applications
in a large variety of fields, and can also apply to survival data. In sur-
vival analysis, most existing methods compare two treatment groups for
the entirety of the study period. Some treatments may take a length of
time to show effects in subjects. This has been called the time-lag effect
in the literature, and in cases where time-lag effect is considerable, such
methods may not be appropriate to detect significant differences between
two groups. In this paper, we propose a novel non-parametric approach
for estimating the point of treatment time-lag effect by using an empirical
divergence measure. Theoretical properties of the estimator are studied.
The results from the simulated data and real data example support our
proposed method.

Keywords: Change point analysis, Lag effect, Non-parametric statistics,
Survival analysis, Treatment time-lag effect

1 Introduction

In essence, the problem faced in this paper is a change point analysis problem
- we are trying to estimate the time of treatment time-lag effect, which can
be interpreted as the time point at which the survival curves of two groups
change distribution. There has been a large variety of research into the change
point analysis problem for different applications including financial modeling,
bioinformatics, and signal processing [17, 23, 31]. Overall, the problem concerns
a change in distribution for a set of time-ordered observations. This is usually
seen as a problem in univariate and multivariate time series data. There are both
parametric and non-parametric methods of analysis, with parametric analysis
having the necessity to assume underlying distributions. While change point
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analysis can be considered in terms of time series data, it is useful to us, as this
also describes survival data, with an added possibility for censoring present in
the data.

Survival analysis is a method for analyzing time-to-event data, where sur-
vival probabilities and times are sometimes presented in tables or graphs in
a time-ordered fashion with indications as to which observations are censored
or truncated. A major area of survival analysis includes testing for differences
between groups by comparing hazard rate functions or, equivalently, survival
probability functions [18]. Many procedures have been developed that non-
parametrically test for differences between treatment groups. These procedures
are applications of the Wilcoxon rank sum test, the most notable of which is the
Log-rank test first proposed by Nathan Mantel (1966) [20]. There have been
adjustments proposed that are appropriate in a variety of situations, including
different weighting functions that can give weight to earlier or later observations.
These include, but are not limited to, the Breslow, Fleming-Harrington, Gehan,
Peto-Peto, and Tarone and Ware tests [3, 12, 10, 21, 25, 32]. There have also
been methods proposed to deal with cases that have multiple or crossing hazard
functions [6, 14, 26, 27, 19]. Additionally, there have been a few proposals to
deal with cases that specifically have survival probabilities, that are initially
quite similar between groups, and then differ [8, 24, 34]. There have even been
semi-parametric and parametric approaches to estimating the time-lag effect
using change point methods [2, 5].

While there has been much research into testing whether survival is signifi-
cantly different between groups for censored and truncated data, less work has
been done to test for differences when the two groups are similar up to some
point (say, τ) and differ afterwards, specifically in terms of estimating the time
point at which the two groups begin to differ. In literature, this time has been
known as the treatment time-lag point [8, 24, 34]. This type of analysis can be
important in many areas - parts reliability, treatment effect, etc. - since it can
be crucial to not only know if two groups differ but also at what point in time
some treatment begins to take effect.

Zucker and Lagatos (1990) proposed weighted log-rank statistics for com-
paring two survival curves when there is a time lag [34]. Dinse et al. (1993)
proposed an estimate of the time-lag point based on Kaplan-Meier estimates
of survival [8]. Park and Qiu (2018) suggested a semi-parametric model to es-
timate the time-lag point by using maximization of log partial likelihood [24].
There is also some research into this area using the terminology “change-point
analysis.” Chen and Baron (2014) reviewed some MLE methods as well as in-
troducing some least-square estimation of the Cox proportional hazard model
[5]. More recently, Brazzale et al. (2018) proposed a non-parametric method to
estimate the time point of change in a single survival curve, based on fitting a
stump regression to p values for testing hazards rates over small time intervals
[2].

We will propose a way to estimate the time-lag point non-parametrically by
adapting an approach for change point analysis of multivariate time series data
[22, 30]. Specifically, we want a point estimate τ̂ for τ , where τ is the time point
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of change between two survival curves that have different distributions. In our
case, we would like the survival curves to be quite similar up until t = τ , and
differ after that time point. Since this is a non-parametric approach, we only
say that the two survival curves have different distributions but can not assume
specifically what those distributions are (i.e. F1 6= F2 where F1 and F2 are some
unknown distributions). The paper will be structured as follows. In Section 2,
we give an overview of the method and some theoretical properties. In Section
3, we describe the overall data simulation methods, and give simulation study
results. In Section 4, we give a real data example to show an application of the
method. Finally, Section 5 gives some concluding remarks and suggestions for
further research. The proofs for some theoretical results are given in Appendix
A.

2 Proposed method

2.1 Background information and notation

For our method, we consider n independent subjects. If we let Xi be the event
time (or, equivalently, survival time) for subject i and Ci as the censoring time,
then we have ti = min (Xi, Ci) as the observed event times. This means that
if the data is subject to right-censoring, ti is observed instead of Xi. We then
have a censoring indicator δi such that

δi =

{
1 if Xi ≤ Ci,
0 if Xi > Ci.

We now observe pairs (ti, δi) for i = 1, . . . , n. Assume we have t1 < t2 < · · · < tT
as the distinct event times in the pooled sample of k = 1, 2 groups. At time ti,
we observe dij events in the jth sample out of yij individuals at risk, i = 1, . . . , T.
One of the most commonly used estimates for the survival function was proposed
by Kaplan and Meier [16]. They proposed a survival estimate such that

Ŝk(t) =
∏
i:ti<t

(
1− dij

yij

)δi
,

which is a step function with jumps at observations ti for which δi = 1. This
estimate is non-parametric and can be applied in the presence of censoring.
No assumptions are required for the probability distribution other than the
independence between the survival and censoring variables.

2.2 Proposed Estimator

Since we will be comparing our method to a previous non-parametric method
for finding the point of time-lag effect that was proposed by Dinse et al., it is
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important to note that the method proposed by Dinse et al. uses the statistic

D(t) =
Ŝ1(t)− Ŝ2(t)√
V̂1(t) + V̂2(t)

,

where, for k = 1, 2, V̂k(t) = Ŝk(t)2
∑
ti≤t

dik
yik(yik−dik) is the variance of Ŝk(t)

estimated by Greenwood’s formula. Then, the proposed estimate of τ by Dinse
et al. is sup{t : t ≤ tT , D(t) ≤ z1−α} where z1−α is the (1− α)

th
percentile

of the standard normal distribution [8]. The method proposed by Park and
Qiu uses a semi-parametric method to estimate τ which utilizes a model that
is a generalization of the conventional Cox proportional hazards model and
maximum partial likelihood estimation [24].

In our method, we will be using a divergence measure based on the Euclidean
distance between the two distributions to calculate the estimate τ̂ [22, 30]. In
order to be most accurate, we should trim the data set so that we are only
including time points until one of the groups reaches a survival probability
estimate of 0 (i.e one of the groups has a number of subjects at risk of 0). If
this does not occur before the final event time recorded, we will include all time
points.

For random variables X,Y ∈ R, let a primed variable X ′ be an independent
copy of X and primed variable Y ′ be an independent copy of Y . Now, suppose

X,X ′
iid∼ F1 and Y, Y ′

iid∼ F2 and thatX,X ′, Y and Y ′ are mutually independent.
As proposed by Székely and Rizzo (2005), if E|X|α, E|Y |α <∞ for some fixed
constant α ∈ (0, 2), one Euclidean distance divergence measure can be defined
as

E(X,Y ;α) = 2E|X − Y |α − E|X −X ′|α − E|Y − Y ′|α.

For our proposed method, let us define the random vector Z = {Z1, . . . , ZT }
where Zl = S1(tl)−S2(tl) for l = 1, . . . , T where S1(tl) and S2(tl) are the survival
probabilities at time point l of groups 1 and 2, respectively. Then, we can define
vectors Xτ = {Zi : i = 1, . . . , τ} of length τ and Yτ = {Zj : j = τ + 1, . . . , T}
of length T − τ . These are two independent iid samples such that E|Xτ |α,
E|Yτ |α < ∞ for some α ∈ (0, 2). Matteson and James used the measure
proposed by Székely and Rizzo to define a empirical divergence measure based on
U -statistics [22, 30]. Based on this method, and with Zl and the random vectors
Xτ and Yτ defined as above, the empirical divergence measure we suggest is:

Ê(Xτ ,Yτ ;α) =
2

τ(T − τ)

τ∑
i=1

T∑
j=τ+1

|Xi − Yj |α −
(
τ

2

)−1 ∑
1≤i<k≤τ

|Xi −Xk|α

−
(
T − τ

2

)−1 ∑
(τ+1)≤j<k≤T

|Yj − Yk|α.

If the assumptions hold, Ê(Xτ ,Yτ ;α)
a.s.→ E(X,Y ;α) as T → ∞ by Lévy’s

Continuity Theorem and the Strong Law of Large Number for U-statistics as
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proven by Hoeffding, and properties of stochastic integrals for censored data as
proven by Gill [11, 13].

To estimate the point of treatment time-lag effect, define

Q̂(Xτ ,Yτ ;α) =
τ(T − τ)

T
Ê(Xτ ,Yτ ;α),

as the scaled sample measure of divergence. It is then possible to estimate the
time point of treatment time-lag effect by

τ̂ = argmax
τ

Q̂(Xτ ,Yτ ;α).

This statistic gives a consistent approach for estimating the treatment time-lag
point by adapting clustering change point methods for multivariate time series.
For all calculations and simulations in this paper, we will set α = 1 for simplicity.

2.3 Theoretical Properties

We now give the assumptions and theorems showing the strong consistency of
the estimator proposed in the previous section. For full proofs, please see the
Appendix A.

Assumption 1. Begin by assuming that we have a heterogeneous sequence of
independent observations from two different distributions. Then, let η ∈ (0, 1)
signify the fraction of observations belonging to one of the distributions such
that Z1, . . . , ZbηTc ∼ F1 and ZbηTc+1, . . . , ZT ∼ F2 for every sample of size
T . Let r = bηT c and s = T − r. Let η be bounded away from 0 and 1 such
that r, s → ∞ as T → ∞. Also, let µα1 = E|X − X ′|α, µα2 = E|Y − Y ′|α,

and µα12 = E|X − Y |α. Here, X,X ′
iid∼ F1 and Y, Y ′

iid∼ F2 and X,X ′, Y, Y ′

are all mutually independent. Further, suppose that E(|X|α + |Y |α) < ∞ for
some α ∈ (0, 2). Therefore, µα1 , µ

α
2 , µ

α
12, E(X,Y ;α) <∞. Finally, let {δT } be a

sequence of positive numbers such that δT → 0 and TδT →∞ as T →∞.

Lemma 1. If Assumption 1 holds:

sup
η∈[δT ,1−δT ]

∣∣∣∣∣∣
(
T

2

)−1∑
i<j

|Zi − Zj |α − [η2µα1 + (1− η)2µα2 + 2η(1− η)µα12]

∣∣∣∣∣∣ a.s.→ 0,

as T →∞.

The proof follows from the Strong Law of Large Numbers for U -statistics, as
well as the triangle inequality and properties of stochastic integrals for censored
data [11, 13, 22].

Theorem 1. Suppose Assumption 1 holds. Let τ̂T be the point estimate of
treatment time-lag point for a pooled sample with T distinct survival times. For
T large enough, δT < 1/2 and η ∈ [δT , 1− δT ] . Further, for each ε > 0 we have:

P

(
lim
T→∞

∣∣∣∣η − τ̂T
T

∣∣∣∣ < ε

)
= 1.
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This proves the almost sure convergence and strong consistency of the estimator.
If we wish to consider specific rates of convergence, there must be additional
information available about the distribution of the estimators. This, in turn,
depends on the unknown distribution of the data [22].

3 Simulation Study

All computing for the methods presented was done in R [28]. We begin by
simulating survival times from a Weibull distribution without time-invariant
covariates:

λ(t|g) = λνtν−1 exp{βI(t > τ)g}, (1)

where λ is the scale parameter, ν is the shape parameter, I(·) is an indicator
function, g is the group indicator (1 if the ith subject is in the treatment group,
and 0 otherwise), τ is the time-lag point, and β is a regression coefficient vector.
In (1), we assume λ = 0.5, ν = 1.5, β = 1, and τ = 1 and also n1 = n2 = 50,
n1 = n2 = 250, or n1 = n2 = 500 (i.e the number of subjects in each group is
equal). In this paper, we simulate survival times by using results from Austin
(2012) [1]. We also discretize the survival times in order to make results more
realistic in the sense that there will be more than one event per time point.
Additionally, in practice most survival times are not measured on a continuous
scale [33]. In the following simulations, we have rounded to one decimal place.
In order to simulate data that is subject to random right-censoring, we sim-
ulate survival times one at a time and also simulate a corresponding random
censoring time from U(a, b) where a is the minimum observed time and b is the
maximum observed time. Once a desired number of censored observations has
been created, we simulate only uncensored survival times until the sample size
has been reached. We consider two different censoring rates of 20% and 40% in
the simulation.

Table 1: Mean point estimate (PE), bias, and mean square error (MSE) of the estimate for τ
in model (1). In the table, CR denotes the censoring rate.

Sample
Method

20% CR 40% CR
size PE Bias MSE PE Bias MSE

100
Proposed 1.109 0.109 0.055 1.124 0.124 0.062

Park and Qiu 0.890 -0.110 0.096 0.849 -0.151 0.112
Dinse et al. 1.668 0.668 0.874 1.672 0.672 0.875

500
Proposed 1.077 0.077 0.012 1.111 0.111 0.019

Park and Qiu 0.877 -0.123 0.023 0.865 -0.135 0.031
Dinse et al. 1.134 0.134 0.275 1.102 0.102 0.202

1000
Proposed 1.065 0.065 0.008 1.096 0.096 0.013

Park and Qiu 0.891 -0.109 0.014 0.880 -0.120 0.019
Dinse et al. 1.052 0.052 0.155 1.045 0.045 0.195

The results for this simulation with 1000 replications are shown in Table 1
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at different sample sizes for the Dinse et al. method, the Park and Qiu method,
and the proposed method. The mean point estimate along with bias and mean
square error values of the estimated time-lag point are summarized in Table 1.
From the table, we can see that overall, the proposed method has a lower MSE
than the other methods, even in cases where the bias is slightly larger. The
proposed estimator also consistently performs better with larger samples sizes
and with lower censoring rates, while this is not always true for the Dinse et al.
estimator. In general, we find that the estimate for τ is over-estimated using
the Dinse et al. method, and is slightly under-estimated using the Park and Qiu
method. It is also of note that sometimes the Dinse et al. method does not give
an estimate, in which case there was no possible solution in that replication.
In order to find an estimate for τ , we remove these values and calculate the
estimate from the remaining values found.

Estimate

D
en

si
ty

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5

Proposed
Park and Qiu
Dinse et al.

Figure 1: Density curves of the estimated time-lag points by the proposed, Park and Qiu,
and Dinse et al. methods for 1000 replications, with the sample size of 500 and the censoring
rate of 20% in model (1).

In the case when the sample size of 500 and the censoring rate of 20% in
model (1), the density curves of the estimated time-lag points by the proposed,
Park and Qiu, and Dinse et al. methods are shown in Figure 1. From the plots
in the figure, it can be clearly seen that the results by Dinse et al. are generally
more spread out, while the results from both proposed and Park and Qiu are
typically much closer to each other and the true value of τ . The Dinse et al.
results also show a cluster of time points that are quite over-estimated, which
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indicates bi-modality instead of the normal distribution originally assumed by
the authors [8].

In order to stay true to real data applications, we also simulate data including
time-invariant covariates from the following more general model:

λ(t|g) = λ0(t) exp{βI(t > τ)g + γ1v1 + γ2v2}. (2)

For example, we simulate covariate v1 (gender) from a Binomial(n = 1, p = 0.5)
distribution and v2 (age) from a U(a = 1, b = 25) distribution rounded down
to the year. We will show with these simulations that the addition of covariates
does not largely change the results of the simulations. Further, we assume that
λ0(t) = λ = 0.1, β = 1.25, γ1 = 0.25, γ2 = 0.1, τ = 3, and maximum allowed
time of 10. The sample sizes are set to be n1 = n2 = 100, n1 = n2 = 250,
or n1 = n2 = 500 and the censoring rates are 20% or 40%. Table 2 presents
the results about the mean point estimate, bias, and mean square error of the
estimate for τ in model (2). We can see in the table that the results still seem
reasonable, and overall are consistent with the previous simulation results with
no time-invariant covariates. The proposed method is comparable to the Park
and Qiu method. Although the method of Park and Qiu performs somewhat
better with the added information from covariates, this intuitively seems correct
since the method is semi-parametric, and the proposed method does not use
any of the information from the covariates in calculating the estimate. Also,
the model used to simulate the data is the model used in the methods of Park
and Qiu, so these results are reasonable. The Dinse et al. method still generally
over-estimate, with the bias and MSE now being much larger than the previous
simulation results.

Table 2: Mean point estimate (PE), bias, and mean square error (MSE) of the estimate for τ
in model (2). In the table, CR denotes the censoring rate.

Sample
Method

20% CR 40% CR
size PE Bias MSE PE Bias MSE

200
Proposed 3.210 0.210 0.646 3.269 0.269 0.559

Park and Qiu 2.740 -0.260 0.423 2.674 -0.326 0.572
Dinse et al. 6.617 3.617 17.373 6.370 3.370 15.927

500
Proposed 3.316 0.316 0.219 3.333 0.333 0.202

Park and Qiu 2.805 -0.195 0.134 2.775 -0.225 0.170
Dinse et al. 6.508 3.508 19.835 5.922 2.922 16.407

1000
Proposed 3.275 0.275 0.110 3.326 0.326 0.140

Park and Qiu 2.848 -0.152 0.048 2.814 -0.186 0.075
Dinse et al. 6.104 3.104 18.966 5.359 2.359 14.396

The density curves in Figure 2 show that the results for the data including
covariates looks similar to the results that does not include covariates, but we
can now much more obviously see the bi-modality of the Dinse et al. estima-
tor. We see that this parameterization gives results that are approximately as
accurate as previous simulations. This indicates that the addition of covariates
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does not have a very large effect on the results of the method in estimating the
point of treatment time-lag effect with the proposed method.
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Figure 2: Density curves of the estimated time-lag points by the proposed, Park and Qiu,
and Dinse et al. methods for 1000 replications, with the sample size of 500 and the censoring
rate of 20% in model (2).

4 Application

In order to show an application of the proposed method, we will use a data
set from the Veteran’s Administration Lung Cancer Trial on patients with ad-
vanced, inoperable lung cancer who were treated with chemotherapy. The data
is taken from Kalbfleisch and Prentice [15]. The variables available in the full
data set are treatment (standard or test), cell type (squamous, small cell, adeno,
large), survival (in days), status (dead or censored), a Karnofsky score as a mea-
sure of general performance, months from diagnosis, age in years, and a prior
therapy indicator. If we split the data set into two groups depending on whether
the patient received standard or test treatment, we can implement the methods
shown in the prior section to estimate the time point of change between the two
groups.

It may be of specific interest to see when patients who have had prior treat-
ment begin to see a treatment lag effect between the standard treatment and
the test treatment. We can subset this data set and view only subjects in the
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study who have had previous treatment. In this case, we would have 40 patients
in the study with an approximately 8% censoring rate. In this case, the number
of subjects in the standard treatment group is 21 and 19 in the test group.
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Park and Qiu
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Figure 3: Kaplan-Meier curves for the distribution of time to lung cancer according to two
groups; the black dotted line denotes the standard treatment group and the grey dotted line
denotes the test treatment group. Estimated time-lag points by our proposed method (solid
line), the Park and Qiu method (grey two-dashed line), and the Dinse et al. method (dashed
line).

Figure 3 shows the Kaplan-Meier curves for the distribution of time to lung
cancer according to two groups; the black dotted line denotes the standard
treatment group and the grey dotted line denotes the test treatment group.
There seems to be treatment lag-effect between the two groups. It is clear that
no distinction can be made between two groups until around time point 100,
and they show different patterns right after the time point. Estimated time-lag
points by our proposed method (solid line), the Park and Qiu method (grey
two-dashed line), and the Dinse et al. method (dashed line) are also presented
in the figure. From the proposed method, we find an estimate for τ of 118. From
the Park and Qiu method, we find an estimate of 84, and finally from the Dinse
et al. method, we find an estimate of 340. The results of these estimates initially
seem consistent with the results from the simulation study. The Park and Qiu
estimator is, perhaps, slightly under-estimated while the proposed estimator is
slightly over-estimated and the Dinse et al. estimator is in this case quite far
from the time point of treatment lag-effect. This is consistent with the trends
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in over- and under-estimation found in the simulation study.
In order to find a confidence interval for the estimator, we use the standard

bootstrap method as initially suggested by Efron [9, 29]. We sample the observed
(ti, δi) with replacement and with stratification to account for the two treatment
groups using the package boot [4, 7]. From 1000 replications, the 95% percentile
bootstrap confidence interval for the estimate for τ is (2.0, 177.0). When looking
at the plot of the survival curves, this makes sense since the sample size is very
small, many of the events take place early on in the study and there are several
early time points that early on that could be seen as the “true” value of τ .

5 Conclusions

While there has been much research into change point analysis, there has been
little research on time-lag effects. Some authors have used change point meth-
ods to find the time point of change in one group, but there have been few non-
parametric methods considering two groups [2, 5, 24]. It should also be noted
that non-parametric and semi-parametric methods that have already been pro-
posed for survival analysis applications do not seem to be readily extendable to
either identifying the time point of change between two groups, or to identify
the time point of change non-parametrically. Throughout this paper, we have
presented a novel non-parametric method for estimating the time point of treat-
ment lag-effect using change point methods [22]. Some theoretical properties of
strong consistency of the proposed estimator are shown.

From the simulation study, we found that our method using the change point
tends to give more accurate results than the previously proposed Dinse et al.
estimator in several different cases and simulation settings, and gives results that
are generally comparable to the method suggested by Park and Qiu. We see that
the distribution of the estimator seems to be empirically satisfactory, especially
when compared to previously suggested non-parametric methods (primarily the
Dinse et al. method). When compared to the methods of Park and Qiu, we see
that the proposed estimator performs better in terms of bias and MSE when
there are no covariates included, and gives reasonable results in the case where
the information from covariates is included. This makes sense since the previous
method of Park and Qiu is semi-parametric and includes covariate information
[24].

Using a real data set for VA lung cancer data, we see that the estimator
proposed here performs well when compared to the estimator proposed by Dinse
et al., and gives results that are consistent with the simulation study in terms
of the estimation bias [8, 15, 24]. The 95% percentile confidence interval using
standard bootstrap methods is quite wide, and while the results do seem to
agree with the graph visually, there are some potential areas to improve this
research. Because survival data is somewhat complex in structure, and the
sample size of the application data set is quite small this may be a case where
the standard bootstrap fails and the percentile bootstrap confidence interval
may not be appropriate to use [9, 29]. In the future, it would be useful to use
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some alternative method that may be more suited to the structure of the data.
Overall, the method we present in this paper gives results that are reasonable

both in a simulation setting and with real data application. Despite the concerns
of the validity of the bootstrap methods used, the empirical results suggest that
this non-parametric estimator found from change point methods is applicable
and appropriate for use to analyze survival data.
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Appendix A

Lemma 1. If Assumption 1 holds,

sup
η∈[δT ,1−δT ]

∣∣∣∣∣∣
(
T

2

)−1∑
i<j

|Zi − Zj |α − [η2µα1 + (1− η)2µα2 + 2η(1− η)µα12]

∣∣∣∣∣∣ a.s.→ 0, as T →∞.

Proof. Let ε∗ > 0. Pick ε > 0 so that ε3 + ε2(2 + 3µα1 ) + ε < ε∗. Define
sets A1 = {(i, j)|i < j;Zi, Zj ∼ F1}, A2 = {(i, j)|Zi ∼ F1, Zj ∼ F2}, and
A3 = {(i, j)|i < j;Zi, Zj ∼ F2}. Then, let M1,M2, and M3 be the number of
elements in A1, A2, and A3, respectively. Note that these sets are disjoint.

By the Strong Law of Large Numbers for U -Statistics (Hoeffding, 1961),
there exists an N1 ∈ N s.t. whenever M1 > N1∣∣∣∣∣

(
M1

2

)−1∑
A1

|Zi − Zj |α − µα1

∣∣∣∣∣ < ε.

We can similarly define N2, N3 ∈ N. Then, there also exists an N4 ∈ N such
that, for T > N4,

1
T−1 < ε/2.

Let N = max{N1, N2, N3, N4} s.t. N is large enough that δT < 1/2. Then,
∀ TδT > N and ∀ η ∈ [δT , 1 − δT ] it is true that M1 = bηT c > N1, M2 =
bηT c(T − bηT c) > N2,M3 = (T − bηT c) > N3, and also that each of | rT −
η|, | r−1T−1 |, |

s
T − (1− η)|, and finally | s−1T−1 − (1− η)| are less than ε.

It is then true that(
T

2

)−1∑
A1

|Zi − Zj |α =
2

T (T − 1)

∑
A1

|Zi − Zj |α

=
2

r(r − 1)

( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj |α

=

(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj |α.

Also,∣∣∣ r
T
− η
∣∣∣ ∣∣∣∣ r − 1

T − 1
− η
∣∣∣∣ < ε2

=⇒
∣∣∣∣( rT )

(
r − 1

T − 1

)
− η

(
r

T
− r − 1

T − 1

)
+ η2

∣∣∣∣ < ε2

=⇒
∣∣∣∣( rT )

(
r − 1

T − 1

)
+ η2

∣∣∣∣ < ε2 + η

(
r

T
− r − 1

T − 1

)
< ε2 + 2ηε ∵ ε > 0 is arbitrary

=⇒
∣∣∣∣( rT )

(
r − 1

T − 1

)
− η2

∣∣∣∣ < ∣∣∣∣( rT )
(
r − 1

T − 1

)
+ η2

∣∣∣∣ < ε2 + 2ηε ∵ r, T ≥ 1
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Then, we can rearrange the inequalities so that∣∣∣∣( rT )
(
r − 1

T − 1

)
− η2

∣∣∣∣
∣∣∣∣∣
(
r

2

)−1∑
A1

|Zi − Zj |α − µα1

∣∣∣∣∣ < ε3 + 2ηε2

=⇒

∣∣∣∣∣
(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj |α −
( r
T

)( r − 1

T − 1

)
µα1 − η2

(
r

2

)−1∑
A1

|Zi − Zj |α + η2µα1

∣∣∣∣∣ < ε3 + 2ηε2

=⇒

∣∣∣∣∣
(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj |α + η2µα1

∣∣∣∣∣ < ε3 + 2ηε2 +
( r
T

)( r − 1

T − 1

)
µα1 + η2

(
r

2

)−1∑
A1

|Zi − Zj |α

< ε3 + 2ηε2 + ε2µα1 + η2ε < ε3 + 2ηε2 + µα1 ε
2(1 + 2η) + η2ε

=⇒

∣∣∣∣∣
(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj |α − η2µα1

∣∣∣∣∣ <
∣∣∣∣∣
(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj |α + η2µα1

∣∣∣∣∣
< ε3 + ε2(2η + (1 + 2η)µα1 ) + η2ε

< ε3 + ε2(2 + 3µα1 ) + ε.

So, T > N implies that

P

(∣∣∣∣∣
(
r

2

)−1 ( r
T

)( r − 1

T − 1

)∑
A1

|Zi − Zj |α − η2µα1

∣∣∣∣∣ < ε∗

)
= 1 for ε∗ > 0.

We can apply similar reasoning to the sets defined by A2 and A3. Then, using
the triangle inequality, we complete the proof since ε∗ > 0 is arbitrary, and we
have uniform convergence.

Theorem 1. Suppose Assumption 1 holds. Let τ̂T be the point estimate of
treatment time-lag effect for a pooled sample with T distinct survival times. For
T large enough, δT < 1/2 and η ∈ [δT , 1− δT ] . Further, ∀ε > 0

P

(
lim
T→∞

∣∣∣∣η − τ̂T
T

∣∣∣∣ < ε

)
= 1.

Proof. Let T be such that η ∈ [δT , 1− δT ]. Then, for any η̃ ∈ [δT , 1− δT ], let r̃ =
bη̃T c and s̃ = T − r̃. Then, Xr̃ = {Z1, . . . , Zr̃} and Yr̃ = {Zr̃+1, . . . , ZT } ∀ T .
Then

Ê(Xr̃,Yr̃;α)
a.s.→
(
η

η̃
I(η̃ ≥ η) +

1− η
1− η̃

I(η̃ < η)

)2

E(X,Y ;α)

= h(η̃; η)E(X,Y ;α),

as T → ∞, uniformly in η̃. The maximum of h(η̃; η) is attained when η̃ = η.
We also see that

1

T
Q̂(Xr̃,Yr̃;α)

a.s.→ η̃(1− η̃)h(η̃; η)E(X,Y ;α),
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as T →∞, uniformly in η̃. Additionally, the maximum of η̃(1− η̃)h(η̃; η) is also
attained when η̃ = η. Now, define

τ̂T = argmax
τ∈{dTδT e,...,bT (1−δT )c}

Q̂(Xτ ,Yτ ;α),

and the interval
Γ̂T = argmax

η̃∈[δT ,1−δT ]

Q̂(Xr̃,Yr̃;α).

Then, we can see that τ̂T
T ∈ Γ̂T . Since

1

T
Q̂
(
Xτ̂T /T ,Yτ̂T /T ;α

)
>

1

T
Q̂ (Xη,Yη;α)− o(1),

we have that

1

T
Q̂
(
Xτ̂T /T ,Yτ̂T /T ;α

)
≥ η(1− η)h(η; η)E(X,Y ;α)− o(1),

by the almost sure uniform convergence shown previously. Letting η̂ = τ̂T
T , it

follows that

0 ≤ η(1− η)h(η; η)E(X,Y ;α)− η̂(1− η̂)h(η̂; η)E(X,Y ;α)

≤ 1

T
Q̂(Xη̂,Yη̂;α)− η̂(1− η̂)h(η̂; η)E(X,Y ;α) + o(1).

This tends to 0 as T →∞. For every ε > 0, ∃ ε∗ such that

η̃(1− η̃)h(η̃; η)E(X,Y ;α) < η(1−η)h(η; η)E(X,Y ;α)−ε∗ ∀ η̃ with |η̃−η| ≥ ε.

Therefore,

P
(

lim
T→∞

|η̂T − η| ≥ ε
)
≤ P

(
lim
T→∞

η̂T (1− η̂T )h(η̂T ; η)E(X,Y ;α) < η(1− η)h(η; η)E(X,Y ;α)− ε∗
)

= 0.

This proves the claim of uniform convergence and strong consistency of the
estimator. To specifically consider the rates of convergence, we need additional
information about the distribution of estimators which, in turn, depends on the
distribution of the data (which is considered to be unknown or arbitrary).
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