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Abstract

A fundamental task in the automated analysis of images is the development of effective

image pair comparison techniques. For two high-dimensional images, a statistical method

must automatically label them as “similar” or “different” depending on whether random

error and spatial dependencies could account for the pixel-wise differences. We develop a

Bayesian strategy by constructing a novel extension of Dirichlet processes called the spatial

random partition model (sRPM). The process groups spatially proximal image pixels with

similar intensities into clusters, thereby achieving dimension reduction in the large number

of pixels. Next, we apply the sRPM-based analytical procedure to compare two images. The

image comparison problem is formulated as a hypothesis test involving a univariate metric

adaptive to spatial correlations and robust to random variability in the pixel intensities. To

handle the computational burden, we foster a two-stage technique for MCMC analysis and

hypothesis testing of image pairs. A simulation study analyzes artificial datasets and finds

compelling evidence for the high accuracy of sRPM in image comparison. We demonstrate

the effectiveness of the technique by statistically analyzing satellite image data.

Keywords: Aggregated attraction function; Bayesian hierarchical model; Differential pixel

proportion; Markov Chain Monte Carlo; Nonparametric Bayes; Spatial random partition

model.
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1 Introduction

Due to the rapid advancements in image acquisition techniques, images have emerged as

one of the most versatile and information-rich data resources across diverse industries and

scientific disciplines. For example, in the manufacturing industry, images play a pivotal role

in quality control processes due to their ease of acquisition and cost-effectiveness. Similarly,

in the natural sciences, satellite images are indispensable for analyzing Earth’s surface and

environment across disciplines such as forest science, climate science, agriculture, forecast-

ing, ecology, and fire science.

In many of these contexts, a series of images is often collected over time from a longi-

tudinal process—such as images acquired from a rolling process in metalworking—where

a critical goal is to monitor for temporal changes and detect potential “change points.”

Identifying such change points is essential as they indicate moments where the process

diverges beyond acceptable limits of variation, potentially signaling anomalies or shifts in

underlying dynamics. This task is closely related to statistical process control (SPC) (Qiu,

2014), but existing SPC methodologies are insufficient for high-dimensional image data due

to unrealistic model assumptions and limited practical applicability.

A foundational task underpinning this monitoring process is image pair comparison.

By developing effective techniques for comparing high-dimensional images, we can sys-

tematically classify pairs of images as “similar” or “different” based on whether observed

pixel-wise differences can be attributed to random error. Successful image comparison is

often the first step toward more complex objectives, such as inferring the nature of detected

changes, isolating regions of interest, or predicting future behaviors of a system under mon-
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itoring. For example, in quality control, identifying a shift might guide interventions to

rectify the process, while in satellite image analysis, detected changes might signal envi-

ronmental shifts requiring further study. Thus, image comparison lays the groundwork for

meaningful downstream analyses and decision-making in these applications.

In response to the growing need for sophisticated methodologies that combine robust

modeling with efficient computation, this paper aims to address the challenges of high-

dimensional image comparison and provide a practical framework for advancing SPC tech-

niques tailored to modern image data. To be useful, image comparison techniques must

have (i) high sensitivity and specificity, (ii) the ability to handle high dimensionality and

spatial dependencies through model-based dimension reduction, (iii) flexibility, in the sense

that they do not make restrictive parametric assumptions limiting the applicability of the

models in real settings, and (iv) computational efficiency, for example, being able to har-

ness the power of efficient computation to analyze high-dimensional images. This paper

addresses these critical challenges, providing a practical framework for advancing SPC

techniques tailored to modern image data.

To motivate the methodological development, consider three images presented in Figure

1 and consisting of 100 × 100 pixels each. We denote these images by I1, I2 and I3,

respectively. Although the images may look identical at the first glance, in reality, all

three images are different to varying degrees. A visual inspection reveals that differences

between images I1 and I2 are relatively subtle compared to differences between I1 and

I3. Intuitively, it appears that random variation could possibly account for the differences

between I1 and I2. However, although I1 and I3 are very similar in most places, there
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are systematic differences, e.g., the dark area on the lower right side of I1 has a slightly

different shape.

Relevant background and present state of knowledge There is only limited exist-

ing research on monitoring image pairs or sequences, mainly in the chemical and industrial

engineering literature, where images have been widely used in recent years (Megahed et al.,

2011; Prats-Montalban and Ferrer, 2014; Yan et al., 2015). Existing methods for image

comparison often proceed in two main steps. For instance, the methods first extract some

features from each image using techniques such as principal component analysis (PCA),

and then monitor the extracted features by a conventional control chart (Duchesne et al.,

2012; Lin et al., 2008). Some other methods focus on certain prespecified regions in indi-

vidual images called regions of interest (ROIs), and then monitor the images by a control

chart constructed using a summary statistic of the ROIs, e.g., the average image intensity

(Jiang et al., 2011; Megahed et al., 2012). The first type of method completely ignores the

spatial structure of the images while the second type considers the spatial structure only

within the prespecified ROIs. Most of these methods fail to take into account image edges

and complicated correlation structures of the spatial image intensities. Consequently, they

do not provide a reliable tool for image monitoring applications; see Qiu (2020) for a related

discussion. Notable exceptions include Wang and Ye (2010), who compare nonparametric

curves under a heteroscedastic model with spatially correlated errors; Koosha et al. (2017),

who use nonparametric wavelet basis functions to extract key features and detect change

points and fault locations simultaneously; and Roy and Mukherjee (2024), who propose a

feature-based image comparison method in which edges and jump points are considered
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Figure 1: Are images I1 and I2 significantly different? Are images I1 and I3 significantly
different?
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as the primary features. As a side note, in the literatures of image processing, fMRI, and

machine learning, there exist methods or algorithms for analyzing a set of images obtained

in a given time interval (Feng and Qiu, 2018; Guo and Zhang, 2015; Guo et al., 2018; Julea

et al., 2011; Lindquist, 2008). However, these methods are retrospective and cannot be

used effectively for prospective monitoring of spatiotemporally correlated image sequences.

There are relatively few Bayesian techniques for image comparison. Nonparametric

Bayes techniques that are potentially applicable to this problem typically involve exten-

sions of Dirichlet processes (Ferguson, 1973; Ghosal et al., 1999) to spatial settings; see

Reich and Fuentes (2015) for a recent review. These strategies include Gelfand et al.

(2005), Duan et al. (2007), Dunson and Park (2008), Griffin and Steel (2006), Rodriguez

et al. (2010), and Reich and Bondell (2011). Another class of Bayesian methods (e.g., Na

et al., 2013; Chatzis and Tsechpenakis, 2010) applies infinite-dimensional spatial extensions

of hidden Markov models to the problem of image segmentation. However, these models

have certain limitations. One notable challenge is their sensitivity to the predefined def-

inition of a ‘neighborhood,’ which is assumed to be uniform across the image and known

in advance. This assumption can limit the model’s flexibility, as the Markov assumption

treats pixels in different neighborhoods as independent. As a result, these models may

find it difficult to capture more complex or unknown spatial correlation structures beyond

first-order dependencies, including medium- or long-range interactions that can vary across

the image space.

Moreover, these Bayesian methods are either broadly applicable spatial models or are

primarily designed for the analysis of single images. As a result, they are not well-suited
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for image comparison, which is the central focus of this paper. Specifically, they lack the

ability to account for spatial correlation structures between non-random pixel locations,

identify and transfer relevant information across images using unsupervised, model-based

dimensionality reduction techniques, or are inefficient at detecting significant deviations

from quality standards while considering the spatial nature of images.

Motivated by these challenges, this article develops, in stages, a Bayesian strategy

for comparison of high-dimensional image pairs. Section 2 invents a new nonparametric

approach for analyzing a single image with multiple intensity values at each of p pixels

or voxels (e.g. a colored image). We construct a novel extension of Dirichlet processes,

called the spatial random partition model (sRPM), that groups proximal image pixels with

similar intensities into the same cluster. The infinite mixture model adapts the general

Bayesian frameworks of random partition models and density estimation in the presence

of arbitrary covariates (e.g. Müller et al., 2011) to spatial settings and image analysis in

particular. The proposed sRPM model favors a small number of relatively large clusters,

thereby achieving dimension reduction in the large number of pixels in a manner that

accounts for spatial correlations. A key benefit of this dimension reduction is that the

extracted image information is useful for answering inferential questions in image sequence

monitoring applications.

Section 3 extends the sRPM-based analytical procedure to compare two images that

share the same pixel locations but possess possibly different intensity values at multiple

pixels. Image comparison is achieved by an intuitively appealing univariate metric for mea-

suring image differences. This metric is not only robust to random response variability in
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the large number of pixels but also adaptive to spatial correlations. The image compar-

ison problem is then formulated as a single-parameter hypothesis test. This comparison

procedure utilizes only cluster-related information previously extracted from the first im-

age, as developed in Section 2. Depending on the degree to which the two images differ,

the marginal posterior of this metric is used to call the two images “similar” or “different”

based on the posterior probabilities of competing hypotheses. To handle the computational

burden in analyzing high-dimensional images, Section 3.1 fosters a two-stage technique for

MCMC analysis and hypothesis testing of image pairs. Section 4 analyzes artificial datasets

using the proposed technique and finds compelling evidence for the high accuracy of sRPM

in image comparison. Section 5 applies the sRPM technique to detect differences between

pairs of satellite images. Finally, several remarks conclude the article in Section 6.

2 Bayesian analysis of a single image

For d ≥ 2, imagine that we have a single d-dimensional image, denoted by I1 and consisting

of p pixels. In Figure 1, d = 2 because I1 is two-dimensional. However, we are equally

interested in analyzing three-dimensional images, such as brain images used in Alzheimer’s

disease research. We wish to achieve dimension reduction in the large number of pix-

els in a manner that accounts for spatial correlation. The extracted information should

be subsequently useful for comparisons between I1 and other images in image sequence

monitoring.
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2.1 Spatial random partition model (sRPM)

The proposed sRPM defines a coherent process, rather than simply a model. Specifically,

the distribution of the responses for any subset of pixels in image I1 can be obtained from

the distribution for a larger set of pixels by marginalization. The common domain of the

images is assumed to be a design set denoted by ∆p containing p regularly or irregularly

arranged d-dimensional pixels. This design set is assumed to belong to a compact convex

set in Rd denoted by D. For pixel i = 1, . . . , p, where p is large, and for image indexed by

t = 1, 2, . . ., the ith pixel is located at si = (xi, yi)
′ ∈ ∆p for two-dimensional images (i.e.,

d = 2) and is associated with a pixel-specific intensity vector zit of length r. Color images

can be represented by triplets, zit = (zitR, zitG, zitB) ∈ [0, 1]3, corresponding to RGB values.

Monochrome images correspond to scalar intensities, so that zit ∈ [0, 1].

Non-random pixel locations. We regard the pixel locations as non-random design

points and the associated intensities as random, image-specific responses. To achieve di-

mension reduction in the large number of pixels, p, one possibility is to utilize the sparsity-

inducing property of Dirichlet processes to group a set of proximal pixels with similar

intensities in image I1 into q1 latent clusters, where q1 is unknown but typically much

smaller than p. This would drastically reduce the necessary memory storage space from

O(p) to include only the parameters related to the cluster characteristics. The use of Dirich-

let processes to achieve dimension reduction has precedence in the literature; see Kim et al.

(2006) and Dunson and Park (2008).

However, standard Dirichlet processes are inadequate for image analysis because they

9



treat all p pixels as exchangeable, and they would allocate the pixels to latent clusters

regardless of spatial proximity. To accommodate the intrinsic spatial nature of images,

we propose extending the Dirichlet process to a spatial random partition model (sRPM)

so that only proximal pixels with similar intensities are a posteriori allocated to the same

cluster. Applying density estimation regressed on covariates (e.g. Müller et al., 2011) and

random partition models, the sRPM process provides a novel framework for image analysis

that flexibly adapts to the spatial correlations among the pixels.

Allocation variables c1 = (c11, . . . , cp1). Let the event [ci1 = k] represent pixel i of image

I1 belonging to cluster k in a spatial random partition model, which we will formulate after

introducing key concepts and definitions. In the eventual inferential procedure, we will find

that an MCMC point estimate of allocation vector c1 can be computed if desired.

Aggregated attraction function. Each cluster is associated with a latent spatial knot

and a cluster-specific bandwidth, with individual pixels in image I1 stochastically allocated

to a cluster depending on the pixel-cluster attraction. More specifically, for cluster k, the

spatial knot is a d-dimensional vector µk, and the bandwidth is a d × d positive definite

matrix, Σk. Since the spatial knots and bandwidths are unknown, we assume normal-

inverse Wishart (NIW) priors for these cluster-specific quantities:
(
µk,Σk

) iid∼ Wd

(
φ0

)
, k =

1, . . . , q1, for hyperparameter φ0 =
(
µ0, κ0,Σ0, ν0

)
consisting of positive hyperparameters

ν0 and κ0, d-dimensional vector µ0, and d× d positive-definite matrix Σ0.

The pixel-cluster attraction is determined by the pixel’s position relative to the spatial

knot µk, with the relative distance calibrated by cluster bandwidth Σk. In particular, the
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Figure 2: Illustration of pixel-cluster attraction for a pixel located at si.

attraction between pixel i and cluster k is assumed to be equal to the multivariate normal

density, Nd

(
si | µk,Σk

)
. This ensures that the pixel-cluster attraction is greater for pixels

near the spatial knot and for clusters with smaller bandwidths. The concept of pixel-cluster

attraction is illustrated in Figure 2 for q = 6 clusters belonging to a rectangular design

space in a single image. The areas and orientations of the ellipses are determined by the

bandwidths quantified by the positive-definite matrices Σk. The sizes of the dots marking

the spatial knots are proportional to the attraction between pixel si and the kth cluster.

In image I1, using the pixel-cluster allocation variables, let s∗k1 = {si : ci1 = k, i = 1, . . . , p}

denote the pixel locations assigned to the kth cluster. The spatial compactness of cluster k

in image I1 is quantified by an aggregated attraction function denoted by g(s∗k1). Larger val-

ues of aggregated attraction are associated with tighter spatial clusters, i.e., nearby pixels

grouped into smaller clusters. Marginalizing over the unknown cluster-specific knots and

bandwidths, and regarding the pixel locations as non-random design points, the aggregated
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attraction function for cluster k in image I1 is obtained as follows:

g(s∗k1)=

∫ ∫ ∏
i:ci1=k

Nd

(
si |µk,Σk

)
Wd

(
φ0

)
dµkdΣk =

Γd

(
νk1/2

)
πmk1d/2Γd

(
ν0/2

) |Σ0|ν0/2

|Σk1|νk1/2

(
κ0
κk1

)d/2

,

(1)

where Γd

(
·
)
denotes the multivariate gamma function. The new quantities appearing in

equation (1) have the following definition. Based on the pixels assigned to the kth cluster,

the updated NIW prior has hyperparameter φk1 =
(
µk1, κk1,Σk1, νk1

)
, where

µk1 =
κ0

κ0 +mk1

µ0 +
mk1

κ0 +mk1

s̄k1, νk1 = ν0 +mk1, κk1 = κ0 +mk1,

Σk1 = Σ0 + V k1 +
κ0mk1

κ0 +mk1

(s̄k1 − µ0)(s̄k1 − µ0)
′. (2)

These quantities rely on the following cluster-related summaries for image I1: (i) number

of pixels, mk1, allocated to cluster k by the allocation vector c1, (ii) pixel location averages,

s̄k1 =
∑

i:ci1=k si/mk1, and (iii) matrix error sum of squares for the pixel locations, V k1 =∑
i:ci1=k(si− s̄k1)(si− s̄k1)

′, for k = 1, . . . , q1. Notice that these quantities rely only on the

pixel locations but not on the image intensities.

We emphasize that the pixel locations are conceived as non-random design points. By

construction, the correlation induced by the spatial knots and bandwidths of the clusters

implies that larger values of the attraction function are a priori associated with tighter

spatial clusters, i.e., proximal pixels allocated to clusters with smaller areas or volumes,

i.e., Lebesgue measures in Rd.
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Spatial random partition model for images. As mentioned, standard Dirichlet pro-

cesses are inadequate because they ignore the spatiotemporal nature of the images and

regard the intensities at the p pixels as a priori exchangeable. Using the cluster-specific

aggregated attraction functions in (1), we extend the standard Dirichlet process to a spatial

random partition model (sRPM) for the pixel-cluster allocations in image I1:

[c1] ∝ αq1

q1∏
k=1

g(s∗k1)Γ(mk1), c1 ∈ Bp, (3)

where [·] denotes density functions, Bp is the set of possible partitions of p pixels, and α > 0

is the mass parameter.

In other words, allocation vector c1 = (c11, . . . , cp1) is a priori distributed as the parti-

tions induced on the p image pixels by sRPM. Furthermore, attraction function (1) ensures

that a pixel is a priori more likely to join clusters containing a larger number of spatially

proximal pixels. Summing over all possible partitions of the p pixels in image I1, the

normalization constant for density (3) is
∑

c1∈Bp
αq1

∏q1
k=1 g(s

∗
k1)Γ(mk1).

Intensities. Finally, we specify the sampling distribution of the intensity or response

vector zi1 = (zi11, . . . , zir1), for i = 1, . . . , p. Conditional on the pixel-cluster allocations

of image I1, the intensity vectors of the member pixels in cluster k are modeled as a

shared cluster-specific mean vector, vk = (vk1, . . . , vkr), plus Gaussian white noise. More

specifically, conditional on the event that the ith pixel belongs to the kth cluster, zi1 |

{ci1 = k} iid∼ Nr

(
vk, σ

2I
)
, with σ2 assigned an inverse chi-square prior. Small values of

σ guarantee that the clusters consist of pixels with similar intensities. Consequently, the
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posterior distribution of sRPM tends to group proximal image pixels with similar intensities

into the same cluster, and tends to favor a small number of relatively large clusters, thereby

achieving dimension reduction.

For cluster k = 1, . . . , q1, let mean vectors vk
iid∼ Nr(v0,Σ0) in the prior. Standard con-

ditionally conjugate priors are imposed on all the remaining hyperparameters to complete

the model specification. Notice that a common σ parameter for the r intensity components

presupposes that the intensities have comparable scales; this may require standardizing

each intensity component before analysis. Despite the apparently strong parametric as-

sumption of homoscedastic Gaussian errors in the sRPM model, Dirichlet processes and

many of their extensions, including sRPM, are intrinsically nonparametric and capable of

flexibly adapting to complex-structured regression surfaces (Lijoi and Prünster, 2010).

2.2 Posterior inferences for image I1

The following Proposition establishes the posterior equivalence of two models with very

different interpretations. The proof is presented in Supplementary Material. Applying well-

established sampling procedures, the sRPM parameters are then updated in a relatively

straightforward manner.

Proposition 1 Consider an alternative model in which (i) sampling distribution (si, zi1) |

{ci1 = k} indep∼ Nd(µk,Σk) × Nr

(
vk, σ

2I
)
, and (ii) allocation vector c1 = (c11, . . . , cp1) is

distributed as the partitions induced by a regular Dirichlet process prior with mass param-

eter α and base distribution Wd

(
φ0

)
× Nr(v0,Σ0). This model regards the pixel locations

s1, . . . , sp as random, unlike sRPM, for which ∆p is the design set of pixel locations. Nev-
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ertheless, for every p, given the responses and set ∆p, the posterior distribution of the

remaining parameters of sRPM and the alternative model are identical.

Intuitively, posterior inferences about the key parameters of interest are equivalent un-

der the alternative model due to the high degree of separability between the pixel locations

and image intensities in the two models. Starting with ad hoc initial values, the sRPM

model parameters for image I1 are then iteratively generated by Gibbs sampling steps from

their full conditionals. The post-burn-in MCMC sample is used for posterior inference. We

briefly outline the Gibbs sampling steps below for some of the parameters:

1. Allocation vector c1. For the allocation vector of the alternative posterior distri-

bution described in Proposition 1, this parameter vector is updated using the Gibbs

sampler for finite-dimensional Dirchlet process representation of Ishwaran and James

(2001).

2. Spatial knots and bandwidths. Given the data and the current values of the

remaining model parameters including allocation vector c1, the spatial knots and

bandwidths have independent NIW distributions:
(
µk,Σk

) indep∼ Wd

(
φk1

)
, for k =

1, . . . , q1, with the updated NIW hyperparameter φk1 described after equation (1).

Cluster-related posterior inferences. By using the MCMC sample and applying the

least-squares method of Dahl (2006), we can compute ĉ1, an estimate of the pixel-cluster

allocation vector for image I1. Intuitively, this procedure first uses the MCMC sample

to estimate A, the “adjacency matrix” whose elements represent the estimated posterior

probabilities that each pixel pair belongs to a common cluster. Next, using an MCMC
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Figure 3: Image I1 in Figure 1 and its detected cluster characteristics by the sRPM tech-
nique.

sample, estimate ĉ1 is chosen to minimize the Frobenius norm of the difference between Â

and the adjacency matrix associated with ĉ1. Since they are straightforward deterministic

functions of ĉ1, the estimated number of clusters, q̂1, and the estimated numbers of pixels

allocated to the clusters, m̂11, . . . , m̂1q̂1 , are immediately available. Furthermore, estimates

of the spatial knots, µ̂1, . . . , µ̂q̂1 , and bandwidths, Σ̂1, . . . , Σ̂q̂1 , can be computed. For

example, for image I1 of Figure 1, the detected cluster characteristics, along with image I1

for comparison, are graphically presented in Figure 2.2. sRPM detected q̂1 = 57 spatial

clusters, achieving impressive dimension reduction in the 10, 000 image pixels.

3 Comparison of image pairs

We will extend the sRPM-based analytical procedure of Section 2 to the comparison of two

images. Suppose that the images, denoted by I1 and I2, share the same pixel locations but

possess possibly different intensities at multiple pixel locations. Thus, design set ∆p ⊂ Rd
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consists of p regularly or irregularly arranged pixels that are common to both images. Image

comparison is achieved by an intuitively appealing measure for image differences that is

not only robust to random response variability of the large number of pixels but is also

adaptive to spatial correlation. Furthermore, the comparisons utilize only cluster-related

information extracted from I1, as described in Section 2. Depending on the degree to which

the two images are different, the marginal posterior of this measure is used to call the images

“similar” or “different” using the posterior probabilities of competing hypotheses.

Propagation of information from image I1 to I2. One of the key features of the

Bayesian paradigm is its natural ability to borrow strength from comparable or somewhat

similar data. Applied to the image comparison problem, this implies that conditional on

image I1, the posterior of I1 plays the role of the prior for I2. For example, the pixels in

image I2 may join any of the q1 clusters already discovered in image I1 (if the pixels belong

to regions of design space ∆p where the two images are somewhat similar) or may join a

new set of clusters unique to image I2 (if the pixels belong to regions where the two images

are very different). If I2 is associated with q2 clusters, then q2 ≥ q1 because we condition

on the q1 clusters previously discovered in I1. The first q1 of these clusters are shared with

I1 whereas the remaining (q2−q1) clusters are unique to I2. In the extreme situation where

the images are very different, q2 > q1, and none of the q1 clusters of I1 are occupied in I2.

At the other extreme, when the two images are nearly identical, q2 = q1, and only the q1

clusters of I1 are occupied by the p pixels of I2. Consequently, the latent spatial knots

and bandwidths of the image I2 clusters have the following independent normal-inverse
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Wishart (NIW) conditional priors:

(
µk,Σk

)
| I1

indep∼


Wd

(
φk1

)
, k = 1, . . . , q1,

Wd

(
φ0

)
, k = (q1 + 1), . . . , q2,

(4)

where the components of the NIW hyperparameter φk1 is described in equation (2) and

estimated using the Gibbs sampler for image I1. Extending the earlier notation for allo-

cation variables, for i = 1, . . . , p, let [ci2 = k] represent the event that pixel i of image I2

belongs to cluster k, and let s∗k2 = {si : ci2 = k} be the set of pixel locations belonging to

cluster k. It can be shown that the conditional prior (4) gives the following expression for

the aggregated attraction function:

g(s∗k2) =
1

πmk2d/2
×


Γd

(
νk2/2

)
Γd

(
νk1/2

) |Σk1|νk1/2

|Σk2|νk2/2

(
κk1

κk2

)d/2

, k = 1, . . . , q1,

Γd

(
νk2/2

)
Γd

(
ν0/2

) |Σ0|ν0/2

|Σk2|νk2/2

(
κ0

κk2

)d/2

, k = (q1 + 1), . . . , q2.

(5)

The new quantities in equation (5) are defined as follows. Based on the assigned pixels,

the updated NIW prior has hyperparameters φk2 =
(
µk2, κk2,Σk2, νk2

)
with components

µk2 =
mk1

mk1 +mk2

µk1 +
mk2

mk1 +mk2

s̄k2, νk2 = νk1 +mk2, κk2 = κk1 +mk2,

Σk2 = Σk1 + V k2 +
κk1mk2

κk1 +mk2

(s̄k2 − µk2)(s̄k2 − µk2)
′. (6)

These quantities rely on the following cluster-related summaries from image I2: (i) number

of pixels, mk2, allocated to cluster k by the allocation vector c2, (ii) pixel location averages,
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s̄k2 =
∑

i:ci2=k si/mk2, and (iii) matrix error sum of squares for the pixel locations, V k2 =∑
i:ci2=k(si − s̄k2)(si − s̄k2)

′, for k = 1, . . . , q2. Then, the conditional sRPM for the pixel-

cluster allocations of image I2 becomes

[c2 | c1] ∝ αq2

q2∏
k=1

g(s∗k2) Γ(mk1 +mk2), c2 ∈ Bp, (7)

where mk1 = 0 for k > q1, i.e., the new clusters of I2 were empty in I1. Analogously

as in image I1, the intensity or response vector zi2 = (zi12, . . . , zir2) is distributed as

zi2 | {ci2 = k} iid∼ Nr

(
vk, σ

2I
)
. For k = 1, . . . , q1, the prior for mean vector vk coincides

with its posterior from image I1. For the new clusters indexed by k = (q1 + 1), . . . , q2, the

mean vectors have the previously specified no-data prior, vk
iid∼ Nr(v0,Σ0).

A quantitative measure for image comparisons. Using the parameters of the con-

ditional model for image I2, specifically, the random number of pixels of I2 allocated to

the spatial clusters, we define the differential pixel proportion of image I2 to be

ψ =
1

p

p∑
i=1

I(ci1 ̸= ci2), (8)

where I(·) is the indicator function. This quantity measures the relative area or volume of

the regions in Rd where images I1 and I2 are different; ψ values near 0 (1) are indicative of

similar (dissimilar) image pairs. Since the pixel-cluster allocations are a denoised version

of the image after accounting for spatial correlation, this advantage is inherited by the

measure ψ. Image comparison problem can be formulated as a single-parameter hypothesis
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test:

H0 : ψ ≤ ψ∗ (“similar images”) versus H1 : ψ > ψ∗ (“different images”), (9)

for some prespecified threshold ψ∗ ∈ (0, 1). For image comparisons, the key parameter of

interest is P
(
ψ > ψ∗ | I1, I2

)
, i.e. the posterior probability of hypothesis H1. The two

images are declared different (similar) if this posterior probability does (not) exceed 0.5.

3.1 Posterior inferences for differential proportion ψ

Due to the computational costs of analyzing high-dimensional images, we perform combined

MCMC analysis and hypothesis testing of the two images in separate stages:

• Stage 1: First, image I1 is analyzed using the computationally efficient MCMC

strategy described in Section 2.2. In this manner, we obtain ĉ1, an estimate of the

pixel-cluster allocation vector of I1. From the estimated allocations, we compute the

estimated number of clusters q̂1 and the estimated cluster sizes m̂11, . . . , m̂1q̂1 . For

estimating these important parameters, a detailed description is presented in Section

2.2.

• Stage 2a: Assuming all parameters specific to image I1 to be equal to their posterior

estimates, image I2 is analyzed using the Gibbs sampler of Ishwaran and James (2001)

applied to the conditional sRPM (7). The Monte Carlo scheme is analogous to that

for I1, and the computational costs of the two MCMC samplers are identical.

• Stage 2b: For the lth Gibbs sampling update of the I2 parameters, where l =

1, . . . , L, letm
(l)
12 , . . . ,m

(l)

q
(l)
2 2

denote the sizes of the q
(l)
2 clusters. Then, ψ(l) =

∑q
(l)
2
k=q̂1+1m

(l)
k2/p
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represents the l(th) MCMC draw for the parameter ψ. The values ψ(1), . . . , ψ(L) es-

timate the marginal posterior density of ψ and the estimated posterior probability

P̂
(
ψ > ψ∗ | I1, I2

)
= 1

L

∑L
l=1 I

(
ψ(l) > ψ∗), is immediately available. Images I1 and

I2 are called different or similar depending on whether or not P̂
(
ψ > ψ∗ | I1, I2

)
exceeds 0.5.

4 Simulation studies

To investigate the accuracy of sRPM procedure in labeling images as “similar” or “differ-

ent,” we generated 500 sets of truly similar and truly different image pairs (i.e. 1,000 images

in total), with each monochrome image consisting of 100×100 pixels each. For each image,

the p = 10, 000 pixel signals were generated from an adaptation of the Potts model (Hurn

et al., 2003) with q∗ = 45 hidden states on the square lattice. A Potts model induces spatial

correlation in the pixel intensities in a very different manner than sRPM. For hidden states

ν1, . . . , νp ∈ {1, . . . , q∗}p, the model induces spatial correlation in the hidden states by bor-

rowing information from neighboring pixels. Let Ni be the pixel indices surrounding pixel

i, so that Ni has 3, 5, and 8 elements depending on whether i belongs to the image inte-

rior, edge, or corner. Specifically,
[
ν1, . . . , νp

]
= 1

C(Λ)
exp

[∑p
i=1

∑
u∈Ni

λνuνi

]
, where νi ∈

{1, . . . , q∗}, i = 1, . . . , p, with λνuνi > 0 being a similarity measure between hidden states

νu and νi in a diagonally dominant q∗ × q∗ matrix, Λ = ((λνiνi)). The similarity measures

were related to the pairwise distances of q randomly generated points on the square lattice.

The normalizing constant is denoted by C(λ). Due to its intractability, we generated a

sample from the Potts density as the last draw of the corresponding Gibbs sampler.
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The q∗ hidden signals associated with the hidden states were generated i.i.d. from the

standard normal distribution. Finally, zero-mean Gaussian noise was added to the pixel-

specific hidden signals to obtain the continuous image intensities, which were then stan-

dardized to belong to the interval [0, 1]. Truly similar images shared the same hidden

signals but differed in the pixel-specific noise. Truly different images not only differed in

pixel-specific noise, but also had slightly different similarity measures in the Potts densities.

Following image generation, the posterior inference strategy outlined in Section 3 was

implemented to analyze each image pair using the sRPM technique and call each image

pair as similar or different. Averaging over the 500 datasets, the blue line in Figure 4

displays the receiver operating characteristic (ROC) curve of accurate calls, along with

95% confidence bands, as the threshold similarity ψ∗ was increased from 0 to 1. As is well

known, the area under the curve (AUC) close to 1 is indicative of a method’s reliability.

The estimated AUC for sRPM was 0.928 and a 95% confidence interval was (0.914, 0.942).

Minimizing the distance from the ROC curve to the upper left corner of the square,

we obtained the optimal threshold value of ψ∗ = 0.183. The percentage of correct and

incorrect calls for the optimal ψ∗ is displayed in Table 1. image comparison. In extensive

simulation studies, we have obtained reliable inferences for threshold values belonging to

the interval, [0.1, 0.2]. For image comparison in real datasets, we recommend selecting the

threshold ψ∗ of hypothesis test (9) in this range. For comparison, we analyzed the same

datasets using the image comparison approach based on continuity regions (Feng and Qiu,

2018). Averaging over the 500 datasets, the red line of Figure 4 displays the ROC curve

with 95% confidence bands. For the Feng and Qiu (2018) method, the estimated AUC
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Figure 4: Estimated ROC curves of the sRPM and Feng and Qiu (2018) approaches for the
500 artificial datasets of the simulation study. The dotted lines represent 95% confidence
bands for the ROC curves.

was 0.801, with a 95% confidence interval of (0.770, 0.831), demonstrating the significantly

greater effectiveness of sRPM in image comparisons. Minimizing the distance of the com-

peting method’s ROC curve to the upper left corner of the square in Figure 4, Table 1

displays the optimal percentage of correct and incorrect image pairs calls for the Feng

and Qiu (2018) approach. These results reveal that the sRPM method has approximately

balanced levels of sensitivity (i.e., ability to detect differences) and specificity (i.e., abil-

ity to detect similarities). In contrast, the Feng and Qiu (2018) strategy has significantly

lower sensitivity and specificity. These findings reveal that, at least for the types of images

investigated here, the sRPM method is more conservative than the Feng and Qiu (2018)

strategy in rejecting the null hypothesis of image similarity.
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sRPM
Truth

Similar Different

Detected
Similar 86.4% (1.5%) 13.6% (1.5%)
Different 14.0% (1.6%) 86.0% (1.6%)

Feng and Qiu (2018)

Truth
Similar Different

Detected
Similar 78.4% (1.8%) 21.6% (1.8%)
Different 29.8% (2.0%) 70.2% (2.0%)

Table 1: Averaging over the 500 artificial image pairs of the simulation study, the optimal
detection accuracies of the sRPM and Feng and Qiu (2018) methods for image comparison.
See the text for further explanation. Shown in parentheses are standard errors.

5 Analysis of satellite images

Chicago area images

Figure 5 displays monochrome satellite images of the Chicago area taken in 1990 (image I1)

and in 1999 (image I2). The data are available at available at https://users.phhp.ufl.edu/

pqiu/research/book/data/index.html. From an informal visual comparison, we find that

the two images have a few differences. Following the 9-year interval between the images,

there appear to be more dark spots in image I2. These changes may be due to environmental

changes or new construction. Some dark spots in image I1 also appear in image I2, although

their sizes have changed, e.g., in the lower portions of the images. Most of the differences

between the images are fairly small in magnitude, difficult to describe using a parametric

model, and are mostly local, affecting only small portions of the images.

For calling the two images similar or different, we focused on the differential pixel pro-

portion, ψ, defined in equation (8), and performed hypothesis test (9) to obtain an MCMC
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(a) Image I1 (b) Image I2

Figure 5: Reference satellite image I1 was taken in 1990 in the Chicago area. Satellite
image I2 of the same area taken in 1999.

estimate of posterior probability P
(
ψ > ψ∗ | I1, I2

)
. As mentioned earlier, extensive

simulation studies have suggested a threshold value ψ∗ belonging to the interval [0.1, 0.2]

to obtain reliable inferences. In general, two images were declared to different or similar

depending on whether or not the estimate P̂
(
ψ > ψ∗ | I1, I2

)
exceeded 0.5.

For the Chicago area images, the posterior inference procedure outlined in Section

3.1 was implemented to obtain the marginal posterior of differential parameter ψ. An

MCMC estimate of the marginal posterior is shown in the left panel of Figure 6. The

right panel of Figure 6 plots the estimated posterior probability P̂
(
ψ > ψ∗ | I1, I2

)
as ψ∗

varies over the range [0, 0.5]. We find that as ψ∗ increases, the posterior probability stays

level at approximately 1 before falling sharply as ψ∗ approaches 0.5. That is, irrespective

of the prespecified threshold ψ∗ ∈ [0.1, 0.2], the estimated posterior probability exceeds

0.99, which is a Bayes factor greater than 100 if we assign equal prior probabilities to the

competing hypotheses. This is decisive evidence that the Chicago area satellite images are

different.
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Figure 6: For the Chicago area images, the left panel displays an MCMC estimate of the
marginal posterior of differential parameter ψ. The right panel displays an estimate of the
posterior probability P

(
ψ > ψ∗ | I1, I2

)
for different values of the threshold ψ∗.

Bay Area images

Figure 7 displays two satellite images of the San Francisco Bay Area in 1990 and 1999. Fig-

ure 1 of Supplementary Material displays the estimated marginal posterior of differential

parameter ψ. We find negligible posterior mass assigned to ψ smaller than 0.48. Conse-

quently, the estimated probability P̂
(
ψ > ψ∗ | I1, I2

)
was equal to 1 for any prespecified

threshold ψ∗ ∈ [0.1, 0.2], and is overwhelming evidence that the two satellite images are

different.

6 Discussion

There is a critical need for statistical techniques that can reliably identify “similar” or “dif-

ferent” image pairs depending on whether random measurement error is able to account

for pixel-wise differences between the images. We have developed a Bayesian strategy rely-
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Figure 7: In the left panel, satellite image I1 of the San Francisco bay area, taken in 1990.
In the right panel, satellite image I2 of the same region, taken in 1999.

ing on a novel extension process called the spatial random partition model (sRPM). This

process achieves dimension reduction while accounting for spatial correlation by grouping

proximal image pixels with similar intensities into clusters. The extracted image informa-

tion is then utilized for image comparison via a single-parameter hypothesis test based on

a univariate metric that is adaptive to pixel intensity variation and spatial correlation. We

foster a computationally efficient two-stage MCMC technique. A simulation study analyzes

artificial datasets and finds compelling evidence for the high sensitivity and specificity of

sRPM. The success of sRPM is demonstrated by analyzing satellite image data. R code

implementing the method is available at https://github.com/sguha-lab/sRPM.

The nonparametric nature of sRPM makes it highly effective in analyzing images with

diffuse spatially differentiated regions. However, the method may be challenged by images

with sharply demarcated features (e.g., text images) or jagged images with steep slopes. In

applications where a sequence of multiple images is available from a longitudinal process,

interest often focuses on detecting temporal change points, if any, at which the longitudinal

process diverges beyond acceptable limits of variation. We are currently developing natu-

ral extensions of the proposed sRPM analytical framework in such a manner that, at any
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point in the image sequence, only cluster-related information that has been progressively

extracted from the preceding images is used to determine whether the current time point

is a change point. It is often known that the first few images of the sequence correspond to

an “in-control” condition of the longitudinal process. In these situations, we are devising

strategies that exploit this information to further improve the inferential accuracy of mon-

itoring image sequences. The MCMC strategy of Ishwaran and James (2001) is adequate

for the image sizes of this paper. However, for ultra high-dimensional images, these algo-

rithms are computationally intensive. We are exploring whether the Metropolis-Hastings

algorithm proposed by Guha (2010) could potentially be applied to significantly reduce

computational times while ensuring that the posterior mixing rates and ESS in the sense

of Turek et al. (2017) are satisfactory.
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