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Abstract

In health and clinical research, medical indices (e.g., BMI) are commonly used for
monitoring and/or predicting health outcomes of interest. While single-index mod-
eling can be used to construct such indices, methods to use single-index models for
analyzing longitudinal data with multiple correlated binary responses are underde-
veloped, although there are abundant applications with such data (e.g., prediction of
multiple medical conditions based on longitudinally observed disease risk factors).
This paper aims to fill the gap by proposing a generalized single-index model that
can incorporate multiple single indices and mixed effects for describing observed
longitudinal data of multiple binary responses. Compared to the existing methods fo-
cusing on constructing marginal models for each response, the proposed method can
make use of the correlation information in the observed data about different responses
when estimating different single indices for predicting response variables. Estimation
of the proposedmodel is achieved by using a local linear kernel smoothing procedure,
together with methods designed specifically for estimating single-index models and
traditional methods for estimating generalized linear mixed models. Numerical stud-
ies show that the proposed method is effective in various cases considered. It is also
demonstrated using a dataset from the English Longitudinal Study of Aging project.
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1 INTRODUCTION

A composite index or score can summarize a pool of explanatory variables that are potential predictors of the outcomes of

interest. While the composite index may become a pragmatic tool to be used in subsequent studies, it can effectively inform
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stakeholders by concealing the complexity of the original data. In health and clinical research, medical indices are commonly

used for monitoring and predicting health outcomes of interest. For instance, the visceral adiposity index, a combination of

anthropometric and laboratory parameters, can be used to predict the risk of type II diabetes.1 In practice, many scientifically

meaningful response variables are binary, indicating the status of some conditions (e.g., diseases) of interest. In this paper, we

focus on constructing composite indices when there are multiple mutually correlated binary response variables and the observed

data of these response variables and the related predictors are longitudinal.

Single-index modeling is a commonly used tool for constructing composite indices. This semiparametric modeling approach

links the mean of a response variable to a linear combination of the predictors through an unknown nonparametric link function.

While combining different predictors into a univariate index helps to circumvent the so-called “curse of dimensionality”, the

link function allows a more flexible relationship between the response variable and the predictors. In the literature, there is much

existing discussion about single-indexmodeling in cases when there is a single continuous response variable and all observations

are assumed to be independent. See, for instance, Härdle and Stoker2, Ichimura3, Härdle et al.4, Xia et al.5, Xia6, and Yu and

Ruppert7. When the response variable is binary, the logit of the mean response can be linked to the single index by an unknown

link function, and the resulting model is often called a generalized single-index model in the literature. See related discussions

in papers such as Carroll et al.8 and Cui et al.9

In practice, longitudinal data at multiple time points are routinely collected for individual subjects. In addition, there could be

multiple response variables of interest in some studies. For instance, we are often concerned about multiple diseases of individual

patients in somemedical studies, and their disease statuses and the related disease risk factors are usually observed longitudinally

over time. To analyze such data, it would definitely be beneficial to model all response variables jointly in order to make use of the

information about their association (cf., Diggle et al.10). The within-subject data correlation should be accommodated properly

in the model as well. In the literature, there is some existing discussion about single-index modeling of longitudinal data, most of

which is in cases when the response variables are continuous. For instance, Chen et al.11 proposed a partially-linear single-index

model to analyze longitudinal data with a single continuous response variable, in which a semiparametric generalized estimating

equations (SGEE) approach was used to estimate the index coefficients, link function, and parameters in a working correlation

matrix. Wu and Tu12 extended the penalized spline method originally discussed in Yu and Ruppert7 to cases with multiple

continuous response variables and longitudinal observed data. Tian and Qiu13 proposed a more flexible multivariate single-index

model for cases with multiple continuous response variables, which can allow different index coefficients for different response

variables and accommodate both the within-subject and between-response-variable correlation. Its model estimation was based

on the local linear kernel smoothing procedure for estimating the nonparametric link functions (cf., Qiu14) and the expectation-

maximization (EM) algorithm (cf., Dempster et al.15) for estimating the index coefficients and other parameters. There are a few

papers in the literature discussing single-index modeling in cases when there is a single binary response variable. For instance,
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Chowdhury and Sinha16 proposed a partially linear single-index logistic regression model for analyzing longitudinal data with

a binary response variable based on the second-order GEE approach.17 A similar model was studied by Yi et al.18, where the

within-subject association in the observed data was described by marginal odds ratios and the model was estimated by the

first-order GEE.

From the above description, it can be seen that there is little existing discussion in the literature about the single-indexmodeling

problem described at the beginning of the paper when there are multiple binary response variables and the observed data are

longitudinal. This paper aims to fill the gap by proposing a multivariate single-index longitudinal logistic regression model

for analyzing such data that are commonly seen in practice. In the proposed model, the index coefficients can be different

for different response variables, and some random-effects terms are used to accommodate both within-subject and between-

response-variable data correlation. Estimation of the proposed model is based on the combination of the local linear kernel

smoothing procedure, some special methods developed for estimating the single-index models, and some conventional methods

for estimating the generalized linear mixed-effect models (GLMM). By integrating the ideas of the EM algorithm and the

refined conditional minimum average variance estimation (rMAVE) method proposed by Xia et al.5, its index coefficients, link

functions, and variance components of the random effects can be estimated simultaneously. Both theoretical justifications and

numerical studies show that the proposed method provides a powerful analytic tool for constructing composite indices when

there are multiple binary response variables that are observed longitudinally.

The rest of the paper is organized as follows. Section 2 describes the proposed model and its estimation in detail, along with

some statistical properties of the estimatedmodel. Section 3 presents some numerical results about the finite-sample performance

of the proposed method. The proposed method is applied to a dataset from the English Longitudinal Study of Aging (ELSA) in

Section 4. Some concluding remarks are given in Section 5. Some technical details are provided in the Web Appendix.

2 PROPOSED METHODOLOGY

The proposed method is described in several parts in this section. The proposed single-index model for describing the observed

longitudinal data of multiple binary response variables is desbribed in Subsection 2.1. Estimation of the index coefficients and

the link functions is discussed in Subsections 2.2 and 2.3, respectively.

2.1 Model specification

In a longitudinal study with q binary response variables of interest, assume that there are a total of M subjects involved. For

the ith subject, mi repeated measurements are taken on both the q binary response variables and p predictors at times {tij ∈

[T0, T1], j = 1,… , mi}, where [T0, T1] specifies the study period, and the longitudinal observations of the response variables
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and predictors are denoted as {Yijk, j = 1,… , mi, k = 1,… , q} and {Xij = (Xij1,… , Xijp)T , j = 1,… , mi}, respectively, for

i = 1,… ,M . These observed data are assumed to follow the multivariate single-index longitudinal logistic regression model

below:

log
( �ijk
1 − �ijk

)

=  k
(

�Tk Xij
)

+ gTk bi, for j = 1,… , mi, i = 1,… ,M, k = 1,… , q, (1)

where bi = (bTi1,… ,bTiq)
T is a vector of random effects for the ith subject, gk is a design vector of the random effects, �ijk =

E(Yijk|Xij ,bi),  k(⋅) is an unknown link function, and �k is a p-dimensional vector of index coefficients. In Model (1), {bi, i =

1,… ,M} are assumed to be independently and identically distributed (i.i.d.) with the common distribution Nq(0,�b). For

simplicity, it is further assumed that bik = bik is a scalar, for each k, and thus only the random intercept is considered for each

response variable. In such cases, gk is a q-dimensional vector whose kth element equals 1 and the remaining elements all equal

0. For model identifiability, the index coefficients are assumed to satisfy the conditions that �Tk �k = 1 and the first element of

�k is positive, for each k. If all link functions  k(⋅)’s are identity functions, then Model (1) reduces to a multivariate GLMM

with a logit linkage function. It should be pointed out that inclusion of the random-effects in Model (1) is for accommodating

both the within-subject data correlation and the correlation among different response variables. When only random intercepts

are considered in the model, it is actually assumed that the log odds ratio can vary among different subjects given the covariate

effect.

2.2 Monte Carlo EM algorithm for estimating model parameters

In this subsection, we describe how to estimate {�k} and�b inModel (1) by using theMonte Carlo EMalgorithm and an extended

version of the rMAVE method. The Monte Carlo EM algorithm can be used for estimating mixed-effect models numerically.

See, for instance, Laird and Ware19, McCulloch20, and Booth and Hobert21. Under the mixed-effects modeling framework, the

random effects can be regarded as unobserved part of the response, and the log-likelihood for the complete data, denoted as

lc(�;Y,b), can be used for model estimation, where Y is the vector of the observed responses, b = (bT1 ,… ,bTM )T is the vector

of the random effects, and � is the vector of all unknown parameters in the model. Then, � can be estimated iteratively as

follows. Let �∗ be the parameter estimates obtained in the previous iteration. Then, they can be updated iteratively bymaximizing

Q(�,�∗) = Eb|Y,�∗{lc(�;Y,b)|Y,�∗} until a convergence criterion is met.

For Model (1), let Yi∙k = (Yi1k,… , Yimik)
T be the observed kth response variable of the ith subject, Yi∙∙ = (YTi∙1,… ,YTi∙q)

T

be the vector of observations of all response variables of the ith subject, Y∙∙k = (YT1∙k,… ,YTM∙k)
T be the vector of observations

of the kth response variable for all subjects, and Y = (YT∙∙1,… ,YT∙∙q)
T be the vector of all observed response variables. Let X

be the (
∑M
i=1 mi) × p matrix of all covariate data where the jth row is XT1j for 1 ≤ j ≤ m1 and the [

∑i−1
s=1(s − 1)ms + j]-th row is

XTij , for 1 ≤ j ≤ mi and 2 ≤ i ≤M , and Xi be the mi × p matrix whose jth row is XTij . Let � denote a collection of all unknown
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parameters ({�k},�b) as well as the unknown link functions { k(⋅)} in Model (1). Then, the log-likelihood of the complete data

has the following expression:

lc(�;Y,b) = log
{

f (Y|X,b, { k}, {�k})f (b|�b)
}

=
M
∑

i=1

mi
∑

j=1

q
∑

k=1

[

Yijk
{

 k(�Tk Xij) + g
T
k bi

}

− log
[

1 + exp
{

 k(�Tk Xij) + g
T
k bi

}]]

+
M
∑

i=1

{

−
q
2
log(2�) − 1

2
log |�b| −

1
2
bTi �

−1
b bi

}

. (2)

Since {�k}, { k} and�b appear in different terms of lc(�;Y,b), the EM algorithm updates the estimate of � by separatelymax-

imizing Eb|Y,�∗{log f (Y|X,b, { k}, {�k})|Y,�∗} and Eb|Y,�∗{log f (b|�b)|Y,�∗} with respect to ({�k}, { k}) and �b. While

the link functions { k} do not have any parametric forms, some nonparametric techniques should be used for estimating them.

By following the idea of rMAVE, for any given k and Xi′j′ such that �Tk Xi′j′ is close to �Tk Xij , the local linear approximation

of  k(�Tk Xij) in a neighborhood of �
T
k Xi′j′ can be expressed as  k(�

T
k Xij) = ai′j′k + ci′j′k�Tk (Xij − Xi′j′), where ai′j′k and ci′j′k

denote the values of  k and  ′
k evaluated at �

T
k Xi′j′ , respectively. Then, log f (Y|X,b, { k}, {�k}) can be approximated by

log f (Y|X,b, {�k}, {ak}, {ck}) =
q
∑

k=1

M
∑

i,i′=1

mi
∑

j=1

mi′
∑

j′=1

[

Yijk�iji′j′k − log
{

1 + exp(�iji′j′k)
}]

wiji′j′k, (3)

where

�iji′j′k = ai′j′k + ci′j′k�Tk (Xij − Xi′j′) + g
T
k bi,

wiji′j′k =
Kℎk[�

T
k (Xij − Xi′j′)]

∑M
i=1

∑mi
j=1Kℎk[�

T
k (Xij − Xi′j′)]

,

ak = (a11k, a12k,… , a1m1k, a21k,… , aMmMk)
T ,

ck = (c11k, c12k,… , c1m1k, c21k,… , cMmMk)
T ,

Kℎk(⋅) = K(⋅∕ℎk)∕ℎk, for k = 1,… , q, K(⋅) is a density kernel function, and {ℎk} are q bandwidths.

Based on the approximation given by (3), the EM algorithm that iteratively updates the parameter estimates can be summarized

by the following formulas: for k = 1,… , q,

(�̂k, âTk , ĉ
T
k )
T = argmax

�k,ak,ck
Eb|Y,�̂b,{�̃k},{ãk},{c̃k}

{

log f (Y|X,b, {�k}, {ak}, {ck})
|

|

|

|

|

Y, �̂b, {�̃k}, {ãk}, {c̃k}
}

, (4)

�̂b = argmax
�b

Eb|Y,�̃b,{�̂k},{âk},{ĉk}

{

log f (b|�b)
|

|

|

|

|

Y, �̃b, {�̂k}, {âk}, {ĉk}
}

, (5)

where {�̂k}, �̂b, {âk} and {ĉk} are the parameter estimates in the current iteration, and {�̃k}, �̃b, {ãk} and {c̃k} are the parameter

estimates obtained in the previous iteration.
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Since the conditional expectations in (4) and (5) do not have closed-form expressions, they can be replaced respectively by

the following estimates:
1
B

B
∑

l=1
log f (Y|X,b(l), {�̃k}, {ãk}, {c̃k}) and 1

B

B
∑

l=1
log f (b(l)|�̃b),

where {b(l), l = 1,… , B} are the values sampled from the posterior distribution of b given the current estimates of other

parameters. To this end, we refer toMcCulloch20 for generating the posterior samples of the random effects using theMetropolis-

Hastings algorithm. By this algorithm, the probability of accepting a new value of the random-effects vector, say b∗, is the

minimum of one and
f (b∗|Y,X, �̂)f (b|�̂b)

f (b|Y,X,�)f (b∗|�̂b)
.

In addition, the above ratio can be simplified to the ratio of conditional likelihoods as follows.

f (b∗|Y,X, �̂)f (b|�̂b)

f (b|Y,X,�)f (b∗|�̂b)
=
f (Y|X,b∗, �̂)f (b∗|�̂b)f (b|�̂b)

f (Y|X,b, �̂)f (b|�̂b)f (b∗|�̂b)
=
f (Y|X,b∗, �̂)
f (Y|X,b, �̂)

=
∏M

i=1 f (Yi∙∙|Xi,b
∗
i , �̂)

∏M
i=1 f (Yi∙∙|Xi,bi, �̂)

.

This simplification avoids calculating the unknown marginal density of Y that involves complicated integrals without analytical

forms. In practice, updating b would induce low acceptance rates and intensive computation given the high dimensionality of

the random-effects vector. Because of the independence of the subject-specific random-effects bi’s, we can parallelly generate

the Monte Carlo samples from the posterior distribution for each subject by using the single-component Metropolis-Hastings

algorithm suggested by Gilks et al.22 More Specifically, based on the current parameter estimates �̂, the sampling process for

the ith subject, for i = 1,… ,M , can be realized as follows:

1) Set the initial values b(l)i = (b(l)i1 ,… , b(l)iq )
T = (0,… , 0)T with l = 0.

2) Let l = l + 1. For k = 1,… , q, implement the following steps

i) Generate a random value b∗(l)ik from the conditional distribution of b(l)ik given

b(l)i,−k = (b(l)i1 ,… , b(l)i,k−1, b
(l)
i,k+1,… , b(l)iq )

T and �̂b.

ii) Independently sample uk from the Uniform[0,1] distribution.

iii) If uk < min{1, f (Yi∙k|Xi, b∗ik, �̂)∕f (Yi∙k|Xi, b
(l)
ik , �̂)}, then accept b∗(l)ik and update b(l)i =

(b(l)i1 ,… , b(l)i,k−1, b
∗(l)
ik , b

(l)
i,k+1,… , b(l)iq )

T . Otherwise, set b(l)i = (b(l)i1 ,… , b(l)i,k−1, b
(l)
ik , b

(l)
i,k+1,… , b(l)iq )

T .

3) Repeat Step 2) until B sampled values of bi, say b
(1)
i ,… ,b(B)i , have been obtained.

Practically, we often generate more than B sets of {b(l)i } and discard the first several burn-in samples in order to guarantee the

quality of the remaining B samples. In part i) of Step 2) above, since the elements of bi may be correlated with each other, the
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proposal distribution in this single-component Metropolis-Hastings algorithm should be modified into a conditional distribution

given the current values of all parameter estimates except the one to be sampled. Since the subject-specific random effects

are assumed to be i.i.d. with a multivariate Normal distribution, Appendix A shows that b∗(l)ik can be generated from a Normal

distribution with mean −
∑

k′≠1 S1k′S−1
11 b

(l)
ik′ and variance S

−1
11 , where Skk′ is the (k, k

′)-th element of the inverse of a re-arranged

version of �̂b that corresponds to the vector (b
(l)
ik ,b

(l)
i,−k). Once we are able to obtain the posterior samples of the random effects,

the approximated version in (4) and (5) can be obtained by the iteratively reweighted least square procedure and a closed-form

formula, respectively. The entire iterative estimation procedure for estimating the parameters in our main model is summarized

below.

Monte Carlo EM Algorithm for Estimating Model (1)

1) Choose the initial values of �k, for k = 1,… , q, and �b, denoted as �̂ (0)
k and �̂(0)

b . Initialize b(l), for l = 1,… , B. Set the

iteration index r = 0.

2) For r ≥ 1 and k = 1,… , q, obtain â(r)k and ĉ(r)k based on {�̂ (r−1)
k } and the sampled values of {b(l)} obtained in the (r−1)-th

iteration as follows. For i′ = 1,… ,M and j′ = 1,… , m, iteratively update (âi′j′k, ĉi′j′k)T by the following formula until

convergence:

⎛

⎜

⎜

⎜

⎝

âi′j′k

ĉi′j′k

⎞

⎟

⎟

⎟

⎠

=

[

1
B

B
∑

l=1

M
∑

i=1

mi
∑

j=1
Kℎk{�̂

(r−1)T
k (Xij − Xi′j′)}

⎛

⎜

⎜

⎜

⎝

1

�̂ (r−1)T
k (Xij − Xi′j′)

⎞

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎝

1

�̂ (r−1)T
k (Xij − Xi′j′)

⎞

⎟

⎟

⎟

⎠

T

�̂(l)
iji′j′k

(

1 − �̂(l)
iji′j′k

)

]−1

×

[

1
B

B
∑

l=1

M
∑

i=1

mi
∑

j=1
Kℎk{�̂

(r−1)T
k (Xij − Xi′j′)}

⎛

⎜

⎜

⎜

⎝

1

�̂ (r−1)T
k (Xij − Xi′j′)

⎞

⎟

⎟

⎟

⎠

×
[

�̂(l)
iji′j′k

(

1 − �̂(l)
iji′j′k

)

{âi′j′k + ĉi′j′k�̂
(r−1)T
k (Xij − Xi′j′)} +

(

Yijk − �̂
(l)
iji′j′k

)]

]

,

where

�̂(l)
iji′j′k =

exp{âi′j′k + ĉi′j′k�̂
(r−1)T
k (Xij − Xi′j′) + gTk b

(l)
i }

1 + exp{âi′j′k + ĉi′j′k�̂
(r−1)T
k (Xij − Xi′j′) + gTk b

(l)
i }

.

Then, â(r)k and ĉ(r)k are obtained by permuting the convergent values of {âi′j′k} and {ĉi′j′k}.
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3) For k = 1,… , q, update the estimate of �k through

�̂ (r)
k =

[

1
B

B
∑

l=1

M
∑

i,i′=1

mi
∑

j=1

mi′
∑

j′=1
Kℎk{�̂

(r−1)T
k (Xij − Xi′j′)}(Xij − Xi′j′)(Xij − Xi′j′)T

×(ĉ(r)i′j′k)
2 × �̂(l)∗

iji′j′k

(

1 − �̂(l)∗
iji′j′k

)

∕f̂�Tk x(�̂
(r−1)T
k Xi′j′)

]−1

[

1
B

B
∑

l=1

M
∑

i,i′=1

mi
∑

j=1

mi′
∑

j′=1
Kℎk{�̂

(r−1)T
k (Xij − Xi′j′)}(Xij − Xi′j′)ĉ

(r)
i′j′k

{

�̂(l)∗
iji′j′k

(

1 − �̂(l)∗
iji′j′k

)

×�̂ (r−1)T
k ĉ(r)i′j′k(Xij − Xi′j′) +

(

Yijk − �̂
(l)∗
iji′j′k

)

}

∕f̂�Tk x(�̂
(r−1)T
k Xi′j′)

]

,

where

�̂(l)∗
iji′j′k =

exp{â(r)i′j′k + ĉ
(r)
i′j′k�̂

(r−1)T
k (Xij − Xi′j′) + gTk b

(l)
i }

1 + exp{â(r)i′j′k + ĉ
(r)
i′j′k�̂

(r−1)T
k (Xij − Xi′j′) + gTk b

(l)
i }

,

f̂�Tk x(�̂
(r−1)T
k Xi′j′) =

1
∑M
i=1 mi

M
∑

i=1

mi
∑

j=1
Kℎk{�̂

(r−1)T
k (Xij − Xi′j′)}.

Then, standardize �̂ (r)
k such that its L2-norm is one and its first element is positive.

4) Update the variance-covariance matrix estimate through

�̂(r)
b = 1

MB

M
∑

i=1

B
∑

l=1
b(l)i b

(l)T
i .

5) Implement the single-component Metropolis-Hastings algorithm for each subject to obtain the posterior samples {b(l)i }

used in the next iteration.

6) Repeat Steps 2 to 5 until the convergence of {�̂ (r)
k } and �̂(r)

b .

In practice, the initial values for {�k} and �b can be obtained by fitting q separate generalized linear mixed-effects models

with logit link functions and random intercepts. Then, �̂ (0)
k is chosen to be the standardized version of the fitted coefficient vector,

for each k, and �̂(0)
b is chosen to be a diagonal matrix of the q fitted variances of the random intercepts. The updating formula for

�b in Step 4) is just the Monte Carlo approximation of the averaged posterior mean of bibTi , which can be derived analytically

from (5). Here, we follow the suggestion of Booth and Hobert21 to use an automatically increased simulation size B so that the

algorithm is more computationally efficient. Namely, we set B = 100 for the first 10 iterations. Starting from the 11th iteration,

B is increased to 200. After the 31th iterations, B is set to be 500.
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2.3 Estimation of  k(⋅)

In Step 2) of the Monte Carlo EM algorithm discussed at the end of Subsection 2.2, âi′j′k and ĉi′j′k are estimates of  k and  ′
k

evaluated at �̂kXi′j′ , respectively, for i′ = 1,… ,M, j′ = 1,… , mi, and k = 1,… , q. In this section, we first formally define the

estimators of the link functions in the presence of random effects, and then derive some statistical properties of the estimators.

Let us first consider the case when {�k} and �b are assumed known. For k = 1,… , q, let axk and cxk denote the values of  k

and  ′
k evaluated at �

T
k x. Then, similar to the exposition in Cui et al.9, the estimators  ̂k(�Tk x) and  ̂

′
k(�

T
k x) can be obtained by

solving the following equation with respect to �xk = (axk, cxk)T :

S(�xk) ∶= Eb|Y,�b

⎡

⎢

⎢

⎢

⎣

M
∑

i=1

mi
∑

j=1
Kℎk{�

T
k (Xij − x)}

(

Yijk − �ijxk
)

⎛

⎜

⎜

⎜

⎝

1

�Tk (Xij − x)

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

Y,�b

⎤

⎥

⎥

⎥

⎦

= 0, (6)

where

�ijxk =
exp{axk + cxk�k(Xij − x) + gTk bi}

1 + exp{axk + cxk�k(Xij − x) + gTk bi}
.

In practice, as discussed in Subsection 2.2, the conditional expectation can be replaced by its estimate using the posterior samples

of the random effects. The following theorem gives the asymptotic conditional bias and variance of each estimated link function

defined above.

Theorem 1. Under the regularity conditions given in Appendix B.1, if ℎk = o(1), 1∕
∑M
i=1 mi = o(1), and 1∕(ℎk

∑M
i=1 mi) = o(1),

for k = 1,… , q, then we have

(i) E
[

 ̂k(�Tk x) −  k(�
T
k x)|X

]

= 1
2
ℎ2k 

′′
k (�

T
k x) ∫ t

2K(t)dt + Op
[

ℎ4k + (ℎk
∑M
i=1 mi)

−1
]

,

(ii) Var
[

 ̂k(�Tk x)|X
]

=
[

ℎkf�Tk x(�
T
k x)Eb|Y,�b

{

∑M
i=1 mivk(bi)

}]−1
∫ K2(t)dt + Op

[

ℎ4k + (ℎk
∑M
i=1 mi)

−1
]

,

where vk(bi) = exp{ k(�Tk x) + g
T
k bi}∕[1 + exp{ k(�Tk x) + g

T
k bi}]

2.

The proof of Theorem 1 is given in Appendix B.2. While the score function in (6) takes a form similar to the local linear

kernel estimating functions discussed in Fan et al.23 and Cui et al.9 where the logit function is used to account for the binary

data, we can see that the asymptotic conditional bias of the proposed estimator in the current problem has a similar asymptotic

expression to that in cases with independent binary data discussed in Cui et al.9 In the asymptotic expression of the conditional

variance given above, a term with the conditional expectation is present. Since this term has no explicit analytical form, its

estimation may need to be obtained using the Monte Carlo sampling approach similar to the one discussed in Section 2.2.

Given the good theoretical properties of the Epanechnikov kernel function given in the literature,24 K(⋅) is chosen to be that

kernel function, which takes the form ofK(x) = 0.75(1−x2)I(|x| ≤ 1). For the kth response variable, the bandwidth ℎk is used

in Steps 2) and 3) of the proposed Monte Carlo EM algorithm. Since the asymptotic conditional mean integrated squared error

(MISE) of the related link function estimator would involve intractable terms, it is difficult to derive a formula for the optimal



10 TIAN AND QIU

bandwidth that minimizes the asymptotic conditional MISE. Here, we suggest using the N-fold cross-validation method to

select the bandwidths for estimating the q link functions. Compared to the conventional leave-one-out CV procedure, theN-fold

CV would be computationally more feasible, particularly in cases when we need to update the bandwidths when the estimated

single-indices get updated. To account for the within-subject correlation, the CV score needs to incorporate the current estimate

of �b. After taking all these considerations into account, we suggest choosing ℎk by minimizing the following CV score in a

given iteration of the proposed Monte Carlo EM algorithm:

CV(ℎk) =
1
B

B
∑

l=1

M
∑

i=1

mi
∑

j=1

[

Yijk{ ̂k,−nij (�̂
T
k Xij) + g

T
k b

(l)
i } − log

[

1 + exp{ ̂k,−nij (�̂
T
k Xij) + g

T
k b

(l)
i }

]]

, (7)

where b(l)i denotes the posterior sample of the random effects for the ith subject obtained by the Metropolis-Hastings algorithm

based on the current estimate of �b, and  ̂k,−nij (�̂
T
k Xij) is the leave-one-fold-out estimate of  k(�̂Tk Xij) obtained by solving

the modified version of (6) with observations in the nij-th fold being omitted in the calculation, for nij ∈ {1, 2,… , N}. In the

fold assignments, since observations within a subject could be correlated with each other, “subject” is used as the basic unit for

assignments and observations of the same subject are always assigned to the same fold. In practice, we suggest choosingN = 5

or 10, and numerical results presented in Sections 3 and 4 show that the choice ofN has a negligible effect on the performance

of the estimated model.

3 SIMULATION STUDY

In this section, two sets of simulations are carried out to assess the numerical performance of our proposed method. The first set

of simulations evaluates the finite-sample performance of the proposed method in various cases considered, and the second set

compares it with the rMAVE method proposed by Xia6 and the EFM method proposed by Cui et al.9 Throughout this section,

it is assumed that all mi’s are the same to be m,M = 50, 100, or 200, and m = 5, or 10.

3.1 Finite-sample performance of the proposed method

Suppose we have q = 2 correlated binary response variables whose observations are generated from the following model:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

logit{E(Yij1|Xij ,bi)} = 2(�11Xij1 + �12Xij2 + �13Xij3) − 1 + bi1

logit{E(Yij2|Xij ,bi)} = 3(�21Xij2 + �22Xij2 + �23Xij3)2 − 2 + bi2,
(8)

where the single indices are linked to the logit of the conditional mean responses via the link functions  1(u) = 2u − 1 and

 2(u) = 3u2 − 2, �1 = (�11, �12, �13)T = (1,−1, 0)T ∕
√

2, and �2 = (�21, �22, �23)T = (2, 1, 3)T ∕
√

14. The observation times

tij ∈ [0, 1] are generated independently from the uniform distribution U((j − 1)∕m, j∕m), for i = 1,… ,M and j = 1,… , m.
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Observations of the first two predictors {Xij1} and {Xij2} are assumed to be time-independent and generated from U(0, 1) and

U(−1, 1), respectively. Observations Xij3 are generated from U(1, 2), multiplying by the corresponding observation times tij .

Thus, they are time-dependent. For the ith subject, the random-effects bi = (bi1, bi2)T are generated from a bivariate normal

distribution N2(0,�b) with

�b =
⎛

⎜

⎜

⎜

⎝

1 0.5

0.5 1

⎞

⎟

⎟

⎟

⎠

.

In evaluating the finite-sample performance of our proposed method, we compare the estimated parameter values and their

true values in various cases considered based on 200 repeated simulation runs. Tables 1 and 2 present the biases of the parameter

estimates, their variances (Var), and the mean squared errors (MSE) when m = 5 and 10, respectively. From the tables, it can

be seen that most biases and all Var and MSE values of the parameter estimates decrease as either the number of subjects (i.e.,

M) or the number of repeated measurements (i.e., m) within a subject increases. Figure 1 further shows the histograms of the

estimated values of �11 from the 200 the simulation runs when M and m change. From the figure, it can be seen that while

the averaged estimated parameter value gets closer to the true value �11 = 0.7071 shown by the vertical dashed lines in the

plots, as eitherM or m increases, the variability of the estimated values gets smaller and their distribution gets more and more

symmetric and bell-shaped. Figures A.1-A.5 in Appendix C present the histograms of the estimates of other parameters, and

show the similar patterns. These numerical results demonstrate the asymptotic normality of the estimated index coefficients by

the proposed method. Theoretical justification of the proposed method is left for our future research.

[Table 1 about here]

[Table 2 about here]

Next, we examine the performance of the estimated link functions in various cases considered. Figures 2 and 3 compare the

true link functions with their estimates in different cases of the sample size. From the figures, it can be seen that the pointwise

estimates of the first link function are almost identical with the true function values as the sample size increases, and the pointwise

estimates of the second link function are getting closer to the true values as the sample size increases. It is also clear that for

both link functions, the empirical 95% pointwise confidence intervals are becoming narrower as M and/or m increase. These

figures show that the estimated link functions by our proposed method perform well too.

[Figure 1 about here]

[Figure 2 about here]

[Figure 3 about here]
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3.2 Method comparison

In this part, we compare the numerical performance of our proposed method with the rMAVE and EFMmethods, which are two

representative existing methods developed to handle cases with independent observed data and a univariate response variable.

The comparison is conducted in three scenarios corresponding to three different assumptions on the correlation structure of

the observed data. While the rMAVE method was first proposed to estimate a single-index model with a continuous response

variable, it can be generalized easily to cases with a univariate binary response variable. Cui et al.9 compared the EFM method

with rMAVE and showed that the EFM method gave more accurate estimates of the index coefficients when the number of the

predictors p was large and could be implemented in cases when p was too large for rMAVE to implement. When the rMAVE

and EFM methods are used to analyze correlated data with multiple response variables, they are implemented for the observed

data of each response variable and all predictors.

Similar to the setup of the simulation study in Section 3.1, assume that there are two binary response variables whose obser-

vations are generated from model (8). The within-subject correlation is controlled by the random-effects bi = (bi1, bi2)T , which

are generated in the way described in the following three scenarios:

• Scenario 1: The observed data are assumed to be independent within and between different subjects, i.e., bi1 = bi2 = 0.

• Scenario 2: The two response variables are independent with each other while the repeatedmeasurements on each response

variable within a subject are correlated. In such cases, the random-effects terms bi are generated from the distribution

N2(0,�b), where �b is a 2 × 2 identity matrix.

• Scenario 3: The response variables are correlated and there is within-subject data correlation as well. In such cases, the

random-effects terms bi are generated from the distribution N2(0,�b), where

�b =
⎛

⎜

⎜

⎜

⎝

1 0.5

0.5 1

⎞

⎟

⎟

⎟

⎠

.

In this example, the sum of squares of the estimation error,
∑3
p=1(�̂kp−�kp)

2 for k = 1, 2, are considered to measure the estima-

tion error for the index coefficients. Table 3 presents the results under different scenarios described above, where “PROPOSED”

denotes our proposed method. The table shows that either rMAVE or EFM has the best performance in Scenario 1 when the

observed data are independent over time and among different response variables. This result is reasonable because PROPOSED

needs to estimate the parameters in the variance-covariance matrix of the random effects in addition to the index coefficients,

which would add some extra variability to the estimates of the index coefficients. In Scenarios 2 and 3 when there is within-

subject correlation, it can be seen that PROPOSED generally overperforms the other two methods. There is only one exception
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that happens in Scenario 3 when the sample size is relatively small, in which case EFM is the best for estimating �2 and PRO-

POSED is close to the best. This example shows it is beneficial to use PROPOSED, in comparison with the existing methods

rMAVE or EFM, in cases when there are multiple correlated binary response variables and the observed data are longitudinal.

[Table 3 about here]

4 CASE STUDY

Changes in the extent of social connection have a profound impact on individual people’s lifestyle and health outcomes.25 Social

isolation is an objective and quantifiable reflection of reduced social networks and paucity of social connection. It is a particular

problem at older ages, when decreasing economic resources, mobility impairment, and the death of contemporaries conspire

to limit social contacts.26 While loneliness is often seen as the emotional manifestation of social isolation, stemming from

dissatisfaction with the frequency and quality of social interactions, previous research has shown a relatively weak correlation

between social isolation and loneliness.27 It is worth noting that some individuals may be content with limited social contact,

while others may feel lonely despite frequent interactions. Hence, social isolation and loneliness are distinct concepts with

potentially different implications for health.27 Numerous cross-sectional and longitudinal studies have revealed a significant

association between chronic diseases (e.g., cardiovascular disease) and social isolation.28 Moreover, social isolation consistently

exhibits a negative impact on health andwell-being, with socially isolated and lonely individuals adopting less favorable lifestyles

and experiencing lower quality of life.29 In this section, we use our proposed method to analyze a dataset from the English

Longitudinal Study of Aging (ELSA) to study the relationship between the cardiovascular diseases and the extent of social

connection as well as the longitudinal relationship between quality of life and social contact. The ELSA project is an ongoing

panel study that focuses on adults aged 50 and over. It was initiated in 2002, with participants being followed up approximately

every two years. Most of the raw data were collected through face-to-face interviews and self-completed questionnaires. See

Cadar et al.30 and Steptoe et al.31 for more detailed information about the ELSA project.

In each wave of data collection, the ELSA personnel interviewed participants to know whether they newly developed any

specific cardiovascular diseases or recovered from any previously existing medical conditions. Based on that information, we

can derive the observed status of cardiovascular diseases, including heart attack, stroke, heart failure, arrhythmia, and heart valve

complications, for individual participants during the period from the previous interview to the interview of the current wave.

The well-being or quality of life is quantified by the CAPS-19 index, which is the sum of 19 self-reported items with a common

4-point Likert scale coded as 0 to 3.32 While higher scores on the CAPS-19 index represent higher levels of positive well-being,

we create a dichotomous version of it as our second response variable, which reflects whether a given participant has a quality of

life score higher than the median score. Since some of the assessments in the CAPS-19 index are health-related and treatments of
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cardiovascular diseases would have a great impact on the well-being of the patients,33 the correlation between the quality of life

score and the risk of cardiovascular diseases thus should not be neglected. Besides the two response variables described above,

the social isolation score, loneliness score, and age are used as predictors in our study to construct single indices to predict the

response variables. The social isolation score is adapted from the index of social isolation developed by Shankar et al.34 The

index assigns one point for each of the following five items: living alone; less than monthly face-to-face, telephone, or written/e-

mail contact with children outside the household; less than monthly contact with other relatives outside the household; less than

monthly contact with friends; and not participating in any organizations, religious groups, or committees. Therefore, it ranges

from 0 to 5 with a higher score indicating a greater social isolation. The loneliness score is constructed based on the University of

California, Los Angeles (UCLA) three-item loneliness scale, which covers the frequency and intensity of loneliness feelings.35

Particularly, the three items are: “How often do you feel you lack companionship?”, “How often do you feel left out?”, and

“How often do you feel isolated from others?”. For each question, participants can answer “hardly ever or never” (score of 1),

“some of the time” (score of 2), or “often” (score of 3). Thus, a total score ranges from 3 to 9, with a higher value indicating a

greater level of loneliness.

Because the measurements of interest inWave 2-7 of ELSA are quite complete and the ones in other waves have many missing

values, we consider a dataset that containsM = 746 participants with m = 6 observation times each. For the ith participant,

Yij1 and Yij2 denote the binary observations of the cardiovascular disease status and the indicator whether the participant has a

higher-than-median quality of life score, respectively, at the jth observation time, for each i and j. Similarly,Xij1,Xij2 andXij3

denote the age, loneliness score, and isolation score, respectively, of the ith participant at the jth observation time. The three

predictors are then standardized to have mean 0 and variance 1 so that a more intuitive interpretation of the index coefficients

can be made.

Then, Model (1) is fitted. From the fitted model, we find that there are 5 subjects whose fitted values of the single-indices are

far away from the fitted single-indices of other subjects. Thus, the observed data of these 5 subjects are deleted since they are

potentially the “influential points” (cf., Cook andWeisberg36) for estimating the link functions.Model (1) is then re-fitted, and the

estimated index coefficients and their standard errors (SEs) that are computed based on a bootstrap procedure with 200 bootstrap

samples are presented in Table 4. The two left panels of Figure 4 show the estimated link functions, and the two right panels

show the estimated subject-specific probabilities of developing cardiovascular diseases and having a larger-than-median quality

of life scores, respectively, as a function of the estimated single indices. In the two right panels, the observed response values are

also presented by little circles. From the two top panels of the figure, it can be seen that  ̂1(⋅) is almost a linear function of the

first single-index with a positive slope when the first single-index takes values in [−1.5, 3]. Namely, when the first single-index

value ranges from −1.5 to 3, we can see that a larger index value is associated with a higher risk of cardiovascular diseases and

the probability increases faster as the single-index value increases. From Table 4, only age has a significant relationship with the
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first single-index, since the mean estimated coefficient of age is more than 2 times of the SE. Accordingly, we conclude that when

the first single-index value belongs to [−1.5, 3], Age is positively associated with the likelihood of cardiovascular diseases and

the impact of the loneliness score and the isolation score is small. When the first single-index takes the values between −3 and

−1.5, however, we observe a non-linear relationship between  ̂1(⋅) and the single-index. While additional analyses and careful

interpretations should be made in such cases, the subjects in this scenario have a very low risk of developing cardiovascular

diseases. From the two bottom panels of Figure 4, we can see that  ̂2(⋅) is almost linear with a negative slope when the second

single-index takes its value in [−1, 4]. This implies that a participant with a smaller value of the second single index would

have a larger chance to have a greater-than-median quality of life score. The fluctuation of  ̂2(⋅) when the second single-index

values are from 4 to 6 may be due to the limited observations with such single-index values. From the results in Table 4, both

the loneliness score and the isolation score have positive and significant index coefficients while age does not have a significant

index coefficient. Therefore, based on the overall trend of  ̂2(⋅), we can conclude that both the loneliness score and the isolation

score have negative association with the likelihood of greater-than-median quality of life score, the loneliness score has a greater

impact on the likelihood between the two score types, and age does not have a significant impact on the likelihood.

[Table 4 about here]

[Figure 4 about here]

5 CONCLUDING REMARKS

In the previous sections, we have introduced a multivariate single-index longitudinal logistic regression model for analyzing

longitudinal data with multiple binary response variables. It has been confirmed by theoretical justifications and numerical

studies that the proposed method can provide an effective analytic tool for solving the related problem.

It should be pointed out that the proposed method can be generalized in several directions. For instance, more complicated

forms of random effects (e.g., random intercepts plus random slopes over time) can be used in Model (1). In this paper, all

response variables are assumed to be binary. Actually, cases with a mixture of different types of response variables (e.g., some

response variables are continuous while some others take binary or count values) are possible in practice, and they can be handled

in a similar way to that discussed in the paper by using different linkage functions for the means of different response variables.

In addition, the proposed method still has some issues to address. First, while the estimation of the link functions is separated

from the procedure for generating the posterior samples of the random effects in our EM algorithm (cf., the related discussion in

Section 2), other more efficient sampling procedure used in the estimation of GLMM might be possible to refine the proposed

method. Second, since the random effects in Model (1) introduce the within-subject correlation for the logit transformation of
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the mean response variables, we can only make subject-specific interpretation of the single-indices. In addition, there could be a

large number predictors in some applications. Thus, variable selection and other issues related to high-dimensional data should

be addressed. All these research problems require much future research.
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Table 1 Bias, variance (VAR) and MSE values of the parameter estimates when m = 5 and M = 50, 100, or 200. The true
parameter values are �11 = 0.7071, �12 = −0.7071, �13 = 0, �21 = 0.5345, �22 = 0.2673, �23 = 0.8018, �11 = 1,
�12 = 0.5, and �22 = 1.

M = 50 M = 100 M = 200

Parameter Bias Var MSE Bias Var MSE Bias Var MSE
�11 -0.0210 0.0264 0.0268 -0.0147 0.0159 0.0162 -0.0023 0.0044 0.0044
�12 0.0308 0.0183 0.0192 0.0162 0.0122 0.0125 0.0090 0.0042 0.0043
�13 0.0021 0.0276 0.0276 0.0022 0.0153 0.0153 0.0017 0.0073 0.0073
�21 -0.0693 0.0607 0.0655 -0.0351 0.0287 0.0299 -0.0150 0.0102 0.0104
�22 0.0003 0.0327 0.0327 -0.0024 0.0117 0.0117 -0.0047 0.0050 0.0050
�23 -0.0313 0.0255 0.0265 -0.0104 0.0140 0.0141 -0.0013 0.0053 0.0053
�11 0.1094 0.3631 0.3750 0.0222 0.1050 0.1055 -0.0197 0.0554 0.0558
�12 -0.0247 0.1183 0.1189 -0.0522 0.0437 0.0464 -0.0275 0.0272 0.0279
�22 -0.0641 0.2158 0.2199 -0.1299 0.1077 0.1245 -0.0712 0.0637 0.0688

Table 2 Bias, variance (VAR) and MSE values of the parameter estimates when m = 10 and M = 50, 100, or 200. The true
parameter values are �11 = 0.7071, �12 = −0.7071, �13 = 0, �21 = 0.5345, �22 = 0.2673, �23 = 0.8018, �11 = 1,
�12 = 0.5, and �22 = 1.

M = 50 M = 100 M = 200

Parameter Bias Var MSE Bias Var MSE Bias Var MSE
�11 -0.0124 0.0148 0.0150 0.0078 0.0045 0.0046 -0.0073 0.0029 0.0029
�12 0.0158 0.0108 0.0111 0.0200 0.0042 0.0046 -0.0002 0.0027 0.0027
�13 -0.0113 0.0140 0.0141 -0.0037 0.0082 0.0083 0.0031 0.0045 0.0045
�21 -0.0379 0.0379 0.0393 -0.0246 0.0143 0.0149 -0.0063 0.0063 0.0064
�22 -0.0045 0.0124 0.0125 -0.0062 0.0053 0.0053 -0.0009 0.0027 0.0027
�23 -0.0136 0.0130 0.0132 0.0026 0.0053 0.0053 -0.0029 0.0029 0.0030
�11 0.0364 0.1516 0.1529 -0.0259 0.0560 0.0566 0.0020 0.0420 0.0420
�12 -0.0346 0.0667 0.0679 -0.0293 0.0320 0.0328 -0.0204 0.0157 0.0161
�22 -0.0343 0.1354 0.1366 -0.0430 0.0678 0.0696 -0.0498 0.0335 0.0360
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Figure 1 Histograms for the estimates of �11 whenM and m change. The true value of �11 is labeled by the dashed vertical line.
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Figure 2 In each plot, the black solid line denotes the true link function  1, the gray dashed line denotes its pointwise esti-
mate, and the black dashed lines denote the 95% pointwise confidence interval. The results are based on 200 repeated
simulations.

0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

 

M = 50, m = 5

Index 1

ψ̂
1

0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

 

M = 50, m = 10

Index 1
ψ̂

1

0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

 

M = 100, m = 5

Index 1

ψ̂
1

0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

 

M = 100, m = 10

Index 1

ψ̂
1

0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

 

M = 200, m = 5

Index 1

ψ̂
1

0.0 0.5 1.0

−
3

−
2

−
1

0
1

2
3

 

M = 200, m = 10

Index 1

ψ̂
1



TIAN AND QIU 23

Figure 3 In each plot, the black solid line denotes the true link function  2, the gray dashed line denotes its pointwise esti-
mate, and the black dashed lines denote the 95% pointwise confidence interval. The results are based on 200 repeated
simulations.
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Table 3 Numbers presented in the table are
∑3
p=1(�̂kp − �kp)2, for k = 1 and 2, which are computed based on 200 repeated

simulations in various cases considered. The smallest value obtained by the three methods in each case is presented in
bold.

rMAVE EFM PROPOSED

Scenario M m �1 �2 �1 �2 �1 �2

1

50 5 0.1556 0.1975 0.0828 0.1892 0.1575 0.1984
10 0.0572 0.0891 0.0455 0.0843 0.0594 0.0942

100 5 0.0486 0.0471 0.0361 0.0463 0.0490 0.0536
10 0.0169 0.0192 0.0224 0.0181 0.0189 0.0202

200 5 0.0189 0.0317 0.0205 0.0300 0.0196 0.0311
10 0.0095 0.0101 0.0096 0.0098 0.0097 0.0121

2

50 5 0.1875 0.3856 0.1689 0.3660 0.1663 0.3168
10 0.0599 0.1133 0.0604 0.1031 0.0593 0.0940

100 5 0.1033 0.1022 0.0947 0.0972 0.0866 0.0928
10 0.0263 0.0235 0.0324 0.0215 0.0236 0.0203

200 5 0.0550 0.0294 0.0524 0.0271 0.0476 0.0261
10 0.0130 0.0124 0.0214 0.0114 0.0125 0.0138

3

50 5 0.2258 0.3652 0.2228 0.3352 0.2141 0.3404
10 0.0501 0.1105 0.0586 0.1091 0.0442 0.0986

100 5 0.1013 0.0740 0.0926 0.0734 0.0898 0.0670
10 0.0337 0.0507 0.0292 0.0458 0.0278 0.0435

200 5 0.0280 0.0293 0.0256 0.0276 0.0240 0.0256
10 0.0160 0.0145 0.0245 0.0136 0.0137 0.0116

Table 4 Estimated index coefficients and their standard errors (in parentheses) computed by a bootstrap procedure with 200
bootstrap samples. The two response variables are the status of cardiovascular diseases (CVD) and an indicator whether
a participant has a larger-than-median quality of life score (HQOL).

Responses Age Loneliness score Isolation score
Status of CVD 0.9946 (0.1382) -0.0908 (0.1446) -0.0494 (0.0290)

Indicator of HQOL 0.0952 (0.0930) 0.9278 (0.1042) 0.3608 (0.0512)



TIAN AND QIU 25

Figure 4 Estimated link functions  ̂1 and  ̂2 (left panels), and estimated probabilities of having cardiovascular diseases or a
higher-than-median quality of life score (right panels). The observed binary response values are shown by the small
circles in the two right panels.

−3 −2 −1 0 1 2 3

−
4

−
3

−
2

−
1

0

Cardiovascular disease score

Index 1

ψ̂
1

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Risk of cardiovascular disease

Index 1

P
ro

ba
bi

lit
y

0 2 4 6

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

1.
5

Quality of life score

Index 2

ψ̂
2

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Risk of higher quality of life

Index 2

P
ro

ba
bi

lit
y


	Generalized single index modeling of longitudinal data with multiple binary responses
	Abstract
	Introduction
	Proposed Methodology
	Model specification
	Monte Carlo EM algorithm for estimating model parameters
	Estimation of k()

	Simulation study
	Finite-sample performance of the proposed method
	Method comparison

	Case Study
	Concluding Remarks
	Acknowledgments
	Supporting Information
	Conflict of interest
	Data Availability Statement
	References


