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Abstract

In practical applications of statistical process control (SPC), the assumption of data inde-
pendence among serial process observations is often unrealistic. In the SPC literature, it has
been well demonstrated that control charts ignoring the serial data correlation would be unre-
liable to use. Thus, it is important to develop control charts that can accommodate serial data
correlation properly. To this end, one approach is to decorrelate the observed data properly be-
fore a control chart is used. However, the related computing burden would be too heavy to be
practically feasible if the observed data at the current observation time need to be decorrelated
with all previous data. With a cumulative sum (CUSUM) chart, its restarting mechanism has
been found helpful to reduce the computing burden substantially by ignoring the observed data
collected before the previous restarting time. In many applications, e.g., those with unequally
spaced observation times, exponentially weighted moving average (EWMA) charts are often
preferred since construction of their charting statistics can accommodate the unequally spaced
observation times well. But, conventional EWMA charts do not have the restarting mechanism,
and thus are difficult to use in cases with serially correlated data. To address this issue, a mod-
ified EWMA chart is considered in this paper to include the restarting mechanism in the chart.
Numerical studies confirm that the computing time using the modified EWMA chart is dramat-
ically reduced for monitoring serially correlated data while its process monitoring performance

is little compromised.
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1 Introduction

Statistical process control (SPC) charts have been used broadly in practice for online monitoring
of sequential processes (Hawkins and Olwell, 1998; Montgomery, 2019; Qiu, 2014). Traditional
SPC charts, such as the cumulative sum (CUSUM) and exponentially weighted moving average
(EWMA) charts, assume that the in-control (IC) process observations at different time points are
independent. While this assumption might be (approximately) valid in the manufacturing industry,
they are rarely valid in environmental monitoring, disease surveillance, and many other applications
where serial correlation among the observed data is often non-negligible. This paper focuses on
online monitoring of processes with serially correlated data.

In the existing literature, there have been some discussions on process monitoring of serially
correlated data. In the case of monitoring univariate continuous processes, a number of methods
have been developed based on parametric time series models and sequential monitoring of the
resulting residuals, or on adjustment of the control limits of the conventional control charts (cf.,
Apley and Tsung, 2002; Capizzi and Masarotto, 2008; Kim et al., 2007; Lee and Apley, 2011;
Runger and Willemain, 1995; Zhang, 1998). Qiu et al. (2020) proposed a method for monitoring
processes with stationary and short-ranged serial correlation without using parametric time series
models. That method decorrelated the observed data first, and then applied a CUSUM chart to
the decorrelated data. To reduce computing burden and data storage requirement, the restarting
mechanism of the CUSUM chart was used by ignoring all observations collected before the previous
restarting time when decorrelating the observed data at the current time point with all previous
data. As demonstrated in You and Qiu (2019), another benefit to decorrelate the observed data
at the current time point with less previous data is that the following shift masking effect could
be substantially reduced. Since decorrelated data are typically linear combinations of the original

process observations, a process mean shift in the original observations would be attenuated in the



decorrelated data and the degree of attenuation could be reduced greatly if the current process
observations need to be decorrelated with a small amount of previous data only.

In practice, people often prefer to use the EWMA chart because it is relatively easy to devise,
i.e., setting up the mean, variance, asymptotic distribution, and control limit for the EWMA chart-
ing statistic, as compared to the CUSUM chart. In addition, in applications when the observation
times are unequally spaced, it has been found that the EWMA chart is relatively easy to be adapted
properly in its construction to accommodate the unequally spaced observation times (e.g., Qiu et al.,
2018; You and Qiu, 2020). However, when the conventional EWMA chart is used for monitoring
processes with correlated data, it could have the following difficulty. On one hand, the serial corre-
lation should be accommodated properly, and the results could be unreliable otherwise (cf., Apley
and Tsung, 2002; Runger and Willemain, 1995). On the other hand, the computing and data storage
demands would be prohibitive if the observed data at the current time need to be decorrelated with
all previous data, since the conventional EWMA chart does not have the restarting mechanism. In
the SPC literature, several modified versions of the EWMA chart have been suggested for solving
various SPC problems. For instance, Crowder and Hamilton (1992) developed a one-sided EWMA
chart for monitoring process standard deviation by resetting the EWMA statistic to zero whenever
it becomes negative, which is intuitively reasonable because the process standard deviation cannot
be negative. A similar modified EWMA chart was discussed in Gan (1998) for monitoring the in-
cidence rate of some rare events. However, it has not been studied carefully how the EWMA chart
can be modified properly for monitoring processes with correlated data so that the computing time
and data storage demand are both manageable while the performance of the modified EWMA chart
is not substantially sacrificed. Because the observed data of most processes in practice are serially
correlated, this problem is important, although it has not been addressed carefully yet.

In this paper, we study the performance of a modified EWMA chart equipped with the restart-

ing mechanism for monitoring processes with serially correlated observations. Before the modified



chart is used, the observed data at the current time point need to be decorrelated with all previous
data collected after the previous restarting time. Because the time length from the previous restart-
ing time to the current time, which is called sprint length in Chatterjee and Qiu (2009) for a CUSUM
chart, is usually a single-digit integer, the computing time and data storage demand would be both
small for such data decorrelation. Numerical studies show that the performance of the modified
EWMA chart would not be sacrificed much for the inclusion of the restarting mechanism compared
to the conventional EWMA chart used after the current data are decorrelated with all previous data,
while the computing time of the former is negligible compared to that of the latter.

The remainder of the paper is organized as follows. Section 2 describes the modified EWMA
chart in detail. Some simulation results to evaluate its performance in comparison with some alter-
native control charts are presented in Section 3. A real-data example for demonstrating the modified
EWMA chart is discussed Section 4. Several concluding remarks are given in Section 5. A few extra

numerical results are provided in Appendix.

2 Methodology

2.1 Modified EWMA Chart with Restarting Mechanism for Monitoring Correlated

Data

Assume that { X, X», ..., X;} are process observations collected up to the current observation time
¢ for process monitoring. Then, the traditional EWMA charting statistic for the task of monitoring

process mean shifts is defined to be

Xi—p

EX,i = A + (1 — )\)EX,ifla forz > 1, (D)

where Exog = 0, A € (0,1] is a weighting parameter, p is the IC process mean, and o is the

IC process standard deviation. In cases when the IC process distribution is normal and process



observations are independent at different observation times, it is easy to check that the asymptotic
distribution of Ex; is N(0,A/(2 — A)). Therefore, to detect an upward process mean shift, the
EWMA chart gives a signal when

Ex; > p1, ()

where p; > 0 is a control limit chosen to achieve a pre-specified IC ARL (ARLg) value. The chart
for detecting a downward or arbitrary mean shift can be defined in a similar way.

Motivated by scenarios for monitoring quantities with special ranges (e.g., process standard
deviation in the range [0, c0)), a modified version of the one-sided EWMA chart (1)-(2) with a
restarting mechanism has been proposed in the literature (cf., Crowder and Hamilton, 1992; Gan,

1998). Its charting statistic is defined to be

Xi—p
g

E;E,i = max {0, A + (1 — )\)E)_‘E,i—l — k‘} , fori > 1, (3)

where E;g 0 =0, A is similar to the one in Expression (1), and £ > 0 is similar to the allowance

parameter in the conventional CUSUM chart. A signal of an upward mean shift is given when
Ex;> p2, @

where pa > 0 is a control limit. In (3), the charting statistic E;gz is reset to 0 each time when
MNX; —p))o+(1— A)E)Jg,i—1 < k, indicating that the updated EWMA statistic at time ¢ is small
since k is usually chosen small. This is the restarting mechanism discussed in the literature (cf.,
Qiu 2014, Chapter 4).

While the control charts (1)-(2) and (3)-(4) are designed for monitoring processes with indepen-
dent data, it has been well demonstrated in the literature that their performance would be unreliable
in cases when processes observations are serially correlated (e.g., Qiu 2014, Chapter 5). To address
this issue, one solution is to decorrelate the observation at the current time point with all previous

data and then monitor the decorrelated data with the control charts. However, the heavy burden of



computing time and data storage demand would make this approach infeasible as the observation
time ¢ increases. To overcome this difficulty, we suggest incorporating the concept of sprint length
into data decorrelation for online process monitoring. This idea was first discussed in Chatterjee
and Qiu (2009) and has been applied to different versions of the CUSUM chart (cf., Li and Qiu,
2020; Qiu et al., 2020; You and Qiu, 2019; Qiu and Xie, 2022). At the current observation time 7,
the sprint length Sy ; of the chart (3)-(4) is defined to be

0, ifEY, =0,
Sx;=

)

s, fEY;, ;=0,E%; 1 #0,...,Ex, #0,

where 1 < s < iis an integer. Clearly, Sx ; is the number of observation times from the previous
restarting time to the current time %, and the charting statistic E;gl at the current time 7 depends
on the previous Sx ;_1 observations only. Because the process observations collected before the
previous restarting time do not contain much evidence for an upward mean shift and have been
ignored in subsequent process monitoring, the current observation X; only needs to be decorrelated
with its previous Sx ;1 observations collected after the previous restarting time.

In the proposed modified EWMA chart, its sprint length is defined based on its charting statistic
values which in turn are calculated from the decorrelated data. The related quantities are defined

below.

e When i = 1, set Sx+ o = 0 and define the standardized observation to be

X7 = (X1 —p)/Vou,

where Sx~ ; denotes the sprint length at j, for j > 0, and 011 = var(X1) is the IC variance.

Then, the charting statistic is defined to be

Ex.; = max {0, \X] — k}, (5)



where A € (0, 1] is the weighting parameter and k > 0 is the allowance constant. If E, | =

0, then define Sx« 1 = 0. Otherwise, define Sx+« 1 = 1.

When i > 2, the following two cases are considered. If Sx«;_; = 0, then X is defined to

be the standardized version of X;. Namely,

where 0j; = var(X;) is the IC variance. If Sx+ ;1 > 0, then we need to decorrelate X; with
Sx+,i—1 previous observations. To this end, let Z; = (X;_g,. . | — fy ..., Xio1 — 1, X; —

1), The covariance matrix of Z; can be written as

Yi1,i-1 Vio1,
i = )
T .
Vz'—l,z' Oii
where V1 ; = (O’i_sx*ﬂ,il’i, .y 0i-1,)" ,and oy = cov(X, X;), forj = i—Sx+i1,...,i—

1. By the Cholesky decomposition of X; ;, we have
®,3,,®] =D,

where ®; is a lower-triangular matrix such that

®; 0 1 0
@i = Wlth @1 = 5
_Vz'Tfl,izi_fll,ifl 1 _‘71201_11 1
and D; is a diagonal matrix of (d? ¢~ ,...,d?) withd? = oy = VL | ;57 Vi,

Then, the transformed observation at time ¢ is defined to be

Xi—p—V] 2;11,1'712@'*1

—14 .
X = Kl , fori > 2,
di
and {X g .~ ...., X[} is aseries of decorrelated observations each of which has mean

0 and variance 1. In the above data decorrelation process, most computation is involved in



calculating 2;_11’1-_1. To reduce the computing burden, Li and Qiu (2016) suggested using

the following Woodbury formula for recursive computation:

-1 -1 o dT2vT
2172,172 + 2i72,i72vl—271—1di71V'

-1 -1 o -2
1—2,1'—12@'72,@'72 _Eif2,if2vl—2ﬂ—1di71

-1 .
2i—1,i—1 =
-2 T -1 -2

_diqvi—z,z‘—lzpzpz d; %y

You and Qiu (2019) suggested an alternative data decorrelation algorithm, which was shown

faster than the algorithm described above.

The charting statistic of the proposed modified EWMA chart is then defined to be
Bf., = max {0, AX? 4 (1= NEf, — k} : 6)

where A\ and k are similar to those in Equation (3). If ET. ; = 0, then define Sx+; = 0.

Otherwise, define Sx+; = Sx=;—1 + 1.

The proposed modified EWMA chart with the charting statistic defined in Equations (5) and (6)

gives a signal of an upward mean shift when
E{..>p, fori > 1, (7)

where p > 0 is a control limit. Control charts for detecting downward or arbitrary mean shifts can

be constructed similarly.

2.2 Monitoring Processes with Unequally Spaced Observation Times

In Section 2.1, observation times are assumed to be equally spaced, which is the default assumption
in the conventional SPC literature. In practice, observation times could be unequally spaced (e.g.,
times of clinic visits of a patient). To monitor a process with unequally spaced observation times,
the proposed EWMA chart can be modified easily to incorporate that feature of the observation
times. Specifically, let { X;,7 > 1} be the process to monitor with the observation times {¢;,7 > 1}.

Define w > 0 to be a basic time unit (Qiu 2024, Chapter 4) that all observation times {¢;,7 > 1}



are its integer multiples. Then, we have {t; = n,w, for i > 1}, where n; is the ith observation time
in the basic time unit w. At the current time point ¢;, the charting statistic of the modified version

of the EWMA chart is defined to be
Y., = max {O,A(ti)Xi* + (1= At)Efe ) — k:} : )

where Ef. , = 0, A(t;) = 1 — (1 = M)A, A = E(A;), A; = n; — ni_1, A and k are tuning

parameters similar to those in Equation (3), and

Ati—1) )
Alt;) = , fori > 2.
R TV Yy M
The chart gives a signal of an upward mean shift when
Eg.i>p, )

where p > 0 is a control limit. Here, {X,7 > 1} are obtained recursively through a standardiza-
tion and decorrelation procedure similar to the one discussed in Section 2.1, where the restarting
mechanism of E;g* ; affects the update of the sprint length Sx+ ; and X. In the special case when
t; = ¢ forall 7 > 1 and w = 1, it can be checked that the control chart (8)-(9) is the same as the
control chart (5)-(7).

In comparison, it is quite difficult to make modifications similar to the one described above for a
CUSUM chart to accommodate unequally spaced observation times. In Section 3.3, it will be shown
numerically that the proposed chart (8)-(9) could be more effective than a one-sided CUSUM chart
for monitoring the standardized and decorrelated process observations in detecting upward mean
shifts when observation times are unequally spaced.

As discussed in Qiu and Xiang (2014), the commonly used performance measure ARL would
be inappropriate to use when the observation times are unequally spaced. The average time to signal

(ATS) in the basic time unit of w should be more appropriate to use in such cases.



2.3 Control Limit Determination

In the control chart (5)-(7), the smoothing parameter A and the allowance parameter k are usually
pre-specified but the control limit p should be chosen properly to reach a pre-specified ARLq or IC
ATS (AT'Sy) level. To this end, because the restarting mechanism is used in the construction of the
chart and the current observation is decorrelated with all observations within the sprint length of the
current observation time only, the control limit obtained for the conventional EWMA chart (1)-(2)
cannot be used here. Instead, it should be computed in advance using Monte Carlo simulations.
For all numerical examples presented in Section 3, it is determined in the following way. Using
cases with equally spaced observation times as an example, for a given p value, we run 10, 000
replicated simulations of online process monitoring by the chart (5)-(7). For each simulation run,
the run length value is recorded. Then, the ARL( value is estimated by the sample mean of the
10, 000 run length values. The control limit p can then be searched by a bisection algorithm or an
alternative stochastic searching algorithm, as discussed in Capizzi and Masarotto (2016), so that
the pre-specified ARLg level is achieved. For cases with unequally-spaced observation times, the
control limit can be chosen in a similar way based on simulations of online process monitoring by
the chart (8)-(9).

Obviously, the proposed control charts (5)-(7) and (8)-(9) can be used similarly in cases when
the IC distribution is unknown and some IC parameters need to be estimated from an IC data. For
example, as shown in Qiu et al. (2020) and Li and Qiu (2020), moment estimation can be used to
estimate the IC mean, variance, and correlations, and the control limit of the related chart can be
determined from the IC data by a bootstrap procedure. In addition, the self-starting version of the

proposed control chart can be constructed in a similar way as that discussed in Li and Qiu (2020).
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3 Simulation Studies

In this section, we first evaluate the numerical performance of the proposed modified EWMA chart
(5)-(7) for online process monitoring of correlated data with equally spaced observation times.
For the chart (5)-(7), we consider two versions. The first version is the one when k is chosen to
be 0 so that the resulting chart only involves the weighting parameter A and the control limit p
and becomes much more convenient to use. This version is denoted as EWMA-RS1, where “RS”
denotes “restarting”. The second version allows a positive value for k and is denoted as EWMA-
RS2. This version is more complex than EWMA-RS1 since one more procedure parameter k should
be specified in its chart design. For comparison purposes, the conventional EWMA chart (1)-(2)
that is applied to the original observed data is considered, which is denoted as EWMA-OR, where
“OR” denotes “original”. The one-sided EWMA chart (3)-(4) with £k = 0 that is applied to the
original observed data is also considered and denoted as EWMA-RSOR. In cases when the observed
data are serially correlated, these charts have been shown to be unreliable (cf., Qiu 2014, Chapter
5). Another competing chart considered in this section is the conventional EWMA chart (1)-(2)
that is applied to the fully decorrelated data (i.e., the current observation is decorrelated with all
previous observations), which is denoted as EWMA-FD. This chart should be the most effective
one among the five charts described above, but its computing burden would be heavy. Additionally,
we consider two alternative approaches for monitoring serially correlated data: The first approach
is the modified EWMA chart suggested by Zhang (1998) denoted as EWMA-Z, which accounts
for the data autocorrelation by adjusting the control limits. This control chart assumes stationary
autocorrelation in the process observations. While the charting statistics of EWMA-Z is updated in

the same way as EWMA-OR, the chart gives a signal when E'x ; > ogp1, where

M .
0% = (0) x 1+2;§§{)§<1—A>i{1—<1—A>2<M-J‘>} |
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v(j) = cov(X;, Xi4;) fori > 1and 0 < j < M, and M > 0 is a pre-specified integer and
chosen to be 25 through the simulation studies as suggested by the author. The second approach is
a residual-based chart, denoted as EWMA-AR(1). Particularly, it is assumed that the observed data
follow the AR(1) model with mean 0, variance 1, and autoregressive coefficient 0.5. Based on these
assumptions, the residuals of the AR(1) model can be computed, and the EWMA-OR chart is then
applied to the computed residuals for online process monitoring.

The following six cases are considered in the simulation studies regarding the serial data corre-

lation:

e Case 1 IC process observations are i.i.d. with the IC process distribution N (0, 1).

e Case 2 IC process observations follow the AR(1) model X; = 0.5X;_1 +¢;, for¢ > 1, where

Xo = 0and {¢;} are i.i.d. with the common distribution N (0, 1).

e Case 3 IC process observations follow the AR(1) model X; = 0.8X,;_1 +¢;, fort > 1, where

Xo = 0and {g;} are i.i.d. with the common distribution N (0, 1).

e Case 4 IC process observations follow the MA(2) model Xy = 0, X1 = €1, X5 = €2+ 0.5¢;
and X; = £;+0.5¢;_140.5¢;_9, fori > 3, where {¢;} are i.i.d. with the common distribution

N(0,1).

e Case 5 IC process observations follow the ARMA(2,1) model X; = 0.3X;-1 + 0.2X;_2 +
0.2e;_1 +¢;, fori > 2, where Xy = X; = 0 and {¢;} are i.i.d. with the common distribution

N(0,1).

e Case 6 IC process observations follow the model X; = 0.5Y; + ¢;, for ¢ > 1, where {¢;}

are i.i.d. with the common distribution N (0, 1), and {Y;,7 > 1} is a two-state Markov point

12



process with the states {0, 1}, the initial state 0, and the transition matrix

0.8 0.2

0.2 0.8
In each of the above 6 cases, IC process observations are always standardized to have the IC process
mean O and IC process standard deviation 1. It can be seen that Case 1 represents the scenario in
which all the model assumptions required by the conventional EWMA charts (1)-(2) are satisfied.
Process observations in Cases 2 and 3 contain intermediate and strong serial data correlation, re-
spectively, through the AR(1) models. Process observations in Case 4 contains short-range serial
data correlation introduced by the MA(2) model. Serial data correlation in Case 5 is more compli-
cated than that in Cases 2 to 4, and the one in Case 6 cannot be described by a conventional time

series model.

3.1 IC performance and computing time

We first compare the IC performance of the seven control charts EWMA-RS1, EWMA-RS2, EWMA-
OR, EWMA-RSOR, EWMA-Z, EWMA-AR(1), and EWMA-FD in different cases of serial data
correlation. In the comparison, the nominal ARLy is fixed at 200 for each chart. The actual AR L
of each chart is computed as follows. First, the ARLq value is calculated by averaging the run
length values obtained from 10, 000 replicated simulation runs of online process monitoring. In
each simulation run, a total of 2,000 process observations are monitored. If a given chart does not
give any signal in a simulation run, then that run would be discarded when computing the AR L
value. In different cases considered, only less than 1% processes were actually discarded because
of no signals by the 2,000th process observation. Thus, it should be sufficient for the simulation
studies to specify the maximum run length to be 2, 000, which is 10 times the nominal AR L value.
Table 1 presents the calculated actual AR L values and their standard errors (in parentheses) of the

seven charts in all cases considered. The smoothing parameter A in all charts is set to be the same
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and takes the value in {0.05,0.1,0.2,0.5}. The allowance constant k¥ in EWMA-RS?2 takes the
value of 0.005 or 0.01. From the table, it can be seen that the charts EWMA-OR and EWMA-
RSOR have reliable IC performances in Case 1 only, and their actual ARLq values in all other
cases are quite far away from the nominal AR L value of 200 as expected, since they ignores the
serial correlation in these cases. EWMA-Z has reliable IC performance in Cases 1 and 6 only when
no or weak serial data correlation is present. EWMA-AR(1) has reliable IC performance in Cases
2 and 4 only when the assumed time series model is either correct or close to the true model. As
a comparison, all the other three charts EWMA-FD, EWMA-RS1 and EWMA-RS?2 have reliable
IC performances in all cases considered, since they all handle the serial data correlation properly in
online process monitoring. The control limits of the control charts in all cases considered in Table 1
are presented in Table A.1 in the appendix. Table A.2 in the appendix presents the calculated actual
ARLg values of EWMA-RS2 when k take the value in {0.05,0.1,0.2,0.5}. It can be seen from
that table that EWMA-RS?2 has a reliable IC performance in those cases as well.

Next, we compare the computing time of the charts EWMA-FD, EWMA-RS1 and EWMA-RS2
in Cases 2-6 when process observations are serially correlated. The charts EWMA-OR, EWMA-
RSOR, EWMA-Z and EWMA-AR(1) are excluded here since their actual ARLg values are sub-
stantially smaller or greater than the nominal ARLq value of 200 in these cases and thus their
computing times are not comparable with those of the other three charts. The computing times of
the charts EWMA-FD, EWMA-RS1 and EWMA-RS2 for computing their AR L values, scaled by
the function log(x + 1), are presented in Figure 1. The original computing times are also presented
in Table A.3 in Appendix. From the figure and the table, it can be seen that the proposed EWMA
chart (5)-(7) takes dramatically less computing time compared to the EWMA-FD chart that decor-
relates the process observation at the current time point with all previous observations. Therefore,
the restarting mechanism introduced to this chart does help reduce the computing time. Note that

EWMA-RSI is the same as EWMA-RS2 when k£ = 0. From Figure 1 and Table A.3, it can be
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Table 1: Calculated actual ARLg values and their standard errors (in the parentheses) of different
control charts under different cases of serial data correlation. The nominal ARL value of each

chart is 200.

EWMA-RS2

Cases A EWMA-OR EWMA-RSOR EWMA-Z EWMA-AR(1) EWMA-FD EWMA-RSI f )
: = 0.005 : =0.01

0.05 201.09(1.98) 200.69 (1.88) 201.09(1.98) 704.05(5.25) 201.09 (1.98) 200.69 (1.88) 201.02(1.93) 199.83 (1.95)
0.10 198.98 (1.94) 19751 (1.91) 19898 (1.94) 758.11(5.42) 198.98(1.94) 197.51 (1.91) 199.27 (1.94) 198.40 (1.93)
020 197.24(1.95) 20191 (2.00) 197.24(1.95) 639.84(5.05) 197.24(1.95) 201.91 (2.00) 20153 (2.00) 200.66 (1.99)
0.50 201.47(2.01) 197.94(1.97) 201.47(2.01) 178.66(1.78) 201.47 (2.01) 197.94 (1.97) 198.42(1.97) 198.07 (1.96)

0.05 80.40(0.82)  63.08 (0.56) 234.66 (2.27) 201.09(1.98) 201.55(1.98) 201.70 (1.90) 199.56 (1.91) 199.20 (1.97)
0.10 67.49(0.66) 57.06(0.52) 277.33 (2.67) 198.98(1.94) 199.31 (1.94) 199.21 (1.93) 198.31 (1.94) 197.15 (1.92)

2 020 61.18 (0.60)  57.82(0.55) 293.77 (2.87) 197.24(1.95) 197.38 (1.95) 198.56 (1.95) 197.76 (1.95) 197.28 (1.95)
050 76.23(0.75) 82.89(0.83) 281.28(2.73) 20147 (2.01) 201.88(2.01) 201.61 (2.01) 201.98 (2.02) 201.44 (2.01)
0.05 6242(0.67) 49.60 (0.45) 30347(2.86) 11250 (1.12) 201.95(1.98) 202.91 (1.93) 200.28 (1.93) 199.86 (1.96)
0.10 52.87(0.53)  47.67(044) 40243 (3.70) 110.12(1.06) 200.00 (1.94) 199.32(1.93) 200.50 (1.95) 198.52 (1.95)

> o0 50.70 (0.49) 5137 (0.49) 448.17 (4.03) 129.04 (1.26) 198.27 (1.95) 197.74(1.96) 196.91(1.97) 196.13 (1.96)
0.50 75.57(0.74)  83.92(0.82) 436.13(3.98) 307.96(2.99) 202.10(2.01) 201.38(2.01) 201.61 (2.01) 202.26 (2.02)
005 83.13(0.85) 6422(057) 22657(2.21) 22125(2.18) 201.50(1.98) 201.36(1.91) 200.62(1.92) 199.00 (1.95)
0.10 69.08(0.68)  57.20(0.52) 263.09(2.55) 217.33(2.13) 199.33(1.94) 199.60 (1.94) 198.89 (1.94) 198.77 (1.95)

* 020 6126 (0.60)  56.56(0.53) 281.73(2.76) 208.33(2.08) 197.48 (1.95) 198.65(1.95) 199.17 (1.95) 199.64 (1.96)
050 73.69(0.72)  79.37(0.78) 280.76 (2.76) 20457 (2.05) 201.89 (2.01) 201.73 (2.01) 201.90 (2.01) 201.36 (2.01)
0.05 7552(0.77)  59.54(0.51) 257.57(249) 162.81 (1.60) 204.02 (2.01) 199.96 (1.88) 199.26 (1.89) 198.37 (1.91)
0.10 64.14(0.62)  55.08(0.48) 312.12(2.97) 160.68 (1.53) 20221 (1.96) 197.08 (1.90) 197.29 (1.90) 196.37 (1.88)

> 020 58.15(0.54)  56.84(0.52) 331.65(3.12) 167.24(1.62) 199.52(1.92) 197.99 (1.90) 197.64 (1.89) 196.88 (1.88)
0.50 75.89(0.72)  83.42(0.79) 311.20(2.95) 217.85(2.13) 205.83 (2.00) 198.96(1.93) 198.58 (1.92) 198.37 (1.92)
0.05 173.66(1.72) 164.11 (1.51) 201.65(1.99) 62133 (4.92) 198.70 (1.96) 203.15(1.90) 202.49 (1.91) 204.47 (1.96)

. 0.10 167.12(1.64) 160.74 (1.53) 20347 (1.97) 68223 (5.17) 196.39 (1.91) 205.16 (1.94) 203.46 (1.94) 204.31 (1.95)

0.20 165.16 (1.60) 166.71 (1.61) 205.69 (1.99) 581.10(4.76) 198.33 (1.93) 203.07 (1.97) 203.77 (1.98) 204.53 (1.99)
0.50 179.27(1.78) 181.11(1.77) 208.51 (2.05) 181.08 (1.80) 203.91 (2.01) 199.76 (1.95) 203.10(1.99) 202.89 (1.99)
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seen that the computing time of EWMA-RS?2 is generally shorter when k is chosen larger, which is
intuitively reasonable because the charting statistics would be reset to 0 more frequently when £ is
larger. Thus, the sprint length would be shorter which leads to less data decorrelation. It can also
be seen from the figure that some computing times are missing in the plot when A is small and & is
chosen relatively large. Based on extensive numerical studies, we find that the pre-specified AR Lg
cannot be achieved in these cases for the following reason. While A controls the variability of the
charting statistics and k is related to a target shift, the charting statistics would be difficult to exceed
a control limit when A is small (or the charting statistic has a small variability) and k is chosen large
since the charting statistics are reset to 0 too often in such cases. In addition, the figure suggests

that the computing times of different charts do not change much in Cases 2-6.

3.2 Out-of-Control (OC) performance

Next, we study the OC performance of the seven related control charts in Cases 1-6. In each
case, a mean shift of size § is assumed to occur at the 51st time points, and § can change among
{0.3,0.6,0.9,1.2,1.5}. Then, the OC ARL (ARL) values of the charts are computed in the same
way as their ARL values, except that a simulation run with a signal before the occurrence of the
mean shift would be skipped in computing the related ARL; value. To make the comparison fair,
the control limits of all charts have been adjusted properly so that their actual ARLq values are all
equal to 200. In addition, for detecting a given shift, the minimum (or optimal) AR L1 values of the
charts are computed by changing their procedure parameter values. Otherwise, their ARL; values
may not be comparable when their procedure parameters are pre-specified (Qiu, 2008). To compute
the optimal ARL; value of the chart EWMA-RS?2 in a given case, the Nelder-Mead algorithm with
constraints (Luersen et al., 2004) should be helpful when searching for the minimum ARL; value
when both parameters A and k change.

Table 2 presents the optimal ARL; values of the seven charts in Cases 1-6 in the natural log
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Figure 1: Computing times of the charts EWMA-FD, EWMA-RS1 and EWMA-RS?2 for computing
their AR L values in Cases 2-6 with different choices of A and k. The vertical axis is scaled by the

function log(x + 1).
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scale. From the plots in the figure, we can have the following conclusions. i) In all cases considered,
the EWMA-OR, EWMA-Z, EWMA-AR(1) and EWMA-FD charts have very similar performance
while the EWMA-RSOR and EWMA-RS1 charts have very similar performance. However, from
Table 1, the charts EWMA-OR, EWMA-RSOR, EWMA-Z and EWMA-AR(1) would not be reli-
able to use in Cases 2-6 when there exists different types of serial data correlation. ii) In all cases
considered, either EWMA-FD or EWMA-RS2 has the smallest optimal ARL; values for detect-
ing most of the mean shift . EWMA-RS2 usually slightly outperforms other charts for detecting
moderate to large mean shift. iii) The difference among the charts EWMA-RS1, EWMA-RS2 and
EWMA-FD is small in all cases considered, especially in Case 1 when the IC process observations
are i.i.d. and normally distributed. In Cases 2-6 when serial data correlation is present, the charts
EWMA-RS1 and EWMA-RS?2 have a slightly worse performance compared to the chart EWMA-
FD for detecting small to moderate mean shifts.

The optimal values of A used in the chart EWMA-RSI1 and the optimal values of A\ and k used
in the chart EWMA-RS?2 in various cases considered in Table 2 are shown in Figure 2. From the
plots in the figure, it can be seen that the optimal value of A used in EWMA-RS1 increases when ¢
becomes larger, which is consistent with the guidelines for the design of the conventional EWMA
charts (Crowder, 1989). For the two parameters A and k£ used in EWMA-RS2, their optimal values
have more complex relationships with the shift size §, although they both have increasing trends
with J. From the figure, it seems that the optimal value of k£ used in EWMA-RS2 is close to 0 for
detecting small shifts (e.g., § < 0.5).

The zero-state optimal ARL; values (i.e., the values when the mean shift is assumed to occur
at the beginning of process monitoring) of the seven charts in all the cases considered in Table 2
are shown in Figure A.4 in Appendix. The related optimal values of A used in EWMA-RS1 and
the optimal values of A and & used in EWMA-RS2 are shown in Figure A.2 in Appendix. Similar

conclusions can be made from these results to those from the results in Table 2 and Figure 2.
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Table 2: Calculated optimal ARL4 values and their standard errors (in the parentheses) of different
control charts under different cases of serial data correlation. The nominal ARLg value of each
chart is 200. The smallest optimal ARL; value among the seven charts is highlighted in bold in

each case considered.

Cases 0 EWMA-OR EWMA-RSOR EWMA-Z EWMA-AR(l1) EWMA-FD EWMA-RS1 EWMA-RS2

03 29.43(0.22) 30.67(0.23) 29.43(0.22) 29.64(0.22) 29.43(0.22) 30.67(0.23) 30.64 (0.23)
0.6 13.43(0.09) 13.27(0.09) 13.43(0.09) 13.89(0.09) 13.43(0.09) 1327 (0.09) 13.25 (0.09)
1 09 7.90(0.05  7.77(0.05)  7.90(0.05)  8.35(0.05  7.90(0.05 7.77(0.05)  7.76 (0.05)
12 529(0.03) 519(0.03) 529(0.03) 567(0.03) 529(0.03) 5.19(0.03) 5.18(0.03)
1.5 3.88(0.02) 3.80(0.02)  3.88(0.02)  4.15(0.02) 3.88(0.02) 3.80(0.02) 3.7 (0.02)

0.3 47.96(0.40) 52.79 (0.44) 47.96 (0.40) 47.67 (0.40) 47.60 (0.40) 53.94 (0.44) 53.95 (0.44)
0.6 24.91(0.18) 25.18(0.19) 24.91(0.18) 24.86(0.18) 24.85(0.18) 25.89(0.20) 25.88 (0.20)
209 1505(0.11) 14.90(0.11) 15.05(0.11) 15.02(0.11) 15.04 (0.11) 15.31(0.11) 15.03 (0.11)
12 10.09(0.07) 10.01(0.07) 10.09(0.07)  10.07 (0.07)  10.07 (0.07) 10.23(0.08) 10.01 (0.07)
15 7.19(0.05  7.08(0.05  7.19(0.05  7.20(0.05)  7.20(0.05) 7.23(0.05  6.99 (0.05)

0.3 73.68(0.69) 81.75(0.75) 73.68 (0.69) 73.24 (0.69) 72.69 (0.69) 82.97 (0.77) 82.99 (0.78)
0.6 4022(0.34) 43.94(0.37) 40.22(0.34) 39.83(0.33) 39.30 (0.33) 44.34(0.39) 44.55(0.39)
309 27.01(023) 27.24(022) 27.01(023) 26.67(0.22) 25.82(0.21) 27.62(0.24) 27.37 (0.24)
12 18.09(0.15) 18.18(0.15) 18.09(0.15) 17.98(0.15) 17.85(0.15) 18.23(0.16) 18.18 (0.16)
15 1274 (0.12)  1271(0.12) 1274 (0.12)  12.66(0.12)  1252(0.12) 12.72(0.12) 12.72 (0.12)

0.3 4567(037) 5029 (0.41) 45.68(0.37) 45.46(0.37) 45.45(0.37) 51.14(0.41) 51.12(0.41)
0.6 2349(0.17) 2371(0.17) 2349(0.17) 2335(0.17) 23.43(0.17) 24.53(0.19) 24.50 (0.19)
4 09 14.18(0.10) 14.11(0.10) 14.18(0.10) 14.25(0.10) 14.20(0.10) 14.45(0.10) 14.25(0.10)
12 957(0.07)  9.52(0.07)  9.57(0.07)  9.59(0.07)  9.48(0.07) 9.68(0.07)  9.47 (0.07)
1.5 6.89(0.05) 679(0.05  6.89(0.05  6.88(0.05  6.82(0.05) 6.84(0.05  6.67(0.05)

0.3 53.54(047) 59.93(0.52) 53.54(047) 53.16(0.47) 52.87(0.46) 60.80(0.52) 60.78 (0.52)
0.6 28.87(0.22) 29.32(0.23) 28.87(0.22) 28.82(0.22) 28.83(0.22) 30.30(0.23) 30.31(0.23)
5 09 17.69(0.13) 17.59(0.13) 17.69 (0.13) 17.57(0.13)  17.62(0.13) 18.29 (0.14) 17.93 (0.14)
12 11.80(0.09) 11.70(0.09) 11.80(0.09) 11.73(0.09)  11.79 (0.09) 12.00(0.09) 11.69 (0.09)
1.5 833(0.06) 823(0.06) 833(0.06) 831(0.07) 833(0.06) 841(0.07)  8.09 (0.06)

03 32.39(0.24) 3274(025) 31.73(0.24) 32.01(0.24) 31.41(0.23) 3424 (0.28) 34.26 (0.28)
0.6 14.60(0.10) 14.57(0.10) 14.57(0.10)  15.03 (0.10)  14.59 (0.10) 14.70 (0.10) 14.59 (0.10)
6 09 848(0.05)  837(0.05)  851(0.05  8.85(0.06) 851(0.05 8.41(0.05  8.36(0.05)
12 563(0.03) 554(0.03) 570(0.04) 6.03(0.04) 566(0.03) 555(0.03) 5.53(0.03)
1.5 411(0.02)  4.02(0.02)  4.09(0.02)  442(0.03) 4.12(0.02) 4.03(0.02) 3.97(0.02)
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Figure 2: Optimal values of A used in EWMA-RS1 and optimal values of A and k£ used in EWMA-

RS2 in various cases considered in Figure 2.
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From the results presented in Sections 3.1 and 3.2, it can be seen that i) the charts EWMA-
OR and EWMA-RSOR are unreliable to use when the observed data are serially correlated (cf.,
Table 1), ii) all the charts EWMA-FD, EWMA-RS1 and EWMA-RS2 are reliable when monitoring
correlated data (cf., Table 1), but the computational demand of EWMA-FD is very heavy (cf,,
Figure 1), iii) the computational demands of EWMA-RS1 and EWMA-RS?2 are much less than that
of EWMA-FD (cf., Figure 1), and their OC performance is comparable to that of EWMA-FD (cf.,
Table 2), and iv) the OC performance of EWMA-RS1 and EWMA-RS2 is almost identical in all
cases considered (cf., Table 2). Based on these results, we suggest using the chart EWMA-RS1
for monitoring correlated data in practice, because it has only one parameter A to choose while

EWMA-RS?2 has two parameters A and & to choose.

3.3 Comparison with the CUSUM chart

In this subsection, we further compare the proposed control charts EWMA-RS1 and EWMA-RS2
with the one-sided version of the CUSUM chart discussed in Qiu et al. (2020) for monitoring
correlated data, which is denoted as CUSUM-RS. Specifically, the charting statistic of CUSUM-RS
is defined to be
.y = max {0, X; + CF.;y — b},

where k is the allowance parameter, C'x~ o = 0, and {X 5> 1} are the standardized and decor-
related process observations obtained by a procedure similar to the one discussed in Section 2.1.
The CUSUM-RS chart gives a signal of an upward mean shift when C’iﬂ- > h, where h > Oisa
control limit chosen by a Monte Carlo procedure similar to the one described in Section 2.3.

Observation times {t;,7 > 1} are assumed to be within the design interval [0, 2, 000]. The fol-
lowing two settings of observation times are considered: (i) observation times are just {1, 2, ...,2000}
(i.e., they are equally spaced); and (ii) observation times are defined recursively by ¢;41 = t; + W;,

for © > 1, until ¢; exceeds 2000, where W, = 1for1 < ¢ < 10, W; = 2 for 11 < ¢ < 20,
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.., Wi =k for 10(k — 1) + 1 < i < 10k. Thus, observation times are unequally spaced in the
second setting. Process observations are generated as discussed at the beginning of Section 3 in
Cases 1-3. Namely, they are i.i.d. and N (0, 1) distributed in Case 1, and follow the AR(1) model
with the parameter value to be 0.5 and 0.8, respectively, in Cases 2 and 3. With the basic time unit
chosen to be w = 1, the actual AT'S values of the related charts are computed in a way similar to
that for computing the ARL values in Sections 3.1 and 3.2. For all the charts, their nominal AT'Sy
values are fixed at 200. By the way, in Setting (ii) when the observation times are unequally spaced,
EWMA-RS1 and EWMA-RS?2 are constructed as discussed in Section 2.2.

Tables A.5 and A.6 in Appendix present the calculated actual AT'Sy values and their standard
errors of the control charts CUSUM-RS, EWMA-RS1 and EWMA-RS?2 in the two different settings
of the observation times, respectively, when the allowance constant k£ in CUSUM-RS is chosen to
be one of {0.25,0.5,0.75,1} and the parameters A and k in EWMA-RS1 and EWMA-RS?2 are
chosen in the same way as that in Table 1 and Table A.2. From the tables, it can be seen that all
three charts have reliable IC performance in all cases considered. The average computing times of
the three charts for computing their corresponding A7T'S; values are presented in Tables A.7 and
A.8 in Appendix, from which it can be seen that their computing times are comparable as well in
all cases considered.

Next, we compare the OC performance of the related charts. Table 3 presents their optimal
zero-state AT'S; values for both settings of the observation times in cases when the process mean
has a shift of size ¢ that changes among {0.3,0.6,0.9,1.2,1.5} and the nominal AT'Sj value is
set to be 200 for all charts. Here, only the zero-state AT'S; is considered because the presence of
unequally spaced observation times prevents the distribution of the charting statistic of a given chart
from being stable after a given number (e.g., 50) of basic time units. From the table, it can be seen
that CUSUM-RS performs the best in all cases of Setting (i) when the observation times are equally

spaced. However, in Setting (ii) when the observation times are unequally spaced, both EWMA-
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RS1 and EWMA-RS?2 outperforms CUSUM-RS in cases considered, because the former two charts
have taken into account the unequally spaced observation times in their chart construction while the
latter chart has not. For EWMA-RS1 and EWMA-RS2, their optimal choices of A and k in Setting
(i1) have similar patterns to those shown in Figure 3 and Figure A.2, and thus are omitted here. In
addition, in Setting (ii) when the observation times are unequally spaced, it seems that EWMA-
RS2 outperforms EWMA-RS1 for detecting intermediate to large shifts (e.g., d > 0.9) because the

former employs one more parameter (i.e., k) in its charting statistic than the latter.

Table 3: Optimal zero-state AT'S; values and their standard errors (in the parentheses) of the charts
CUSUM-RS, EWMA-RS1 and EWMA-RS?2 for both settings of the observation times in cases
when the process mean has a shift of size ¢ that changes among {0.3,0.6,0.9,1.2,1.5} and the
nominal AT'S, value is set to be 200 for all charts. The smallest optimal A7T'S; value among the

three charts is highlighted in bold in each case considered.

Setting (i) Setting (ii)

Cases 4] CUSUM-RS EWMA-RS1 EWMA-RS2 | CUSUM-RS EWMA-RS1 EWMA-RS2

0.3 | 35.56 (0.24) 36.01 (0.23) 36.01 (0.23) 29.87 (0.39) 23.33 (0.39)  23.33(0.39)
0.6 | 15.04(0.10) 15.388(0.09) 15.076 (0.09) | 10.422 (0.11)  7.412(0.09) 6.21 (0.10)
1 0.9 8.56 (0.05) 8.82 (0.05) 8.56 (0.05) 5.66 (0.04) 4.05 (0.04) 3.12 (0.04)
1.2 5.61 (0.03) 5.894 (0.03) 5.61 (0.03) 3.84 (0.03) 2.71 (0.02) 2.12 (0.02)
1.5 4.04 (0.02) 4.256 (0.02) 4.04 (0.02) 2.79 (0.02) 2.02 (0.01) 1.63 (0.01)

0.3 | 60.57 (0.47) 61.55 (0.45) 61.55 (0.45) 42.77 (0.46) 35.58 (0.47)  35.58 (0.47)
0.6 | 28.67(0.21) 29.82 (0.20) 28.88 (0.21) 19.42 (0.17) 14.33 (0.17) 12.82 (0.18)
2 0.9 | 16.79 (0.12) 17.59 (0.12) 16.80 (0.12) 11.05 (0.10) 7.63 (0.08) 5.95 (0.09)
1.2 | 10.77 (0.07) 11.59 (0.08) 10.82 (0.08) 7.17 (0.06) 4.74 (0.06) 3.32 (0.05)
1.5 7.41 (0.05) 8.16 (0.05) 7.43 (0.06) 4.99 (0.04) 3.09 (0.04) 2.06 (0.03)

0.3 | 90.41 (0.77) 92.11 (0.78) 92.11 (0.78) 66.39 (0.74) 58.95(0.78)  58.95 (0.78)
0.6 | 49.77 (0.39) 50.86 (0.40) 50.86 (0.40) 33.22(0.32) 26.69 (0.33)  25.63 (0.40)
3 0.9 | 30.57 (0.24) 31.94 (0.25) 30.88 (0.26) 20.00 (0.20) 14.64 (0.18) 12.07 (0.29)
1.2 | 20.40 (0.17) 21.83 (0.17) 20.52 (0.18) 13.04 (0.13) 8.76 (0.11) 5.13 (0.14)

1.5 | 14.05(0.13) 15.63 (0.12) 14.05 (0.15) 8.71 (0.09) 5.23 (0.08) 2.48 (0.07)
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4 Case Study

El Nifio is a climate phenomenon characterized by the periodic warming of sea surface temperatures
in the central and eastern equatorial Pacific Ocean. This natural phenomenon has far-reaching and
often disruptive effects on weather patterns and ecosystems across the globe (Trenberth and Hoar,
1997). El Nino events typically occur every 2 to 7 years and can last for several months. When El
Nifio develops, it can lead to a variety of climate-related consequences, including altered precipi-
tation patterns, more frequent and severe storms, droughts, and extreme temperatures. These im-
pacts can have profound damage on agriculture, fisheries, water resources, and even human health
(Glantz, 2001). EI Nifio events are closely monitored by meteorologists and climate scientists to
better predict and prepare for their regional and global impacts. The Nifio 3 region is a specific
area in the equatorial Pacific Ocean that plays a critical role in monitoring and understanding El
Nifio and La Nifia events. This region is defined by a specific set of coordinates, typically spanning
120W-170W and 5S-5N (Cane, 2005). In this section, we demonstrate the proposed control chart
(5)-(7) using a dataset measuring the sea surface temperatures in the Nifio 3 region.

The original source of the dataset is the Climate Prediction Center of the USA. It can also be ob-
tained from the R package tseries. From January 1950 to October 1999, a total of 598 observations
of sea surface temperature of the Nifio 3 Region in degrees Celsius were measured monthly. We
then split the data into two parts with the first 350 observations as the IC dataset and the remaining
248 observations for online process monitoring. The Sharpiro-Wilk test for normality of the IC
data gives a p-value of 6.696 x 1076, indicating that the IC data are not normally distributed. To
facilitate finding the control limits for the proposed control charts as discussed in Section 2, we use
Johnson’s transformation families (Johnson, 1949; Chou et al., 1998) to normalize the original ob-
servations. The transformed data are shown in Figure 3. From the figure, it can be seen that the IC

data look quite stable while the remaining data seem to have an upward mean shift starting around
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the 390th month, which matches the most powerful El Nifio events in the recorded history that hap-
pened during 1982-1983 (i.e., between months 384-394) (Caviedes, 1984). Now, the Sharpiro-Wilk
test for checking the normality of the transformed IC data gives a p-value of 0.146, implying that
we fail to reject the normality of the transformed IC data. The Augmented Dickey-Fuller (ADF)
test and the Phillips-Perron (PP) test for checking stationarity of the IC dataset both give p-values
less than 0.01, indicating the stationarity assumption is not violated. Based on the autocorrelation
function (ACF) plot of the IC data, the correlation between any two observations whose observation
times are at least 30-month apart is negligible. Therefore, the IC mean, variance, and covariances
cov(X;, X;_s), forany ¢ > 1 and s = 1,2,...,30, can be estimated from the IC data by the
moment estimates, and the estimated IC parameters can be used in data decorrelation discussed in
Section 2.

Figure 3: Transformed observations of the sea surface temperature dataset. The vertical dashed line
separates the IC data of 350 observations from the remaining 248 observations for online process

monitoring.
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Then, the 8 control charts EWMA-OR, EWMA-RSOR, EWMA-Z, EWMA-AR(1), EWMA-

FD, EWMA-RS1, EWMA-RS2, and CUSUM-RS are applied to the data for online process mon-
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itoring starting from the 351th observation. The nominal ARLy is fixed at 200 for each control
chart. The weighting parameters A is chosen to be 0.1 in all EWMA type charts. The allowance
parameter k in EWMA-RS2 and CUSUM-RS charts are chosen to be 0.01 and 0.1 respectively. Fig-
ure 4 shows the six control charts with the related control limits labeled by the dashed horizontal
lines. From the plots, it can be seen that both EWMA-RS1 and EWMA-RS?2 give their first signals
at the 395th observation time. EWMA-OR and EWMA-RSOR give their first signals at the 365th
and 366th observation times, respectively. From Figure 3, it can be seen that these could be false
signals since there is no obvious shift before these time points. EWMA-Z and EWMA-AR(1) give
their first signals at the 396th and 397th observations times, respectively. The chart EWMA-FD
gives its first signal at the 394th observation time, and the chart CUSUM-RS gives its first signal
at the 395th observation time. Collectively, the results from the charts EWMA-RS1, EWMA-RS?2,

EWMA-FD and CUSUM-RS are similar, but the chart EWMA-FD is the slowest to compute.

S Concluding Remarks

Since the observed data of most sequential processes in practice are serially correlated, control
charts that can properly account for the serial data correlation are useful. In the previous sections,
we have described the modified EWMA chart (5)-(7) that contains a restarting mechanism, and
shown that it is fast to compute and reliable to use for monitoring correlated data without sacrificing
much OC performance. Although this chart is introduced in simple cases for detecting upward
mean shifts in a univariate process, its idea is general and can be used in other cases, such as the
ones for detecting downward or arbitrary mean shifts in a univariate process. In practice, there
could be multiple quality variables to monitor. In such cases, the computing time becomes a more
important concern because the computational burden associated with the multivariate version of

the data decorrelation procedure increases exponentially with the dimensionality of the process
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observations. Therefore, it requires much future research to generalize the modified EWMA chart

(5)-(7) to cases with multivariate serially correlated data.
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Figure 4: Charting statistics of the eight control charts EWMA-OR, EWMA-RSOR, EWMA-
7, EWMA-AR(1), EWMA-FD, EWMA-RS1, EWMA-RS2, and CUSUM-RS for monitoring the
transformed sea surface temperature data in the Nifio 3 region. The dashed horizontal line in each

plot denotes the control limit of the related control chart.
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Appendix: Additional Numerical Results

Some additional numerical results mentioned in the main article are provided in this appendix.
More specifically, corresponding to the choices of parameters and cases of serial data correlation
shown in Table 1, Table A.1 includes the simulated control limits of different control charts so that
the nominal ARLg can be achieved. Table A.2 presents the calculated actual ARL( values and
standard errors of the EWMA-RS2 chart when k takes the value in {0.05,0.1,0.2,0.5}. Table A.3
presents the average computing times (in seconds) of the charts EWMA-FD, EWMA-RS1, and
EWMA-RS?2 to compute their ARL values. As discussed in the main article, EWMA-RS2 cannot
give signals for some specific combinations of A and & and the computation times are thus missing

[T 2]

and denoted as in the table. Table A.4 presents the optimal zero-state ARL; of the seven
control charts in all cases considered in Table 2 of the main paper. Tables A.5 and A.6 present the
calculated AT'Sy and the standard errors of the charts CUSUM-RS, EWMA-RS1 and EWMA-RS2
in Settings (i) and (ii) of the observation times. Tables A.7 and A.8 show the average computing
times of the charts CUSUM-RS, EWMA-RS1 and EWMA-RS2 to compute their ARLg values.

The corresponding optimal values of A used in EWMA-RS]1 and the optimal values of A and %k used

in EWMA-RS?2 are shown in Figure A.1.
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Table A.1: Simulated control limits of different control charts in cases considered in Table 1.

EWMA-RS2
Cases A EWMA-OR EWMA-RSOR EWMA-FD EWMA-RSI
kE=0.006 k=0.01
0.05 0.288 0.343 0.288 0.343 0.288 0.244
0.10 0.484 0.541 0.484 0.541 0.508 0.477
: 0.20 0.780 0.844 0.780 0.844 0.824 0.806
0.50 1.463 1.523 1.463 1.523 1.516 1.507
0.05 0.288 0.343 0.288 0.327 0.269 0.224
0.10 0.484 0.541 0.484 0.517 0.480 0.448
? 0.20 0.780 0.844 0.780 0.802 0.781 0.761
0.50 1.463 1.523 1.463 1.438 1.429 1.419
0.05 0.288 0.343 0.288 0.304 0.245 0.201
0.10 0.484 0.541 0.484 0.484 0.447 0.414
: 0.20 0.780 0.844 0.780 0.757 0.736 0.715
0.50 1.463 1.523 1.463 1.381 1.371 1.361
0.05 0.288 0.343 0.288 0.330 0.273 0.228
0.10 0.484 0.541 0.484 0.522 0.486 0.454
! 0.20 0.780 0.844 0.780 0.811 0.791 0.772
0.50 1.463 1.523 1.463 1.451 1.441 1.431
0.05 0.288 0.343 0.288 0.319 0.261 0.217
0.10 0.484 0.541 0.484 0.505 0.470 0.436
: 0.20 0.780 0.844 0.780 0.785 0.765 0.744
0.50 1.463 1.523 1.463 1.402 1.392 1.383
0.05 0.288 0.343 0.288 0.344 0.288 0.244
0.10 0.484 0.541 0.484 0.544 0.509 0.477
° 0.20 0.780 0.844 0.780 0.841 0.822 0.804
0.50 1.463 1.523 1.463 1.511 1.505 1.497
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Table A.2: Calculated actual ARLg values and their standard deviations (in the parentheses) of
EWMA-RS2 when A and k take several different values. The nominal ARLy is fixed at 200. “—
” in some entries imply that the actual ARLq values cannot be computed in the related cases as

discussed in the main article.

EWMA-RS2
Cases A
k =0.05 k=0.1 k=0.2 k=0.5

0.05 199.14 (1.98) 204.57 (2.03) - -
0.10 200.90 (1.99) 199.83 (1.98) 204.51 (2.03) -

: 0.20 199.75 (1.98) 200.26 (2.00) 198.60 (1.97) 202.90 (2.01)
0.50 199.75 (1.99) 200.38 (1.99) 200.08 (1.98) 202.71 (2.02)
0.05 200.68 (2.01) 204.32 (2.04) - -
0.10 200.95 (1.99) 200.69 (2.03) 204.49 (2.05) -

? 0.20 200.99 (1.98) 201.29 (2.00) 202.21 (2.03) 201.38 (2.01)
0.50 199.63 (1.99) 199.53 (1.98) 200.46 (2.01) 202.46 (2.01)
0.05 200.52 (2.00) 197.40 (1.96) - -
0.10 198.95 (1.96) 200.24 (1.99) 197.39 (1.96) -

: 0.20 198.89 (1.97) 197.94 (1.94) 201.70 (2.00) -
0.50 200.22 (1.99) 200.85 (1.98) 202.81 (2.01) 202.31 (2.01)
0.05 203.99 (2.06) 204.08 (2.04) - -
0.10 203.23 (2.03) 204.58 (2.07) 204.11 (2.05) -

! 0.20 201.70 (2.00) 201.79 (2.03) 204.70 (2.07) 204.57 (2.05)
0.50 200.38 (1.99) 200.25 (1.99) 201.40 (2.01) 201.52 (2.00)
0.05 200.19 (1.95) 201.23 (1.98) - -
0.10 196.83 (1.89) 199.72 (1.94) 201.44 (1.98) -

: 0.20 198.23 (1.90) 194.82 (1.87) 200.59 (1.95) 199.59 (1.95)
0.50 198.03 (1.91) 198.46 (1.92) 198.96 (1.93) 198.23 (1.93)
0.05 204.08 (2.03) 205.53 (2.04) - -
0.10 205.43 (1.99) 205.78 (2.03) 205.81 (2.04) -

° 0.20 203.66 (1.99) 204.90 (1.97) 205.27 (2.02) 205.18 (2.04)
0.50 202.98 (1.99) 202.03 (1.97) 201.49 (1.99) 204.47 (2.04)
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Table A.3: Computing times (in seconds) of the charts EWMA-FD, EWMA-RS1, and EWMA-

RS2 for computing their AR L values. These values are the same as those in Figure 1 of the main

article.
EWMA-RS2
Cases A EWMAFD  EWMARSL 005 £=001 k=005 k=01 k=02 k=05

001 21871 4.03 0.16 0.06 - - - -
005  159.79 1.30 0.64 0.38 0.06 0.04 - -
0.10  148.89 0.69 0.57 0.45 0.15 0.06 0.04 -

> 020  149.87 0.42 0.39 0.37 0.22 0.13 0.06 0.04
030  152.39 031 032 031 0.23 0.16 0.09 0.04
040  156.84 0.26 0.27 0.27 0.22 0.17 0.11 0.05
050  163.68 0.24 0.24 0.24 0.20 0.17 0.12 0.06
001 21051 2.46 0.12 0.06 - - - -
005 15361 0.87 0.43 0.27 0.05 0.04 - -
0.10  143.81 0.51 0.40 032 0.11 0.05 0.04 -

3 020 14695 0.32 0.30 0.28 0.16 0.11 0.05 0.06
030 14646 0.26 0.25 0.25 0.19 0.13 0.08 0.04
040  153.53 0.23 0.22 0.22 0.18 0.14 0.09 0.04
050  157.97 021 021 0.20 0.17 0.15 0.11 0.05
001 27551 424 0.16 0.06 - - - -
005 14822 1.37 0.70 0.40 0.06 0.04 - -
0.10 13845 0.63 0.49 0.39 0.12 0.06 0.04 -

4 020 13226 0.39 0.35 032 0.19 0.11 0.06 -
030 13644 0.29 0.28 027 0.20 0.15 0.08 0.04
040  143.69 0.25 0.24 0.23 0.19 0.16 0.10 0.04
050  146.13 0.22 0.22 021 0.18 0.16 0.11 0.05
001  215.14 3.55 0.14 0.06 - - - -
005 14725 1.16 0.56 0.33 0.06 0.04 - -
0.10 13845 0.63 0.49 0.39 0.12 0.06 0.04 -

s 020 13226 0.39 035 032 0.19 0.11 0.06 0.04
030 13644 0.29 0.28 0.27 0.20 0.15 0.08 0.04
040  143.69 0.25 0.24 0.23 0.19 0.16 0.10 0.04
050 14613 0.22 0.22 021 0.18 0.16 0.11 0.05
001  220.62 537 0.22 0.08 - - - -
005  147.90 1.66 0.92 0.54 0.07 0.04 - -
0.10  138.60 0.92 0.77 0.61 0.18 0.07 0.04 -

6 020  140.09 0.52 0.51 0.48 0.28 0.16 0.07 0.04
030  147.79 0.39 0.40 0.38 0.29 0.20 0.11 0.04
040  152.64 0.33 0.33 0.32 0.26 0.21 0.13 0.05
050  158.66 0.28 0.29 0.29 0.24 0.21 0.15 0.06
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Table A.4: Calculated optimal zero-state AR L4 values and their standard errors (in the parentheses)
of different control charts under different cases of serial data correlation. The nominal ARL value
of each chart is 200. The smallest optimal ARL; value among the seven charts is highlighted in

bold in each case considered.

Cases 0 EWMA-OR EWMA-RSOR EWMA-Z EWMA-AR(l1) EWMA-FD EWMA-RS1 EWMA-RS2

0.3 24.91(0.17) 3598(0.24) 24.91(0.17) 24.92(0.17) 24.91(0.17) 35.98(0.24) 35.92(0.24)
0.6 13.19(0.07) 1537(0.09) 13.19(0.07) 1227 (0.06) 13.19(0.07) 15.37(0.09) 15.10 (0.09)
1 09 7.85(0.04) 881(0.05  7.85(0.04) 8.16(0.04) 7.85(0.04) 8.81(0.05  8.55(0.05)
12 536(0.03) 589(0.03) 536(0.03) 564(0.03) 5.36(0.03) 5.89(0.03) 5.61(0.03)
1.5 3.94(0.02)  426(0.02)  3.94(0.02)  4.13(0.02) 3.94(0.02) 426(0.02) 4.04(0.02)

0.3 41.97(035) 59.99(0.42) 41.97(0.35) 41.18(0.35) 41.56 (0.35) 61.53(0.46) 61.41 (0.46)
0.6 20.84(0.13) 28.93(0.20) 20.84(0.13) 2057 (0.13) 20.81(0.13) 29.80(0.20) 28.75 (0.21)
209 1359(0.07) 17.04(0.11) 13.59(0.07) 13.27(0.07) 13.52(0.07) 17.60(0.12) 16.80 (0.12)
12 10.11(0.06) 11.14(0.08) 10.11(0.06) 10.00 (0.06)  10.29 (0.06) 11.58 (0.08) 10.80 (0.08)
15 7.29(0.04)  7.79(0.05  7.29(0.04)  7.23(0.04)  7.53(0.05) 8.14(0.05)  7.44 (0.05)

0.3 65.53(0.65 89.64(0.73)  65.53(0.65) 64.96 (0.65) 66.44(0.66) 89.59 (0.72) 89.84 (0.74)
0.6 34.00(0.28) 49.17(0.37) 34.00(0.28) 33.78 (0.28) 34.79 (0.28) 50.13(0.39) 49.68 (0.39)
309 22.18(0.15) 30.15(0.24) 22.18(0.15) 21.68(0.15) 2294 (0.16) 31.24(0.23) 30.70 (0.24)
12 1590 (0.09) 20.09(0.18) 1591 (0.09) 15.42(0.09) 16.61 (0.10) 21.44(0.17) 20.51 (0.17)
1.5 13.03(0.10) 13.50(0.12)  13.03(0.10) 12.71(0.09) 12.82(0.07) 15.36(0.12) 14.45 (0.16)

0.3 39.57(032) 57.49(0.41) 39.57(0.32) 39.41(0.33) 39.57(0.33) 58.89(0.43) 58.82(0.43)
0.6 1975(0.12) 27.54(0.18) 19.75(0.12) 19.55(0.12) 19.80 (0.12) 28.17 (0.19) 27.27 (0.19)
4 09 1297(007) 1622(0.11) 12.96(0.07) 12.68(0.07) 12.90(0.07) 16.64(0.11) 15.88(0.11)
12 9.62(0.06) 10.68(0.07) 9.62(0.06)  9.51(0.06)  9.71(0.06) 11.03(0.07) 10.33 (0.07)
1.5 7.05(0.04)  7.59(0.05  7.05(0.04)  6.96(0.04)  7.19(0.04) 7.85(0.05  7.24 (0.05)

0.3 47.86(0.42) 68.95(0.52) 47.86(0.42) 47.25(0.41) 47.89(0.42) 69.93(0.53) 69.96 (0.53)
0.6 2391(0.16) 34.44(022) 2391(0.16) 23.58(0.16) 23.96 (0.16) 3539 (0.23) 35.01 (0.25)
5 09 1537(0.08) 20.80(0.13) 15.37(0.08) 15.06(0.08) 15.45(0.09) 21.48(0.15) 20.77 (0.14)
12 1221(0.07) 13.63(0.09) 12.21(0.07) 11.96(0.07) 1127 (0.05) 14.25(0.09) 13.45 (0.09)
1.5 876(0.05  9.45(0.06) 876(0.05  8.61(0.05  9.17(0.05) 10.13(0.07) 9.13 (0.06)

0.3 26.34(0.19) 38.95(0.26) 27.34(0.19) 27.00(0.19) 26.34(0.19) 39.22(0.28) 39.20 (0.28)
0.6 12.99(0.07) 16.68(0.10) 13.42(0.07) 13.28(0.07) 12.98(0.07) 16.83(0.10) 16.34 (0.11)
6 09 851005  958(0.06) 8.64(0.05  8.90(0.05  851(0.05 9.60(0.06) 9.23 (0.06)
12 576(0.03) 630(0.04) 576(0.03) 6.01(0.03) 5.76(0.03) 6.34(0.04) 6.01(0.04)
1.5 4.18(0.02)  451(0.03)  4.17(0.02)  435(0.02) 4.17(0.02) 452(0.03) 4.26 (0.03)
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Table A.5: Calculated actual AT'S, values and their standard errors (in the parentheses) of the charts
CUSUM-RS, EWMA-RS1 and EWMA-RS?2 in Setting (i) of the observation times. The nominal

AT Sy value of each chart is fixed at 200.

EWMA-RS2

Cases k CUSUM-RS A EWMA-RS1
k = 0.005 k=0.01 k=0.05 k=01 k=02 k=05

0.25 200.25(1.91) | 0.05 200.69 (1.88) 201.02(1.93) 199.83 (1.95) 199.14 (1.98) 204.57 (2.03) - -
0.50 198.41(1.95) | 0.10 197.51(1.91) 199.27 (1.94) 198.40 (1.93) 200.90 (1.99) 199.83 (1.98) 204.51 (2.03) -
0.75 200.17 (1.98) | 0.20 201.91 (2.00) 201.53 (2.00) 200.66 (1.99) 199.75 (1.98)  200.26 (2.00) 198.60 (1.97)  202.90 (2.01)
1.00  199.61(1.99) | 0.50 197.94 (1.97) 198.42(1.97) 198.07 (1.96) 199.75(1.99) 200.38 (1.99) 200.08 (1.98) 202.71 (2.02)

025 19899 (1.91) | 0.05 201.70 (1.90) 199.56 (1.91) 199.20 (1.97) 200.68 (2.01) 204.32 (2.04) - -
0.50 198.23(1.95) | 0.10 199.21(1.93) 198.31(1.94) 197.15(1.92) 200.95(1.99) 200.69 (2.03) 204.49 (2.05) -

: 0.75 201.63(1.99) | 0.20 198.56 (1.95) 197.76 (1.95) 197.28 (1.95) 200.99 (1.98) 201.29 (2.00) 202.21 (2.03) 201.38 (2.01)
1.00  199.34 (1.97) | 0.50 201.61 (2.01) 201.98(2.02) 201.44(2.01) 199.63(1.99) 199.53(1.98) 200.46 (2.01) 202.46 (2.01)
025 198.15(1.91) | 0.05 202.91 (1.93) 200.28 (1.93) 199.86 (1.96) 200.52 (2.00) 197.40 (1.96) - -

3 0.50 198.50(1.98) | 0.10 199.32(1.93) 200.50 (1.95) 198.52(1.95) 198.95(1.96) 200.24 (1.99) 197.39 (1.96) -

0.75  199.66 (1.98) | 0.20 197.74(1.96) 196.91 (1.97) 196.13 (1.96) 198.89 (1.97) 197.94 (1.94) 201.70 (2.00) -
1.00  198.46 (1.97) | 0.50 201.38(2.01) 201.61(2.01) 202.26(2.02) 200.22(1.99) 200.85(1.98) 202.81(2.01) 202.31(2.01)

Table A.6: Calculated actual AT'Sy values and their standard errors (in the parentheses) of the
charts CUSUM-RS, EWMA-RS1 and EWMA-RS?2 in Setting (ii) of the observation times. The

nominal AT'S, value of each chart is fixed at 200.

EWMA-RS2
Cases k CUSUM-RS A EWMA-RS1
k = 0.005 k=0.01 k=0.05 k=01 k=02 k=05

025 207.44(3.17) | 0.05 201.25(1.56) 200.26 (1.53) 199.80 (1.51) 200.10 (1.43) 201.27 (1.41) 202.01 (1.41) -

0.50 207.26(3.22) | 0.10 201.36 (1.48) 201.35(1.47) 200.88 (1.46) 201.05(1.39) 200.87 (1.36) 201.71(1.32) 203.85(1.32)
0.75 20520 (3.21) | 0.20 200.88 (1.62) 200.87 (1.61) 200.99 (1.61) 202.08 (1.59) 202.91 (1.57) 201.80(1.52) 203.42 (1.47)
1.00  204.01 (3.18) | 0.50 206.80(2.50) 206.71 (2.50) 206.72 (2.50) 206.08 (2.49) 205.52 (2.47) 206.64 (2.46) 204.24 (2.39)

0.25 204.83(2.94) | 0.05 203.29 (1.47) 203.79(1.46) 203.12(1.44) 201.73(1.33) 203.10(1.29) 202.26 (1.26) -

0.50 203.25(2.91) | 0.10 203.30(1.41) 203.13(1.41) 203.11(1.39) 203.59 (1.35) 202.67 (1.30) 202.46 (1.24) 204.26 (1.23)
0.75 204.96(2.97) | 0.20 204.90 (1.57) 205.13 (1.57) 204.81 (1.56) 204.96 (1.53) 205.39 (1.51) 204.60 (1.46) 205.12 (1.40)
1.00 20096 (2.93) | 0.50 203.20 (2.36) 203.35(2.36) 203.43(2.36) 203.91(2.36) 204.08 (2.35) 203.15(2.32) 204.39(2.29)

0.25 205.64(2.76) | 0.05 200.34 (1.41) 199.94 (1.39) 200.26 (1.36) 201.13 (1.23)  199.71 (1.14)  201.55 (1.08) -
0.50 202.25(2.64) | 0.10 199.25(1.32) 199.54 (1.31) 199.73 (1.30) 199.91 (1.23) 200.88 (1.18)  201.99 (1.10)  202.07 (1.06)
0.75 20574 (2.65) | 0.20 202.27 (1.47) 202.48 (1.46) 202.34 (1.45) 202.49 (1.41) 202.13(1.36) 201.57(1.30) 203.39 (1.26)

1.00  206.44 (2.69) | 0.50 204.88(2.19) 205.12(2.19) 205.01 (2.19) 205.79 (2.18) 206.20 (2.17) 206.47 (2.12) 207.13 (2.08)
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Table A.7: Computing times (in seconds) of the charts CUSUM-RS, EWMA-RS1, and EWMA-

RS2 for computing their AT'Sy values in Setting (i) of the observation times.

EWMA-RS2
Cases k CUSUM-RS A EWMA-RS1
k = 0.005 k=0.01 k=0.05 k=01 k=0.2 k=05
0.25 0.56 0.05 1.66 0.87 0.52 0.07 0.04 - -
0.50 0.22 0.10 0.88 0.73 0.58 0.19 0.07 0.04 0.42
! 0.75 0.12 0.20 0.53 0.50 0.47 0.28 0.17 0.07 0.04
1.00 0.07 0.50 0.28 0.28 0.28 0.24 0.21 0.15 0.06
0.25 0.39 0.05 1.30 0.64 0.38 0.06 0.04 - -
0.50 0.16 0.10 0.69 0.57 0.45 0.15 0.06 0.04 -
2 0.75 0.09 0.20 0.42 0.39 0.37 0.22 0.13 0.06 0.04
1.00 0.06 0.50 0.24 0.24 0.24 0.20 0.17 0.12 0.06
0.25 0.25 0.05 0.87 0.43 0.27 0.05 0.04 - -
0.50 0.12 0.10 0.51 0.40 0.32 0.11 0.05 0.04 -
: 0.75 0.07 0.20 0.32 0.30 0.28 0.16 0.11 0.05 0.06
1.00 0.05 0.50 0.21 0.21 0.20 0.17 0.15 0.11 0.05

Table A.8: Computing times (in seconds) of the charts CUSUM-RS, EWMA-RS1, and EWMA-

RS2 for computing their AT'Sj values in Setting (ii) of the observation times.

EWMA-RS2
Cases k CUSUM-RS A EWMA-RS1
k=0.005 k=001 k=005 k=01 k=02 k=05
0.25 0.08 0.05 0.16 0.15 0.13 0.07 0.04 0.02 -
0.50 0.04 0.10 0.12 0.12 0.11 0.08 0.06 0.04 0.02
: 0.75 0.02 0.20 0.09 0.09 0.09 0.08 0.06 0.05 0.03
1.00 0.01 0.50 0.06 0.06 0.06 0.05 0.05 0.04 0.03
0.25 0.08 0.05 0.15 0.14 0.12 0.07 0.04 0.02 -
0.50 0.04 0.10 0.11 0.11 0.10 0.07 0.06 0.04 0.02
2 0.75 0.02 0.20 0.09 0.08 0.08 0.07 0.06 0.04 0.03
1.00 0.01 0.50 0.06 0.06 0.05 0.05 0.05 0.04 0.03
0.25 0.06 0.05 0.12 0.11 0.10 0.06 0.04 0.02 -
0.50 0.03 0.10 0.10 0.09 0.09 0.06 0.05 0.03 0.02
: 0.75 0.02 0.20 0.08 0.08 0.07 0.06 0.05 0.04 0.03
1.00 0.01 0.50 0.05 0.05 0.05 0.05 0.05 0.04 0.02
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Figure A.1: Optimal values of A used in EWMA-RS1 and optimal values of A\ and %k used in

EWMA-RS?2 in various cases considered in Figure A.1.
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