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Urban environments, characterized by bustling mass transit systems and high
population density, host a complex web of microorganisms that impact microbial
interactions. These urban microbiomes, influenced by diverse demographics
and constant human movement, are vital for understanding microbial dynam-
ics. We explore urban metagenomics, utilizing an extensive dataset from the
Metagenomics & Metadesign of Subways & Urban Biomes (MetaSUB) consor-
tium, and investigate antimicrobial resistance (AMR) patterns. In this pioneer-
ing research, we delve into the role of bacteriophages, or “phages”–viruses that
prey on bacteria and can facilitate the exchange of antibiotic resistance genes
(ARGs) through mechanisms like horizontal gene transfer (HGT). Despite their
potential significance, existing literature lacks a consensus on their significance
in ARG dissemination. We argue that they are an important consideration. We
uncover that environmental variables, such as those on climate, demographics,
and landscape, can obscure phage-resistome relationships. We adjust for these
potential confounders and clarify these relationships across specific and over-
all antibiotic classes with precision, identifying several key phages. Leveraging
machine learning tools and validating findings through clinical literature, we
uncover novel associations, adding valuable insights to our comprehension of
AMR development.

K E Y W O R D S
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1 INTRODUCTION

The urban environment teems with a multitude of unseen inhabitants that possess the power to reshape our com-
prehension of microbial interactions. Urban mass transit systems, crucial conduits in modern cities, provide a habitat
for a diverse range of microorganisms, forming complex urban microbiomes that intermingle with the lives of mil-
lions. Such locations are considered hubs for microbes due to high human traffic, enclosed spaces, shared surfaces, air
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circulation, interconnected routes, and diverse passenger demographics.1 The constant flow of people and close interac-
tions in transit vehicles and stations create favorable conditions for the transmission and exchange of microorganisms.
These environments can serve as reservoirs for various microbes, posing potential public health implications. As global
urbanization escalates, deciphering the intricacies of these microbial networks assumes paramount importance. The
Metagenomics & Metadesign of Subways & Urban Biomes (MetaSUB) consortium has undertaken an ambitious mis-
sion to unravel genetic signatures of microbial populations residing within urban communities.2 Through systematic
sampling across diverse urban landscapes worldwide, this consortium continues to conduct an extensive exploration
into the realm of metagenomics. In response to the Critical Assessment of Massive Data Analysis3 (CAMDA) 2023
challenge, the scientific community converges to probe the extensive metagenomic dataset amassed by the MetaSUB
consortium, unearthing latent connections previously untapped. This challenge exhorts a comprehensive examination
of anti-microbial resistance (AMR) patterns in this vast metagenomic surveillance data, attracting dedicated researchers
striving to uncover these complex interactions. Unlike previous studies that have predominantly focused on geolocation
prediction4–6 or spatial modelling7,8 of such patterns, our research forges a new path by delving into the uncharted ter-
ritory of bacteriophages’ role in orchestrating AMR dissemination. Bacteriophages, also known as phages, are viruses
that prey on bacteria.9 They harbor the capacity to transfer genetic information between microbial hosts through
mechanisms such as HGT, potentially catalyzing the transmission of resistance genes.10 When a phage infects an
ARG-harboring bacterium, it might unintentionally include parts of the bacterial DNA, ARGs included, in its replica-
tion process. These new phage particles, now equipped with ARGs from their prior hosts, can transfer these genes to
other bacteria, thereby contributing to the widespread distribution of resistance genes within bacterial populations.10

Despite their profound potential to influence microbial dynamics, the existing literature lacks a consensus regarding
the magnitude of their association with AMR.11 While some studies have suggested a limited role for phages in this
process,12 others have emphasized their significant impact on the genetic exchange of antibiotic resistance.10 We strive
to bridge this gap by quantifying these associations, thereby illuminating the intricate nature of these under explored
relationships.

The historical trajectory of AMR research has notably underscored the significance of environmental variables–such as
sanitation levels, proximity to water bodies, and climate conditions–in the dissemination of antimicrobial-resistant genes
(ARGs), also known as resistomes. Evidence gathered from global datasets, with a notable focus on Brazil, contributes to
the discourse concerning the potential hazards of sewage and livestock manure in disseminating antibiotic resistance.13 A
range of human-induced activities, including the introduction of contaminated river runoff, the output from wastewater
treatment plants, sewage discharges, as well as practices related to aquaculture, promote the spread of ARGs in estuarine
and coastal ecosystems.14 HGT is increased by rising temperatures, in addition, temperature increases generally facilitate
bacterial growth.15 We shift the spotlight away from these established environmental factors and direct it towards the
unexplored domain of phages’ roles. Concurrently, we strive to assess the relative significance of these factors in contrast
to the role of phages when unraveling AMR dynamics.

The effects of such environmental factors also intertwine with the potential impact of phages. We aim to untangle
these relationships while accounting for potential confounding effects posed by environmental variables. To accomplish
this, we will harness the most relevant machine learning tools, leveraging their analytical prowess to uncover the associ-
ations woven within this intricate interplay. This study is one of the few conducted on this important topic and some of
our findings are novel. We believe we have used proper statistical tools to reach our conclusions which were lacking in
previous literature.

The metagenomic data from the CAMDA 2023 challenge comprises comprehensive metagenomic information that
enables us to extract resistome and phage abundances, which we supplement with auxiliary data on pertinent environ-
mental variables on climate, demographics, and landscape collected from publicly available databases. The resistome
abundances quantify the ARGs resistant to 17 classes of antibiotics and form a multivariate response. Despite the sparse
and high-dimensional nature of the phage abundance data, compounded by the potential confounding effects posed by
the auxiliary environmental variables, our analysis is strategically designed to address three principal objectives. These
objectives encompass assessing the relative importance of distinct groups of genetic and non-genetic factors, discerning
key phages, and validating our method’s efficacy through alignment with clinical literature. By segmenting the vari-
ables into separate blocks corresponding to phage abundances, climatic factors, demographics, and landscape, we employ
multi-block partial least squares regression16 (MPLS) to elucidate the associations between both the blocks and ARGs.
In addition, we devise a two-step strategy that focuses on isolating the contributions of the phages on the ARGs. First,
for each class of antibiotic, we partial out the effects of the potential confounding environmental variables. In the sec-
ond step, a random forest17 model in conjunction with a weighted rank aggregation18 approach is utilized to obtain a
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consensus ranking ordering of the phages, highlighting the order of the phage importance in the spread of AMR. The
selected top phages associated with ARGs are corroborated with findings from clinical literature. This study introduces
a viable alternative to traditional, demanding lab methods in identifying phages associated with ARG dissemination.19

Furthermore, it highlights essential genetic organisms for microbiologists to investigate in lab-based research, enhancing
comprehension of ARG spread.

The rest of the paper is organized as follows. Section 2 presents an overview of the dataset utilized in our study.
Section 3 goes over the described statistical tools to achieve our objective. Section 4 examines the outcomes of our analyses.
The main body of the paper ends with a discussion in Section 5.

2 DATA

Metagenomic data is provided by the organizers of the CAMDA challenge as a part of their “Anti-Microbial Resistance
Prediction and Forensics Challenge 2023”. The primary dataset comprises 366 raw whole-genome shotgun (WGS) sam-
ples from 16 urban cities across the globe. Table 1 shows the distribution of the samples from the different locations,
including a city in Oceania, six cities in North America, four cities in Europe, two cities in South America, two cities in
Asia, and one city in Africa. Each sample consists of paired-end sequencing reads in FASTQ format. Independently, we
obtain relevant metadata describing the landscape, demographics, and climate for these locations (further elucidated in
Section 2.3). To make meaningful inferences from the raw sequence reads, we construct a robust bioinformatics pipeline
for the downstream processing of the data. Subsequently, we apply relevant machine learning algorithms to the relative
abundances obtained after the pre-processing step. Figure 1 outlines the main steps of our analysis.

2.1 Bioinformatics pipeline

A total of 366 WGS metagenomic samples are downloaded from the CAMDA host server. To prepare the raw sequence
data for downstream statistical analysis, we employ a standard bioinformatic pipeline for pre-processing. In the initial
stage of the pipeline, we perform quality checks which necessitate the filtering and trimming of the reads. Next, we
carry taxonomic profiling of the reads with acceptable quality scores to obtain phage and resistome abundances. The
bioinformatic procedures utilized in this pipeline were performed using the HiPerGator supercomputer located at the
University of Florida.

In the initial step of the bioinformatic procedures, we assess the quality of the raw reads using FASTQC20 and
MULTIQC.21 A significant proportion of low-quality bases and adapter sequences were identified in the raw reads. Con-
sequently, we invoked Trimmomatic22 from KneadData23 to trim and remove the adapter sequences from the raw reads.
We retained reads with a length of 60 base pairs and a minimum Phred64 quality score of 30. Subsequently, we filtered
out host (human) contamination from the trimmed reads by indexing the human reference genome and discarding reads
that mapped to it, using BowTie.24 Any read names that are not identical between pairs due to these preprocessing steps
are rectified using the Repair function in bbmap.25

T A B L E 1 Distribution of raw paired-end WGS metagenomic samples obtained across 16 cities.

Location # of samples Location # of samples

Auckland 14 Minneapolis 6

Baltimore 13 New York 46

Berlin 15 Sacramento 16

Bogota 15 San Antonio 16

Denver 44 Sao Paulo 25

Doha 27 Tokyo 49

Ilorin 34 Vienna 16

Lisbon 14 Zurich 16
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2530 SARKAR et al.

F I G U R E 1 Overview of the analysis pipeline.

For taxonomic profiling of bacteriophages, we used the RefSeq26 database containing viral genetic sequences hosted by
NCBI. First, we downloaded the reference sequences of bacteriophages from the NCBI RefSeq database of viral genomes.
As of December 2022, the RefSeq database contains approximately 11,555 complete viral genomes, of which 4,293 are
phages (bacteria: 4194; archaea: 99). To quantify the abundance of phages in the samples, we indexed the reference
sequences in FASTQ format using k-mer mapping27 (KMA) with an index (k-mer) size of 16. Subsequently, we mapped
the pre-processed reads to the RefSeq database of viral genomes using KMA. We obtain the abundance of the phages at
the species level from the .mapstat file generated by KMA.

Further, to quantify the abundance of resistomes in the WGS samples, we employed the ResFinder28 database.
ResFinder is a curated database that contains information on a wide range of AMR genes, including their nucleotide
sequences, annotation, and associated metadata such as antibiotic resistance phenotypes and mobile genetic elements.
The database also provides information about these genes’ resistance to 17 distinct classes of antibiotics. The antibi-
otic classes covered by ResFinder include aminoglycoside, beta-lactam, colistin, fosfomycin, fusidicacid, glycopeptide,
macrolide, nitroimidazole, oxazolidinone, phenicol, pseudomonicacid, quinolone, rifampicin, sulphonamide, tetracy-
cline, trimethoprim and miscellaneous. For each antibiotic class, we index the corresponding database, then we map the
pre-processed reads to the database, using KMA.

2.2 Pre-processing

We constructed an abundance table of phages–the genetic explanatory variables–by identifying 4,250 operational tax-
onomic units (OTUs) and applying a filtering threshold of 1% presence or five reads. The resulting high-dimensional
data matrix contained the abundances of 1,190 phage species, which we normalized to relative abundances using the
metagenomeSeq29 package in R. In parallel, we obtained and normalized abundance data for resistomes corresponding
to the 17 antibiotic classes outlined in Section 2.1. These data were arranged in a matrix format, with the samples as rows
and the relative abundances for each antibiotic class as columns. The resulting counts, which reflect the relative extent
of ARG presence, serve as the multivariate response.

2.3 Auxiliary variables

In addition to the data on phage relative abundances, we include other data describing the environmental factors of
the cities where the samples were obtained. The metadata comprises information relating to the climate (minimum
and maximum annual temperatures, minimum and maximum relative humidity, and annual rainfall), demographics
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SARKAR et al. 2531

(median annual household income, average age, and percentage of population with access to basic sanitation services),
and landscape (Air Quality Index score, elevation above sea level, city land area, proximity to the coast, latitude, lon-
gitude, and population), all for the year 2017. Information regarding these environmental variables originates from
publicly available sources managed by various national atmospheric research and air quality monitoring organizations
corresponding to the diverse sampling locations. These sources include National Institute of Water and Atmospheric
Research (NIWA), National Oceanic and Atmospheric Administration (NOAA), Deutscher Wetterdienst (DWD), Instituto
de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Qatar Meteorology Department, Nigerian Meteorologi-
cal Agency (NIMET), Instituto Português do Mar e da Atmosfera (IPMA), Instituto Nacional de Meteorologia (INMET),
Japan Meteorological Agency (JMA), Central Institute for Meteorology and Geodynamics (ZAMG), Swiss Federal Office of
Meteorology and Climatology (MeteoSwiss). In addition, we obtain publicly available demographic and landscape infor-
mation from World Bank, World Health Organization (WHO), and the United Nations Children’s Fund (UNICEF), and
respective national census organizations corresponding to the sample locations. The numeric variables are normalized
by centering and scaling.

3 METHODOLOGY

3.1 Blocking variables

The explanatory variables form groups, or “blocks”, as they pertain to either phages, climate, demographics, or landscape.
Let X1, X2, X3, and X4 denote the K = 4 blocks corresponding to phage relative abundances (p1 = 1190 variables), char-
acteristics of climate (p2 = 5 variables), demographics (p3 = 3 variables), and landscape (p4 = 7 variables), respectively.
The multivariate response, Y = (y1,y2,… ,y17)with 17 variables, comprises the resistomes corresponding to each class of
antibiotics. Therefore, the data for downstream analysis can be organized into (K + 1) = (4 + 1) blocks.

3.2 Multi-block partial least squares

Multiblock methods aim to reduce the dimensionality to capture the primary connections between variables and
responses. To describe the association between X = (X1,X2,X3,X4) and Y, we utilize MPLS to select explanatory variables
that are strongly associated with the multivariate response. In this study, we are interested in determining and ordering
the effects of genetic and environmental factors in describing the relative abundances of resistomes. Additionally, we aim
to estimate the contribution of each explanatory variable in describing the resistomes. Finally, we aim to obtain a signifi-
cant set of phages that drives the variation of the resistomes while accounting for the potential confounding effect of the
environmental factors.

We wish to obtain an ordered list of the blocks (of explanatory variables) that are sorted by the strength of their effects
in explaining the response, as well as an ordered list of all P =

∑K
k=1pk explanatory variables. Both objectives can be readily

assessed using MPLS.16 MPLS is designed to find the underlying relationships between the blocks of data, with the aim
of understanding how they are related to each other. It does this by identifying the linear combinations of variables from
each block that are most strongly related to the outcome variable. These linear combinations are called latent variables
or factors. The goal of MPLS is to find the best set of latent variables that explain the variation in the outcome variables
while also taking into account the relationships between the different blocks of data. The method is based on maximizing
the covariance between the outcome variable and the linear combinations of variables from each block. At each iteration,
MPLS extracts a new set of latent variables that capture the maximum covariance between the blocks. The algorithm then
orthogonalizes the data with respect to the new latent variables and repeats the process until a predetermined number of
latent variables have been extracted or until convergence is reached.

3.2.1 Block importance, variable importance, and PLS regression coefficients

MPLS provides several measures to summarize the relationships between the responses and explanatory variables, includ-
ing block importance, variable importances, and response class-specific variable significance.30 With a pre-specified
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2532 SARKAR et al.

number of dimensions H, the algorithm iterates over dimensions h = 1, … ,H, and calculates relative importance 𝜆(h)
of dimension h.30 Additionally, it computes explanatory loadings w∗(h), which are coefficients or weights representing
the contribution of a variable to latent components, as well as block importance coefficient a(h)k which measures the link
between Y and Xk, k = 1, 2, 3, 4. Variable importance vip(h) of a dimension h is the average of the w∗(h)2 weighted by a(h)

2

k .
Cumulated variable importance, vipc, is the average of vip(h), weighted by the importance of each dimension 𝜆(h). Cumu-
lated block importance, bipc, is the average of block importances a(h)

2

k weighted by 𝜆(h). Also, for each component yr,
r = 1, … , 17 of the multivariate response, PLS regression coefficients correspond to univariate PLS regression coefficients
and measure the links between X and yr.

The vipc scores are used to measure the global contribution of each variable across all blocks in the model.
The bipc scores are used to measure the relative importance of the blocks. Further, we use a bootstrap procedure
to estimate the 95% confidence interval of the vipc and bipc. A variable is assessed to be significantly important in
predicting the response if the 95% confidence interval of the vipc does not contain 1

P
.30 While a block has signif-

icant predictive power if the 95% confidence interval of the vipc does not contain 1
K

.30 PLS regression coefficients
correspond to separate univariate PLS analyses to assess the association between phages and antibiotic class-specific
resistome relative abundances. A similar 95% bootstrapped confidence interval is constructed for the PLS coeffi-
cients of each variable, where the confidence interval not containing 0 indicates that the corresponding variable is
significant.

3.3 Controlling for potential confounders and identifying key phages

In addition, we are interested in determining the contributions of the phages in explaining the variation of the resis-
tomes for separate classes of antibiotics. The goal is to identify a signature of phages for the resistomes while adjusting
for covariates (environmental factors). We utilize a two-step strategy: first, we fit separate univariate models apriori. In
this step, we regress a different response (Yr; r = 1, … , 17) on all environmental variables, then, we partial out the effects
of these variables to obtain the residuals (Y∗

r ; r = 1, … , 17). Note that, Yr and Y∗
r are vectors of length n. This corre-

sponds to obtaining the relative abundances of the resistomes with environmental effects removed. In the second step,
these residuals are used as the responses in random forest (RF) models, while the predictors are the phage relative abun-
dances. The RF algorithm calculates importance scores based on the mean decrease in accuracy,31 which we use to obtain
an ordered list of phages for each antibiotic class. To obtain an overall top-k ordering of the phages, we utilize the rank
aggregation algorithm. The algorithm combines multiple ordered lists into a single overall top-k ordered list, using the
respective importance scores obtained from the random forest models as weights. Figure 2 provides a schematic overview
of the approaches described in this section for isolating the contributions of the phages in describing the resistance to the
antibiotics.

3.3.1 Stability of rank aggregation results

Following the methodology described in the preceding section, to ensure that the consensus list of top-k ordered phages
is superior to a selection based on random chance, we compute “inclusion probabilities” of each phage in the top-k
rank aggregation list, and compare them with a threshold that corresponds to the probability of random selection. The
inclusion probabilities are calculated through a jackknifing approach: for each of the 366 samples, we leave one sample
out at a time and obtain the corresponding top-k rank aggregated list. Therefore, we get 366 separate rank-aggregated
lists. Next, we compute the proportion of times the phages in the original rank aggregation list (based on all 366
samples) appear in these leave-one-out lists. We name these proportions as inclusion probabilities which express the
stability of our selection. To calculate the probability that a certain phage in the top-k list was selected at random, we
employ the hypergeometric distribution: we calculate the probability of selecting the phage from the group of top-k
phages, and selecting no phages from the group of the remaining 1190 − k phages, which is

(
20
k

)(
1190−k

0

)
∕
(

1190
1

)
.

Inclusion probabilities above the computed threshold indicate robustness against selection based on random
chance.
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Method 1
MPLS: obtain block and variable importances
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F I G U R E 2 Downstream analysis pipeline.

4 RESULTS

4.1 Analyses using MPLS

4.1.1 Blocks of phages in comparison to the blocks of environmental factors

We employ the ade430 package in R to fit the MPLS model. We obtain bipc scores which quantify the rel-
ative importance of each block of variables in explaining the (multivariate) resistome abundances. Figure 3a
shows the interval plots of the importance scores for each block of predictors. Higher block importance scores
indicate that a particular block has a greater impact on the response. Our analysis highlights the significant
contribution of phages in explaining the variation in the relative abundances of resistomes, consistent with pre-
vious research linking phages to the dissemination of ARGs.32 The importance plot also reveals the significance
of climatic factors, in line with emerging evidence linking the climate crisis to antimicrobial resistance.33–35

Although not significant, the landscape and demographic factors show importance scores similar to those of the
climatic factors.

In line with a valuable suggestion from a reviewer, we also explore block importances at a higher taxonomic level
for phages; this approach yields more “balanced” block sizes (details of this additional exploratory analysis are included
in Section S1 of the Supplementary File). This assessment encompasses blocks representing phage families, in addi-
tion to climate, demographics, and landscape. The environmental blocks are found to assume the anticipated primary
importance, while a significant proportion of phage families retain their importance with reduced bipc scores. These
findings support our hypotheses, suggesting that environmental factors may overshadow the influence of phages. Con-
sequently, prioritizing a more specific analysis of the phage abundance and its relation to antimicrobial resistance is
warranted.
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2534 SARKAR et al.

F I G U R E 3 bipc and vipc from multi-block partial least squares, and their associated 95% confidence intervals. In panel (a), the y axis
and the dotted horizontal line represent the bipc value and the 1∕K value, respectively. Similarly, in panels (b) and (c), they correspond to the
vipc and the 1∕P value. The intervals for the first 15 (ordered by the vipc) variables are shown in (b). Note that these variables correspond to
all the environmental variables considered in this study. While the interval plots in (c) correspond to the next 50 (ordered by the vipc)
variables, note that these variables correspond to a subset of the phages with higher importance.
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F I G U R E 3 (Continued)

4.1.2 Ordering variables by global importance

Our second objective is to order all predictor variables in terms of their global importance. We achieve this by using
the vipc scores obtained from the fitted MPLS model. These scores measure the overall contribution of each variable in
explaining the variation in the resistome block. Variables with higher importance scores have a stronger association with
the multivariate response. Interestingly, we found that all variables corresponding to environmental factors had higher
importance scores than those corresponding to phages. Figure 3b shows the interval plots of the importance scores for
the first 15 predictors (ordered by vipc). This set of predictor variables corresponds to the p2 + p3 + p4 variables on the
environmental factors. Figure 3c shows the next 50 variables (ordered by vipc); the variables correspond to a subset of
phages with increasing magnitude of vipc scores, less than the scores corresponding to the environmental variables.

From Figure 3b, we notice that the percentage of the population (where the sample was collected) with basic access
to sanitation had the largest significant impact in explaining the variation in the block of resistomes. Other variables
that have a significant impact on explaining the variation in the block of resistome include the indicator of whether the
sample was collected from a coastal city, latitude, the average age of the city’s population, air quality index, city land area,
maximum relative humidity, and annual rainfall. Their effects are further elucidated in Section 4.3.2.

4.1.3 Quantifying relationships between explanatory variables and resistomes

Now, we present the results where we measure the association between each explanatory variable in X and each com-
ponent of the multivariate response Y. As seen in Figure 4, macrolide, beta-lactam, and tetracycline exhibit the highest
relative resistome abundances. We prioritize these specific antibiotic classes as they might be more prone to resistance
development in the sampled urban environments.36–39 Panels (a), (b), and (c) of Figure 5 show the estimated regression
coefficient (and 95% confidence interval) from the three respective models where the resistome abundance correspond-
ing to the macrolide, beta-lactam, and tetracycline class of antibiotics are regressed on all the explanatory variables. For
ease of visualizing the results corresponding to the three antibiotic classes, Figure 5a–c show only the top 20 variables
(ordered by the magnitude of the estimated coefficient) from the respective models. From these plots, the variables
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2536 SARKAR et al.

F I G U R E 4 Top panel: Distribution of resistome abundances by geographical location; bottom panel: Overall relative abundances of
resistomes across the 17 antibiotic classes.

corresponding to the environmental factors have stronger effects in explaining the variation in the resistomes corre-
sponding to the given classes of antibiotics, despite phages forming the most important block (as shown in Figure 3a).
These disparate results may be due to the confounding of the association of phages with resistomes by environmental
factors.

The phages in these plots are labeled by their corresponding NCBI accession numbers, rather than their longer
complete phage names, for the sake of optimal presentation. Among phages, we find that Staphylococcus phage
SPbeta-like (NC_029119.1) has the highest magnitude of regression coefficient across the three antibiotic classes, as
well as globally in terms of vipc score, as seen in Figures 3c and 5. Staphylococcus phage StB12 (NC_020490.2),
Staphylococcus phage IME-SA4 (NC_029025.1), Staphylococcus phage StB20 (NC_019915.1), Staphylococcus phage StB27
(NC_019914.1), Staphylococcus phage StB20-like (NC_028821.1), Staphylococcus phage virus 108PVL (NC_008689.1),
Staphylococcus phage PH15 (NC_008723.1), Staphylococcus phage IME1348_01 (NC_055036.1), and Staphylococcus
phage Ipla5 (NC_018281.1) also consistently appear in these shortlists, and have been previously identified for
encoding ARGs.40–42 Interestingly, the top phages identified based on vipc scores and PLS regression coefficients
almost completely consist of Staphylococcus phages, which is puzzling as the latter make up only about 4% of all
phages. This outcome may be attributed to potential interfering effects of the auxiliary (environmental) variables
at play.
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SARKAR et al. 2537

F I G U R E 5 Estimated regression coefficient (and 95% confidence interval) for 20 variables (chosen by order of magnitude) from the set
of all explanatory variables associated with (a) macrolide, (b) beta lactam, and (c) tetracyline classes of antibiotics, respectively.
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2538 SARKAR et al.

F I G U R E 5 (Continued)

4.2 Controlling for auxiliary variables to identify top phages associated with ARGs

Figure 3a validates our objective of prioritizing phages for a closer analysis. As explained in Section 3.3, we fit 17 random
forest models, one for each antibiotic class, to identify phages that are strongly associated with resistomes. For each antibi-
otic class, the model produces a list of phages ranked according to their association with ARGs. Top importance scores
from the 17 class-specific univariate random forest models are shown in Table 2, while Figure 6 summarizes the most
“important” phages found for macrolide, beta-lactam and tetracycline, the antibiotics with the highest ARG abundances.
In contrast to the previous scenario detailed in Section 4.1.3, where potential confounding variables were not adjusted for,
leading to an overrepresentation of Staphylococcus phages, the current compilation of top phages demonstrates a more
balanced distribution, encompassing a diverse array of phage types.

However, since the ordering of the phages varies across different antibiotic classes, we use rank aggregation to obtain
a consensus ranking for the top k phages. This is implemented through the RankAggreg18 package in R. The top 20
phages species for aggregated across all antibiotic classes are shown in Table 3. Some of the identified key phages overlap
with those found in Section 4.1.3. Similar to the results obtained from the random forest analysis specific to each antibi-
otic class, the consensus list through random forest analysis, this list exhibits a diverse array of phages, extending beyond
those exclusively targeting Staphylococcus bacteria. They also correspond to phages that have already been established
in clinical literature as having a significant association with antibiotic resistance (elucidated in Section 4.3.1). The inclu-
sion probabilities of all these phages are well over the threshold of 0.0168. Therefore, the inclusion of each phage in the
consensus list is not due to random chance.

4.3 Validation from clinical literature

4.3.1 Phages

The leading phages (controlling for potential confounders) identified in Section 4.2 have a notable presence in current
research, despite the limited availability of relevant literature in this area. For instance, Propionibacterium phage P100_A,
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SARKAR et al. 2539

T A B L E 2 Top phages associated with AMR based on ordered importance scores of each of the 17 antibiotic class-specific random forest
models.

Antibiotic class Top phages identified by random forest

Aminoglycoside Cellulophaga phage phi46:3, Enterobacteria phage P7, Prochlorococcus phage P-TIM68, Escherichia phage RCS47,
Sinorhizobium phage phiLM21, Propionibacterium phage PAC1, Prochlorococcus phage P-SSM2, Pseudomonas
phage Lu11, Pseudomonas phage JBD25, Escherichia phage Av-05, Caulobacter phage Sansa, Acinetobacter phage
vB_AbaM-IME-AB2, Pseudomonas phage EL, Prochlorococcus phage P-SSP10, Synechococcus phage ACG-2014j,
Pseudomonas phage MD8, Streptococcus phage phiARI0131-2, Pseudomonas phage PollyC, Escherichia phage
SH2026Stx1, Synechococcus phage S-CAM9

Beta lactam Acinetobacter phage vB_AbaS_TRS1, Acinetobacter phage YMC11/11/R3177, Escherichia phage PA2, Lactobacillus
phage SAC12B, Pseudomonas phage B3, Acinetobacter phage YMC/09/02/B1251, Enterobacteria phage YYZ-2008,
Burkholderia phage phiE125, Pseudomonas phage phiPSA1, Microbacterium phage Appa, Mycobacterium phage
Cambiare, Prochlorococcus phage P-SSP10, Staphylococcus phage 2638A, Mycobacterium phage Phabba,
Cronobacter phage vB_CsaM_GAP31, Staphylococcus virus 108PVL, Lactobacillus phage LBR48, Bacillus phage
IEBH, Staphylococcus phage phiN315, Bacillis phage phi4J1

Colistin Enterobacter phage Tyrion, Pantoea phage vB_PagM_AAM37, Gordonia phage MelBins, Gordonia phage Phinally,
Streptococcus phage A25, Enterobacter phage phiT5282H, Propionibacterium phage PHL037M02, Gordonia phage
EMoore, Pseudomonas phage PMBT3, Brucella phage BiPBO1, Propionibacterium phage Keiki, Psychrobacter
phage pOW20-A, Lactobacillus phage Bromius, Streptomyces phage Lannister, Acinetobacter phage
YMC/09/02/B1251, Gordonia phage Blueberry, Aeromonas phage LAh_7, Streptococcus phage CHPC950,
Staphylococcus phage JS01, Streptococcus phage SW1

Fosfomycin Propionibacterium phage P100_A, Staphylococcus phage StB20-like, Salmonella phage 118970_sal3, Staphylococcus
phage phiN315, Salmonella phage SPN3UB, Escherichia phage vB_EcoP-CHD5UKE1, Escherichia phage HK022,
Pseudomonas phage JD18, Salmonella phage Fels-1, Staphylococcus phage StB12, Propionibacterium phage
Pacnes 2012-15, Bacillus phage phBC6A52, Staphylococcus phage vB_SepS_SEP9, Enterobacteria phage
YYZ-2008, Brochothrix phage NF5, Streptococcus phage VS-2018a, Lactococcus phage AM4, Staphylococcus
phage Ipla5, Staphylococcus phage IME1354_01, Staphylococcus phage phiSLT

Fusidicacid Propionibacterium phage P100_A, Staphylococcus phage StB27, Propionibacterium phage Pacnes 2012-15,
Staphylococcus phage SPbeta-like, Staphylococcus virus 108PVL, Escherichia phage vB_EcoP-CHD5UKE1,
Propionibacterium phage QueenBey, Staphylococcus phage StB12, Staphylococcus phage phiSA_BS1,
Staphylococcus phage vB_SepS_SEP9, Staphylococcus phage StB20-like, Staphylococcus phage StB20,
Staphylococcus phage S25-4, Propionibacterium phage PHL010M04, Lactobacillus phage LJ, Escherichia phage
DE3, Lactococcus phage P1532, Lactobacillus phage phiAQ113, Staphylococcus phage IME1348_01,
Propionibacterium phage PHL199M00

Glycopeptide Propionibacterium phage P100_A, Staphylococcus phage JS01, Staphylococcus phage Ipla7, Escherichia phage N15,
Escherichia phage RCS47, Escherichia phage Lyz12581Vzw, Escherichia phage vB_EcoP-CHD5UKE1,
Staphylococcus phage CNPH82, Staphylococcus phage phi 11, Staphylococcus phage vB_SepS_SEP9,
Streptococcus phage phiARI0468-4, Acinetobacter phage vB_AbaS_TRS1, Staphylococcus phage B236,
Propionibacterium phage Pacnes 2012-15, Staphylococcus phage StB20, Lactobacillus phage phiAT3, Cronobacter
phage ENT39118, Propionibacterium phage PHL037M02, Lactobacillus phage LfeSau, Escherichia phage HK446

Macrolide Staphylococcus phage StB20-like, Staphylococcus phage phiN315, Prochlorococcus phage Syn1, Ralstonia phage
Raharianne, Listeria phage LP-030-3, Xanthomonas phage OP2, Staphylococcus phage phiRS7, Streptomyces
phage Lannister, Lactococcus phage r1t, Lactococcus phage 66901, Clostridium phage phiSM101, Staphylococcus
phage IME1348_01, Enterobacteria phage P7, Staphylococcus phage IME-SA4, Klebsiella phage
ST147-VIM1phi7.1, Staphylococcus phage SA12, Aurantimonas phage AmM-1, Escherichia phage DE3,
Lactococcus phage phi145, Staphylococcus phage 37

Oxazolidinone Escherichia phage DE3, Propionibacterium phage P100_A, Lactococcus phage BM13, Lactococcus phage ul36,
Lactococcus phage 28201, Lactococcus phage TP901-1, Propionibacterium phage Pacnes 2012-15, Lactococcus
phage 62503, Lactococcus phage bIL309, Staphylococcus phage B166, Lactococcus phage 96401, Clostridium
phage phiCP39-O, Staphylococcus phage PVL, Staphylococcus phage SPbeta-like, Ralstonia phage Heva,
Enterobacter phage phiT5282H, Faecalibacterium phage FP_Mushu, Lactococcus phage P1532, Lactococcus phage
Q33, Pseudomonas phage VCM

(Continues)

 10970258, 2024, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10058 by U
niversity O

f Florida, W
iley O

nline L
ibrary on [17/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2540 SARKAR et al.

T A B L E 2 (Continued)

Antibiotic class Top phages identified by random forest

Phenicol Microbacterium phage Min1, Propionibacterium phage Moyashi, Propionibacterium phage SKKY,
Propionibacterium phage PHL071N05, Propionibacterium phage Pacnes 2012-15, Propionibacterium phage
P105, Propionibacterium phage Lauchelly, Lactobacillus phage phiAT3, Propionibacterium phage PA1-14,
Propionibacterium phage PHL037M02, Propionibacterium phage PHL082M03, Erwinia phage
pEp_SNUABM_08, Mycobacterium phage Myrna, Propionibacterium phage PHL092M00, Propionibacterium
phage PHL095N00, Propionibacterium phage P101A, Eggerthella phage PMBT5, Propionibacterium phage
PFR2, Propionibacterium phage PHL009M11, Bacillus phage Deep Blue

Pseudomonicacid Staphylococcus phage Ipla7, Staphylococcus phage StB20, Propionibacterium phage P100_A, Staphylococcus
phage StB27, Staphylococcus phage vB_SepS_SEP9, Staphylococcus phage StB20-like, Escherichia phage
vB_EcoP-CHD5UKE1, Staphylococcus phage IME-SA4, Corynebacterium phage P1201, Propionibacterium
phage Pirate, Staphylococcus virus 108PVL, Staphylococcus phage PVL, Propionibacterium phage Pacnes
2012-15, Staphylococcus phage MCE-2014, Propionibacterium phage ATCC29399B_T, Staphylococcus phage
phiRS7, Staphylococcus phage SPbeta-like, Staphylococcus phage IME1354_01, Cellulophaga phage phi48:2,
Pseudomonas phage PollyC

Quinolone Escherichia phage 500465-1, Enterobacteria phage HK225, Escherichia phage 500465-2, Acinetobacter phage
YMC/09/02/B1251, Enterobacteria phage YYZ-2008, Mycobacterium phage Kumao, Erwinia phage ENT90,
Escherichia phage DE3, Mycobacterium phage Myrna, Escherichia phage HK97, Pseudomonas phage
YMC12/01/R24, Propionibacterium phage P104A, Rhodococcus phage Sleepyhead, Escherichia phage RCS47,
Propionibacterium phage PHL067M10, Pseudomonas phage MD8, Mycobacterium phage Enkosi,
Propionibacterium phage PFR2, Brochothrix phage NF5

Rifampicin Enterobacter phage phiEap-2, Streptococcus phage VS-2018a, Gordonia phage Phinally, Streptococcus phage
CHPC577, Gordonia phage EMoore, Aeromonas phage phiO18P, Cronobacter phage vB_CsaM_GAP161,
Enterobacteria phage phiP27, Propionibacterium phage PHL117M01, Staphylococcus phage IME1354_01,
Propionibacterium phage SKKY, Edwardsiella phage pEt-SU, Rheinheimera phage Barba5S, Escherichia phage
vB_EcoP-CHD5UKE1, Propionibacterium phage PHL116M00, Propionibacterium phage Stormborn,
Rhodobacter phage RcapNL, Gordonia phage Horus, Enterobacteria phage mEp043 c-1

Sulphonamide Pseudomonas phage YMC12/01/R24, Escherichia phage RCS47, Ralstonia phage Raharianne, Synechococcus
virus S-ESS1, Lactococcus phage r1t, Propionibacterium phage P100_A, Microbacterium phage Min1, Ralstonia
phage RSK1, Lactococcus phage phiL47, Escherichia phage RB69, Escherichia phage Lambda, Salmonella
phage SJ46, Burkholderia phage phiE125, Lactococcus phage 28201, Propionibacterium phage PHL301M00,
Propionibacterium phage PHL141N00, Staphylococcus phage StB20-like, Cellulophaga phage phiST, Klebsiella
phage ST13-OXA48phi12.1, Propionibacterium phage Keiki

Tetracycline Staphylococcus phage SPbeta-like, Lactococcus phage 28201, Synechococcus phage S-SM2, Staphylococcus phage
StB20-like, Erwinia phage Ea35-70, Staphylococcus phage IME1361_01, Salmonella phage 118970_sal3,
Bacillus phage G, Staphylococcus phage StB12, Lactococcus phage 4268, Staphylococcus phage Ipla5,
Staphylococcus phage phiIPLA-C1C, Enterobacteria phage YYZ-2008, Staphylococcus virus 108PVL,
Enterococus phage vipetofem, Lactococcus phage TP901-1, Lactobacillus phage 521B, Propionibacterium
phage ATCC29399B_T, Synechococcus phage ACG-2014j, Propionibacterium phage PFR2

Trimethoprim Streptococcus phage IC1, Enterobacteria phage YYZ-2008, Lactobacillus phage phiAQ113, Salmonella phage
SJ46, Pseudomonas phage PS-1, Escherichia phage RCS47, Propionibacterium phage P100_A, Cronobacter
phage ENT47670, Acinetobacter phage WCHABP12, Salmonella phage P22, Arthrobacter phage Wheelbite,
Klebsiella phage ST147-VIM1phi7.1, Pseudomonas phage YMC12/01/R24, Enterococcus phage EF62phi,
Lactococcus phage AM1, Propionibacterium phage Pacnes 2012-15, Synechococcus phage S-SM2, Escherichia
phage RB69, Klebsiella phage ST13-OXA48phi12.1, Escherichia phage 500465-2

Miscellaneous Phage Gifsy-1, Enterococcus phage phiEf11, Gordonia phage Cucurbita, Enterococcus phage EFP01,
Staphylococcus phage phiIPLA-C1C, Escherichia phage Sortsne, Bacillus phage phi105, Aeromonas phage
LAh_7, Caulobacter phage Seuss, Staphylococcus phage 42E, Pseudomonas phage gh-1, Staphylococcus phage
StB12, Lactobacillus phage Lenus, Escherichia phage Stx2 II, Staphylococcus phage SPbeta-like, Cronobacter
phage phiES15, Propionibacterium phage Ouroboros, Staphylococcus phage 29, Streptococcus phage
CHPC950, Streptococcus phage P0095

Note: The first 20 most “important” phages are listed for each group of antibiotics.
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SARKAR et al. 2541

Staphylococcus phage 37
Lactococcus phage phi145

Escherichia phage DE3
Aurantimonas phage AmM−1
Staphylococcus phage SA12

Klebsiella phage ST147−VIM1phi7.1
Staphylococcus phage IME−SA4

Enterobacteria phage P7
Staphylococcus phage IME1348_01

Clostridium phage phiSM101
Lactococcus phage 66901

Lactococcus phage r1t
Streptomyces phage Lannister
Staphylococcus phage phiRS7

Xanthomonas phage OP2
Listeria phage LP−030−3

Ralstonia phage Raharianne
Prochlorococcus phage Syn1

Staphylococcus phage phiN315
Staphylococcus phage StB20−like

0.0 2.5 5.0 7.5 10.0
Mean decrease in accuracy

Ph
ag

es

Macrolide

Bacillus phage phi4J1
Staphylococcus phage phiN315

Bacillus phage IEBH
Lactobacillus phage LBR48

Staphylococcus virus 108PVL
Cronobacter phage vB_CsaM_GAP31

Mycobacterium phage Phabba
Staphylococcus phage 2638A

Prochlorococcus phage P−SSP10
Mycobacterium phage Cambiare

Microbacterium phage Appa
Pseudomonas phage phiPSA1

Burkholderia phage phiE125
Enterobacteria phage YYZ−2008

Acinetobacter phage YMC/09/02/B1251
Pseudomonas phage B3

Lactobacillus phage SAC12B
Escherichia phage PA2

Acinetobacter phage YMC11/11/R3177
Acinetobacter phage vB_AbaS_TRS1

0 2 4 6
Mean decrease in accuracy

Ph
ag

es

Beta lactam

Propionibacterium phage PFR2
Synechococcus phage ACG−2014j

Propionibacterium phage ATCC29399B_T
Lactobacillus phage 521B

Lactococcus phage TP901−1
Enterococus phage vipetofem
Staphylococcus virus 108PVL

Enterobacteria phage YYZ−2008
Staphylococcus phage phiIPLA−C1C

Staphylococcus phage Ipla5
Lactococcus phage 4268

Staphylococcus phage StB12
Bacillus phage G

Salmonella phage 118970_sal3
Staphylococcus phage IME1361_01

Erwinia phage Ea35−70
Staphylococcus phage StB20−like

Synechococcus phage S−SM2
Lactococcus phage 28201

Staphylococcus phage SPbeta−like

0 2 4
Mean decrease in accuracy

Ph
ag

es

Tetracycline

F I G U R E 6 Phages with top importance scores based on the random forest for macrolide, beta lactam, and tetracycline antibiotic
classes, where ARGs were most abundant.
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2542 SARKAR et al.

T A B L E 3 Rank aggregated list of top 20 phages associated with ARG dissemination.

Aggregated rank Species Inclusion probability

1 Propionibacterium phage P100_A 1.00

2 Staphylococcus phage StB20-like 1.00

3 Staphylococcus phage SPbeta-like 0.97

4 Escherichia phage RCS47 0.99

5 Staphylococcus phage StB12 0.69

6 Enterobacteria phage YYZ-2008 0.73

7 Staphylococcus phage Ipla7 0.95

8 Propionibacterium phage Pacnes 2012-15 0.55

9 Escherichia phage vB_EcoP-CHD5UKE1 0.57

10 Lactococcus phage 28201 0.97

11 Acinetobacter phage vB_AbaS_TRS1 0.38

12 Staphylococcus phage vB_SepS_SEP9 0.39

13 Synechococcus phage S-SM2 0.11

14 Pseudomonas phage YMC12/01/R24 0.95

15 Escherichia phage DE3 0.38

16 Microbacterium phage Min1 0.59

17 Enterobacter phage Tyrion 0.28

18 Escherichia phage 500465-1 0.41

19 Phage Gifsy-1 0.19

20 Streptococcus phage IC1 0.48

which targets clindamycin-, erythromycin-, and tetracycline-resistant Propionibacterium acnes,43,44 is the top phage in
the consensus list (Table 3), as well as in several of the class-specific lists (Table 2). The Escherichia phage RCS47, identi-
fied as a carrier of the SHV-2 Extended-Spectrum 𝛽-Lactamase from an Escherichia coli strain,45 has been found to be a
highly associated phage for beta lactam, fusidic acid, pseudomonic acid, and tetracycline antibiotics. Other crucial phages
identified include the Staphylococcus virus 108PVL, which carries the Panton-Valentine leukocidin (PVL) gene linked to
increased virulence and antibiotic resistance in S. aureus;46 the Staphylococcus phage vB_SepS_SEP9, a phage of Staphylo-
coccus epidermidis, which is known for its high rates of antibiotic resistance and biofilm formation, can potentially spread
of ARGs among the Staphylococcal population through mechanisms like HGT;47,48 and Staphylococcus phages like StB12
and StB20, targeting methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a strain that is challenging to combat
with conventional antibiotics such as glycopeptides, cephalosporins, and quinolones, all of which are associated with an
increased risk of MRSA colonization.49–52

4.3.2 Environmental variables

The prominent environmental variables–including sanitation, coastal location, temperature, latitude, population age,
and Air Quality Index–uncovered in our analysis are substantiated by a wealth of existing research on antimicrobial
resistance.

Sanitation practices play a pivotal role, as evidenced by studies indicating that poor sanitation practices can heighten
exposure to antimicrobial-resistant bacteria and their genetic elements. Inadequate sanitation can lead to the prolifera-
tion of bacterial pathogens, potentially increasing antibiotic use and thereby fostering antibiotic resistance.53 Conversely,
improved sanitation practices have been associated with a reduction in the spread of antimicrobial-resistant bacteria and
their genes.
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SARKAR et al. 2543

Coastal areas, characterized by their proximity to water bodies and heightened human activity, have been the sub-
ject of attention. They often exhibit features of urbanization, including high population density and pollution, leading
to increased antibiotic usage.54 The discharge of untreated sewage and agricultural runoff into coastal waters further
contributes to the dissemination of ARGs.

Temperature is another influential factor, with a temperature increase of 10◦C linked to elevated antibiotic
resistance levels in common pathogens such as Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus
across diverse regions.33 This temperature-dependent effect can be attributed to the propensity of microorgan-
isms in anaerobic or high-temperature environments to exchange genes horizontally, including ARGs.34,35 Varia-
tions in genetic diversity, ecosystems, and human activities across latitudes contribute to this phenomenon, with
central latitudes being identified as hotspots for the emergence of highly mobile genetic elements associated
with AMR.55–57

Population age is a noteworthy proponent, with our findings aligning with existing research. Younger age groups,
characterized by a lack of awareness about AMR, tend to engage in inappropriate antibiotic usage.58

Regarding the Air Quality Index, environmental bacteria can act as biological aerosols when they adhere to fine partic-
ulate matter. This phenomenon leads to the long-range dispersion of airborne ARGs, eventually returning to the Earth’s
surface through precipitation. This intricate process creates a global “environmental ARG loop”.59,60

5 DISCUSSION

We present a strategic method to unravel the primary drivers of AMR by focusing on the pivotal role of phages. We
acknowledge that various environmental factors may exert confounding effects that are intricately intertwined with the
spread of ARGs. In the initial analysis, we explore existing relationships as they stand, without addressing these potential
confounders. We employ MPLS to unveil significant factors both at the block and global levels. While phages emerge as
crucial explanatory variables in elucidating AMR dynamics based on the bipc criteria, vipc suggest that several environ-
mental factors–including sanitation, coastal location, temperature, latitude, population age, and Air Quality Index–play
the most pivotal roles at the global level. This observation might seem paradoxical, as phages, despite having the highest
block importance, exhibit smaller global variable importances. In addition, Staphylococcus phages appear to be the lead-
ing phages in the orderings despite making up only a very small fraction of the available lists of phages. The involvement
of environmental factors as potential confounders in the association between phages and resistomes may underlie these
observations, suggesting the need to adjust resistomes for the influence of these environmental variables. This adjust-
ment leads to informative lists that are in agreement with clinical literature (Section 4.3.1). We reach this conclusion
using random forest models to identify pivotal phages for each of the 17 distinct antibiotic classes, as well as across the
broader spectrum encompassing all antibiotic classes through rank aggregation. We ensure the stability of our overall list
by assessing the likelihood of including phages in the consensus list by chance, comparing it against a threshold calcu-
lated using the hypergeometric distribution. All phages in the consensus list significantly exceed this threshold, affirming
the robustness of our methodology.

The identification of these significant phages provides crucial insights into the driving factors behind antimicrobial
resistance, laying the foundation for future targeted interventions and management strategies. Our study represents a fun-
damental step toward a deeper understanding of the intricate interplay between genetic and environmental factors that
influence the dissemination of ARGs. While we have adjusted for auxiliary variables that could impact the distribution
of ARGs, it is important to acknowledge the limitations of observational studies in making causal interpretations. Our
research, guided by the metagenomic dataset from the CAMDA 2023 challenge, primarily addressed DNA phages, neces-
sitating the exclusion of RNA phages due to the absence of metatranscriptomic data. This limitation, while inherent to our
dataset, points to a potential research avenue involving RNA phages, which are likely significant in microbial ecosystems
and antibiotic resistance mechanisms. To evaluate how much our metagenomic data explains resistome variation, we have
detailed R2 values for our comprehensive MPLS model in the Supplementary file. Further, our study involved normal-
izing absolute abundances to relative ones, with adjustments for sequencing depth, effectively tackling scale disparities.
A future research opportunity lies in adjusting abundances by genome lengths. Additionally, our approach involves con-
trolling for covariates, although some of these could potentially be confounders within the model itself. It is worth noting
that there exist alternative statistical methods for controlling confounders, and future studies might find value in compar-
ing and contrasting these methods. We hold the hope that our novel findings will be subject to validation through future
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experimental research. Such advancements can provide valuable insights for the development of effective antimicrobial
therapies, ultimately contributing to the mitigation of the severe consequences associated with AMR.
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