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Abstract

In statistical process monitoring, control charts typically depend on a set of tuning
parameters besides its control limit(s). Proper selection of these tuning parameters
is crucial to their performance. In a specific application, a control chart is often de-
signed for detecting a target process distributional shift. In such cases, the tuning
parameters should be chosen such that some characteristic of the out-of-control (OC)
run length of the chart, such as its average, is minimized for detecting the target
shift, while the control limit is set to maintain a desired in-control (IC) performance.
However, explicit solutions for such a design are unavailable for most control charts,
and thus numerical optimization methods are needed. In such cases, Monte Carlo-
based methods are often a viable alternative for finding suitable design constants. The
computational cost associated with such scenarios is often substantial, and thus com-
putational efficiency is a key requirement. To address this problem, a two-step design
based on stochastic approximations is presented in this paper, which is shown to be
much more computationally efficient than some representative existing methods. A
detailed discussion about the new algorithm’s implementation along with some exam-
ples are provided to demonstrate the broad applicability of the proposed methodology
for the optimal design of univariate and multivariate control charts. Computer codes
in the Julia programming language are also provided in the supplemental material.

Keywords: Statistical process monitoring; Tuning parameters; Numerical optimization;
Stochastic approximations; Simultaneous perturbations.
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1 Introduction

Statistical Process Control (SPC) involves monitoring one or more quality variables of a

process over time, and control charts are typically employed to signal shifts in one or more

process parameters (Qiu, 2013). The performance of a control chart is usually measured in

terms of the run length (RL), which is the number of observation times required to detect

a shift. The charting statistic of a control chart is compared to control limit(s) chosen

to ensure that some characteristics of the RL, such as the mean or its quantiles, have

certain pre-specified properties when the process is in-control (IC). Then, the control chart

is designed by choosing its tuning parameters so that a pre-specified target shift can be

detected in the quickest way. Two common performance metrics employed in SPC are the

IC average run length (ARLIC) and the out-of-control (OC) average run length (ARLOC).

Typically, ARLIC is pre-specified at a nominal level, denoted as ARL0 hereafter, and the

control chart is then designed to minimize ARLOC for detecting a pre-specified target shift

in the quality variables.

Minimization of metrics based on the OC run length is not only relevant in applications,

but also important in simulation studies for comparing the performance of different control

charts. Thus, efficient optimization algorithms are critically important to ensure feasibility

of their computation. In cases to use the CUSUM control chart for monitoring

the mean of Gaussian data (Page, 1954), the optimal design of the chart is

known (i.e., its allowance constant can be set to be half of a target shift). In

cases with some other basic control charts for monitoring processes with spe-

cific parametric distributions, the optimal design problem can be solved using

numerical approaches. For instance, when the conventional EWMA control

chart is used for monitoring normally-distributed processes, the Markov Chain

approximation methods (Brook and Evans, 1972; Lucas and Saccucci, 1990;

Jones, 2002; Capizzi and Masarotto, 2003; Wang et al., 2021) are often em-

ployed. Alternatively, the integral equation approach (Page, 1954) can also be
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used, in which a recurrence relation for the average run length of the control

chart can be derived and numerical methods such as the Gaussian quadrature

procedure can be utilized to solve the integral equation (Vance, 1986; Crowder,

1987; Fellner, 1990; Rigdon, 1995b,a; Capizzi and Masarotto, 2010).

However, in many other cases, the optimal design problem can be analyt-

ically and numerically intractable due to the complexity of either the control

chart or the process under monitoring. As a result, people often use the alterna-

tive method to approximate the performance metrics by Monte Carlo simulations. The

simulation-based approach transforms the optimal design of a control chart into a stochas-

tic optimization problem. There are some different methods of stochastic optimization in

the literature, and one promising approach is based on Stochastic Approximations (SA).

SA methods are a powerful class of algorithms to optimize noisy functions, wherein the

exact value of the function cannot be calculated directly, but is observed indirectly in the

presence of stochastic noise. Initially proposed by Robbins and Monro (1951), SA meth-

ods have been subject to numerous developments, and there exists an extensive literature

that provides examples of their applications in adaptive control and nonlinear optimization

(Ruppert, 1991; Lai, 2003; Kushner and Yin, 2003; Spall, 2003).

SA methods in the context of SPC have been studied by Yashchin (1993), who dis-

cussed the computational difficulties in applying the Robbins-Monro algorithm (Robbins

and Monro, 1951). Recently, SA methods in SPC have been shown highly efficient in de-

termining the control limits of a control chart so that either ARLIC or some alternative

quantiles of the IC run length achieve a desired level (Capizzi and Masarotto, 2009, 2016).

So far, the SA-based approaches have only been used to determine the control limits of a

chart when its tuning parameters are pre-specified. To the extent of our knowledge, there

is no SA-based algorithm to optimize the tuning parameters so that a target process shift

can be detected by the chart in the fastest way. This paper aims to fill the gap.

Current methods in the literature to find the optimal tuning parameters are through

Monte Carlo simulations by first finding appropriate control limit values for each set of
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values of the tuning parameters and then searching for the optimal values of the tun-

ing parameter to optimize a specific characteristic of the OC run length using traditional

searching approaches for function minimization. Some examples include grid search (Qiu,

2008) and numerical solvers (Mahmoud and Zahran, 2010). However, these methods are

not designed specifically to handle noisy functions, and thus may not be able to provide

an accurate estimation of the optimal solution. An algorithm that leverages the noisiness

of the RL function could be more efficient in determining the optimal tuning parameters.

Motivated by this intuition, we propose a two-step SA-based optimization algorithm that

combines the SA method of Capizzi and Masarotto (2016) and the Simultaneous Perturba-

tion Stochastic Approximation (SPSA) method of Spall (1992). The proposed method can

estimate the optimal tuning parameters for detecting a given target shift, while satisfying

a constraint on some characteristics of the IC run length, for both univariate and multi-

variate control charts. It provides a flexible optimization algorithm that is computationally

efficient.

SA-based methods aim to estimate the gradient of an objective function by

Monte Carlo simulations. Estimation of the gradient in the context of control

chart design has been explored previously by other researchers. For instance,

Shu et al. (2014) and Huang et al. (2016) used gradient information to solve

the integral equations of the EWMA and CUSUM control charts, respectively.

Huang et al. (2018) considered the optimal design of a MEWMA control chart

using the Markov chain approximations. Our proposed method differs from

these previous methods in that we use Monte Carlo simulations, rather than

numerical approaches, to estimate the gradient. This allows our method to

be applicable to a wide range of control charts for monitoring processes with

various distributions.

The remainder of the article is organized as follows. In Section 2, the framework of SPC

is introduced briefly, and the main theory behind the SPSA algorithm is also discussed.

The proposed two-step SA algorithm is then introduced in detail, including some practical
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guidelines for choosing its parameters and a convergence criterion established based on its

theoretical properties. In Section 3, the SPSA algorithm is illustrated using the classical

EWMA control chart (Roberts, 1959) and the recently proposed R-SADA control chart

(Xian et al., 2019) for detecting mean shifts when process quality variables are partially

observed. The latter control chart is considered to show that the proposed method can be

used in both standard and non-standard settings. Although mean shifts are considered in all

examples in this paper, the proposed method is actually general and can be used in cases for

detecting shifts in other process characteristics such as variance and skewness. In Section 4,

the accuracy and computational efficiency of the proposed algorithm is compared to two

traditional approaches, including the grid search (Qiu, 2008) and Nelder-Mead (Nelder and

Mead, 1965) algorithms. In the comparison, all methods are applied to the problem of

choosing the optimal allowance constant of the classical CUSUM chart (Page, 1954). Since

an explicit solution is available in this problem, it can be used as a benchmark to evaluate

the performance of the related algorithms. Finally, Section 5 provides some concluding

remarks. Computer code in Julia implementing the proposed algorithm is available as part

of the supplemental material.

2 SPSA Optimization of the Tuning Parameters

2.1 The problem

Let {Xt, t ≥ 1} be observations of a p-dimensional process, and Ct = Ct(x1, . . . ,xt; ζ) ∈ R

be the charting statistic of a control chart computed from the historic data {x1, . . . ,xt}

at the current time t, where ζ ∈ Z ⊆ Rd is a d-dimensional vector of tuning parameters.

The charting statistic is then compared to a control limit h = h(ζ) which may depend on

the tuning parameters ζ, and an OC alarm is triggered if |Ct| > h(ζ). Without loss of

generality, the two-sided version of the control chart is discussed here, and the one-sided

version can be discussed in the same way. Then, the run length (RL) of the chart is defined

5



to be

RL[ζ, h(ζ)] = inf {t > 0 : |Ct| > h(ζ)} . (1)

Namely, RL[ζ, h(ζ)] is the first time when an OC alarm is triggered. For a given ζ,

practitioners typically find the value of the control limit h(ζ) such that

ARLIC = E0{RL[ζ, h(ζ)]} = ARL0, (2)

where E0{·} denotes the expectation under the assumption that the process under moni-

toring is IC, and ARL0 is a desired value of the IC average run length.

To be more specific, let us consider two classical control charts. First, the CUSUM chart

(Page, 1954) for detecting upward mean shifts in a Normal process {Xt ∼ N(0, 1), t ≥ 1}

has its charting statistic at time t defined to be

Ct = max {0, Ct−1 +Xt − k} , for t ≥ 1,

where C0 = 0, and ζ = k is the tuning parameter which is also known as the allowance

constant. Then, the chart raises an alarm whenever Ct > h(k), where h(k) > 0 is a

control limit. This chart assumes that the IC process observations at different times are

independent and identically distributed (i.i.d.). Second, the Multivariate Exponentially

Weighted Moving Average (MEWMA) chart (Lowry et al., 1992) is designed to monitor

the mean of a p-dimensional process {Xt, t ≥ 1}, where the IC process observations are

assumed to be i.i.d. with mean µ and covariance matrix Σ. Its charting statistic is defined

to be

T 2
t = Z ′tΣ

−1
Zt
Zt, for t ≥ 1, (3)

where Zt = (I − Λ)Zt−1 + Λ(Xt − µ) for t ≥ 1, and Z0 = 0, Λ = diag(λ1, . . . , λp) is the

weighting matrix. The MEWMA chart gives a signal of mean shift if T 2
t > h(λ1, . . . , λd),

where h(λ1, . . . , λd) > 0 is the control limit. In this example, the vector of tuning parame-

ters is ζ = (λ1, λ2, . . . , λp) ∈ (0, 1]p.
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The problem of finding the optimal value of the tuning parameters, denoted as ζ∗, for

detecting an OC scenario is most commonly formulated in terms of minimizing ARLOC,

under a constraint on ARLIC. Namely, we want to find ζ∗ ∈ Z such that

g(ζ∗) =
∂ E1{RL[ζ, h(ζ)]}

∂ζ

∣∣∣
ζ=ζ∗

= 0,

s.t. E0{RL[ζ∗, h(ζ∗)]} = ARL0,

(4)

where E1{·} denotes the OC expectation after the process becomes OC. Note that, due

to the stochastic nature of the problem, the expected values in (4) usually do not have a

closed form, and can only be approximated via simulation.

For the optimization problem (4), its optimum ζ∗ exists in Z in cases when

conventional control charts (e.g., CUSUM and EWMA charts) are used for

monitoring processes with certain commonly-used parametric distributions in

the exponential distribution family since it can be checked that the related

objective functions would be convex. However, in cases with complex control

charts and data distributions, such analytical results would not be possible.

However, these complex situations are also the ones in which Monte-Carlo

methods are especially useful. In such cases, although it may not be possible

to guarantee the existence of a global optimum, Monte-Carlo methods can

always find a local minimum instead to achieve a “reasonably good” value of

the objective function, which is often appropriate for practical purposes.

2.2 Some generalizations

It is worth noting that the SPC framework described by Equations (1) and (2) does not

include all applications of process monitoring. For instance, it excludes scenarios involving

multiple control charts being used simultaneously. This typically requires the specification

of different target shifts for choosing process parameters of individual control charts that

must then be considered jointly in the optimization. This situation represents a case of
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multi-objective optimization (Branke et al., 2008), wherein multiple objective functions

need to be minimized simultaneously. Various strategies can be employed to obtain a sat-

isfactory solution in such cases. One viable approach involves the use of a weighting mech-

anism to aggregate the objective functions, enabling a combined optimization that takes

into account the relative importance of each objective function. An alternative method

is to employ a lexicographic optimization approach, whereby the functions are optimized

in a sequential manner, with each solution serving as a soft constraint for the subsequent

objective. The second approach is similar to the adaptive EWMA (AEWMA) control chart

which optimizes its weighting parameter by considering both a small and a large location

shift (see Capizzi and Masarotto, 2003). However, finding an appropriate general approach

for the multi-chart tuning parameter optimization is out the scope of the current paper,

and thus left as a topic for future research.

Additionally, note that the optimization problem (4) is defined using ARLOC and the

ARLIC, since they are the most widely utilized metrics for evaluating the performance of

control charts. However, alternative choices are possible for both the objective function

and the constraint. For instance, one could also consider quantiles of the OC and IC RL

distributions, such as the median OC RL (MRLOC) and the median IC RL (MRLIC) in

place of ARLOC and ARLIC, respectively. To accommodate this alternative setting, a mod-

ification of the proposed SPSA algorithm can be introduced, as discussed in Section 2.4.1.

Furthermore, incorporating a constraint on the quantiles of the IC RL distribution can be

achieved after a straightforward adjustment, as discussed in Section 2.4.4.

The optimal design using (4) can be further generalized to accommodate

some additional information. For example, under the economic design frame-

work Duncan (1956); Lorenzen and Vance (1986); Ho and Case (1994), the

sample size and sampling interval of the process observations can also be ad-

justed, besides the selection of the control limit. In such cases, a loss function

can be defined as a function of all these quantities. Some researchers have also

suggested using an indifference region to account for small shifts that may not
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have practical relevance (Woodall, 1985; Aparisi and García-Díaz, 2007; Kuiper

and Goedhart, 2023). This indifference region allows for a certain degree of tol-

erance when monitoring a process. In addition, a distribution on the magnitude

of the anticipated process shift can be introduced to describe uncertainty in

the anticipated shift (Chen and Chen, 2007; Ryu et al., 2010). In such cases,

the expected value of ARLOC with respect to the prior distribution of the shift

can be minimized. Although it is possible to generalize our proposed method

to these cases, the generalizations may be nontrivial and are left for future

research.

2.3 The proposed SPSA optimization procedure

Let Q(ζ, h(ζ)) and K(ζ, h(ζ)) be two score functions such that the minimization problem

can be written as
g(ζ∗) =

∂Q[ζ, h(ζ))]

∂ζ

∣∣∣
ζ=ζ∗

= 0,

s.t. K[ζ∗, h(ζ∗)] = b,

(5)

where b is a pre-specified value for the constraint. To exemplify, equation (4) is a special

case of (5) when choosing Q(ζ, h(ζ)) = E1{RL[ζ, h(ζ)]}, K(ζ, h(ζ)) = E0{RL[ζ, h(ζ)]},

and b = ARL0. The variability in Q and K refers to the Monte Carlo variability when

generating RL values by either a) sampling data from the true OC and IC RL distributions

when they are assumed known, or b) approximating the OC and IC RL distributions using

methods such as the bootstrap (e.g., Gandy and Kvaløy, 2013).

SA methods are commonly used in stochastic optimization (cf., Spall, 2003), and de-

signed to solve the problem (5) using the following iterative procedure:

ζ̂k+1 = Ψ

(
ζ̂k − ak

∂Q[ζ, h(ζ)]

∂ζ

∣∣∣
ζ=ζ̂k

)
, k ≥ 1, (6)

where Ψ is a projection that maps Rd to the nearest point in Z, and ak > 0, for k ≥ 1, is

called a gain sequence of the gradient, whose selection will be discussed in Section 2.4.2.
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The choice of Ψ depends on the particular control chart considered. For instance, when

optimizing the weighting parameter λ ∈ Z = [0, 1] of an EWMA control chart, the trans-

formation Ψ(λ) = min(1,max(0, λ)) can constrain the tuning parameter in the set Z. The

major limitation of (6) is that the gradient is typically unavailable in a closed form. A

solution to overcome this limitation is to substitute the true gradient with its estimate in

the current iteration by considering

ζ̂k+1 = Ψ
(
ζ̂k − akĝk(ζ̂k)

)
, k ≥ 1, (7)

where ĝk is obtained by sampling values of the score function Q in a neighborhood of the

current estimate ζ̂k.

To estimate the gradient in (7), one efficient solution is provided by the SPSA algorithm

(Spall, 1992, 1998). The key idea is to use a random perturbation ∆k = (∆1k, . . . ,∆dk)
>,

where ∆jk’s are independent zero-mean random variables that are symmetric about zero

and uniformly bounded for all j = 1, . . . , d and k = 1, 2, . . . (Spall, 2003). The perturbation

∆k is then used in the current iteration to obtain the perturbed estimates ζ̂+k = Ψ(ζ̂k +

ck∆k) and ζ̂−k = Ψ(ζ̂k − ck∆k), where ck, for k = 1, 2, . . ., is the gain sequence of the

perturbation that will be discussed in Section 2.4.2. Then, it can be shown (cf., Spall,

1992) that the Simultaneous Perturbation (SP) gradient estimate

ĝk(ζ̂k) =
Q[ζ̂+k , h(ζ̂+k )]−Q[ζ̂−k , h(ζ̂−k )]

2ck


∆−11k

...

∆−1dk

 , (8)

is a first-order unbiased estimate of the true gradient g at ζ̂k (Spall, 2003, pages 179-

180). It is common to choose the perturbations to be the following independent symmetric
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Rademacher random variables (Hitczenko and Kwapień, 1994):

∆jk =


1 with probability 1/2,

−1 with probability 1/2.

, ∆jk ⊥⊥ ∆ik if i 6= j, for i, j = 1, . . . , d. (9)

It is obvious that ∆−1jk = ∆jk, for any j and k. To compute the gradient (8), we should

compute the two control limits h(ζ̂+) and h(ζ̂−) that satisfy the constraint in (5) in advance

in each perturbed iteration. This is the most computationally demanding step in the

gradient evaluation process. An efficient strategy is described in Section 2.4.4.

Once h(ζ̂+) and h(ζ̂−) have been determined, it requires little computational effort to

compute multiple values of the score function Q, since Q is usually based on some simu-

lated OC run lengths that are generally much shorter than those under the IC condition

when the control chart is unbiased (Pignatiello Jr et al., 1995; Knoth and Morais, 2015).

To take advantage of this, we suggest a modification of the SP gradient estimation proce-

dure to enhance its stability and the convergence of the related iterative algorithm. This

modification involves substituting ĝk(ζ̂k) with

gk(ζ̂k) =
Q
[
ζ̂+k , h(ζ̂+k )

]
−Q

[
ζ̂−k , h(ζ̂−k )

]
2ck


∆−11k

...

∆−1dk

 , (10)

where Q[ζ, h(ζ)] is a quantity based on r independent simulations of the score function Q.

See Section 2.4.1 for the definition of Q[ζ, h(ζ)] and a discussion about the recommended

value of r. This modification is mentioned in Spall (1998) as a way to improve the accu-

racy of the gradient estimate, reduce the variability, and accelerate the convergence of the

algorithm at a relatively small additional computational cost. In addition, to minimize the

variability in the differences Q[ζ̂+k , h(ζ̂+k )] − Q[ζ̂−k , h(ζ̂−k )] due to random noise, it is rec-

ommended to set the seeds of the random number generator in each pair of the simulated

score evaluations {Ql[ζ̂
+
k , h(ζ̂+k )], Ql[ζ̂

−
k , h(ζ̂−k )]} to be the same, for all l = 1, . . . , r. This
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is a standard approach used in stochastic optimization to improve the robustness of the

optimization (see Kushner and Yin, 2003). An additional enhancement to reduce the vari-

ability of the final estimate is to consider the Polyak-Ruppert averaging (Ruppert, 1991;

Polyak and Juditsky, 1992). Namely, the following running average is used as the estimate

of ζ∗:

ζk =
1

k −Nf

k∑
`=Nf+1

ζ̂`, (11)

where Nf > 0 is an integer used to exclude those intermediate estimates that are too

far away from the optimal tuning parameter values to be included in computing the final

estimate. Equation (11) is a well-known approach to increase stability of the algorithm

while maintaining competitive convergence rates to the optimal vector ζ∗ of the tuning

parameters (Maryak, 1997). This is true even if the averaging would introduce a small

amount of bias, since the improved stability usually results in a more reliable optimization

procedure (Kushner and Yin, 2003).

2.4 Practical Guidelines

The implementation of the SPSA optimization algorithm requires proper selection of several

quantities that could have an impact on its efficiency and stability. To this end, some

practical guidelines have been provided in the literature (Spall, 1998, 2003), which are

described in the following several parts.

2.4.1 Choice of the score function

Selection of the score function Q used in (10) depends on the goal of the optimization prob-

lem. In SPC, the ultimate goal is to minimize the ARLOC. In such cases, an appropriate

choice of Q is

Q[ζ, h(ζ)] = r−1
r∑
l=1

RL1l[ζ, h(ζ)], (12)

where RL1l[ζ, h(ζ)] is the l-th independently simulated RL value under the OC scenario

using the tuning parameter vector ζ and the control limit h(ζ). Other choices are also
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possible. For instance, if one is interested in minimizing the MRLOC, then we can replace

the quantity in Equation (12) by the following median:

Q[ζ, h(ζ)] = median{RL11[ζ, h(ζ)], . . . ,RL1r[ζ, h(ζ)]}.

Regarding the value of r, based on the numerical results in Section 4.3, it appears that

the results are reasonable good when r ≥ 100 to obtain an improvement in algorithm

convergence without sacrificing much computational efficiency.

2.4.2 Gain sequences

The gain sequences in the algorithm are commonly defined as ak = a/(k + A + 1)α and

ck = c/(k + 1)β, where α and β are pre-specified to be 0.602 and 0.101, respectively

(Spall, 2003). These gain sequences would result in a slow gain decay and ensure the

convergence of ζ̂k to ζ∗ as k → ∞ under some quite general assumptions, as proved by

Spall (1992). Although there are faster convergence options available, slower rates are

usually recommended since they can provide a more thorough exploration of the set Z and

lead to a more stable algorithm in practice.

The constants a,A, and c in the above gain sequences need to be chosen carefully to

guarantee a good convergence of the procedure. To this end, a preliminary adaptive step is

usually employed to find proper values of these constants. More specifically, the constant

c can be approximately set to be the standard deviation σζ̂0 of the OC RL calculated at

the initial value ζ̂0 (Spall, 1998). As discussed in Section 2.4.1, r replicated evaluations of

the OC RL are often used to reduce variability of the gradient estimate, from which the

standard deviation of the OC RL can be computed by σ̂ζ̂0 = σ̂RL1/
√
r, where σ̂RL1 is the

standard deviation of the r simulated values of the OC RL. In practice, it can happen that

the initial iterations of the algorithm move the tuning parameters too far away from the

optimal values. Numerical studies show that setting c = min{σ̂ζ̂0 , 0.1} can avoid excessive

perturbation of the tuning parameters in the early iterations. According to Spall (1998),
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the constant A can be set to be 0.1 times the expected number of function evaluations.

For example, the expected number of evaluations used in this paper is 150, resulting in

A = 0.1× 150 = 15. Once c and A are selected, Spall (1998) recommends selecting a to be

the expected magnitude change in ζ̂k during the first few iterations. Specifically,

a = s · (A+ 1)α/G,

where s is the initial step size and G = 1
d

∑d
j=1

∑nc

l=1 ĝjl(ζ̂0)/nc is a preliminary estimate

of the average value of the gradient in ζ̂0 based on nc simulated RLs. For instance, a

reasonable initial step size s for an EWMA chart could be 0.2, and setting nc = 20 is found

to be appropriate to estimate the gradient at the beginning of the algorithm.

2.4.3 Convergence criteria

A reasonable stopping rule of the algorithm is |E[ĝjk(ẑk)]| ≤ ν, for all j = 1, . . . , d, where

ν is a pre-specified accuracy level. From the score expression (10), it is possible to obtain

an estimate of the gradient’s variance at each iteration. Rewrite the gradient estimate in

(10) as gk(ζ̂k) = GkDk, where

Gk =
Q
[
ζ̂+k , h(ζ̂+k )

]
−Q

[
ζ̂−k , h(ζ̂−k )

]
2ck

,

Djk = ∆−1jk for j = 1, . . . , d.

Then, the variance of the jth element of the gradient estimate has the expression

V[gjk(ζ̂k)] = E[G2
kD

2
jk]−

(
E[GkDjk]

)2
= V[Gk]V[Djk] + V[Gk]E[Djk]

2 + E[Gk]
2V[Djk]

= V[Gk] + E[Gk]
2,
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where the second equality follows by the independence of Gk and Dk, and the third equality

holds since Djk is the symmetric Rademacher random variable defined in (9), for which

V[Djk] = 1 and E[Djk] = 0. At the optimal tuning parameter values, E[Gk]
2 = 0 and thus

calculating the variance of the gradient only requires estimating V[Gk]. Then, a stopping

rule based on the estimated variance can be introduced using an approach similar to the

one in Capizzi and Masarotto (2016).

Let Q′(ζ) = ∂Q[ζ, h(ζ)]/∂ζ and assume that Q′′(ζ) = ∂Q′(ζ)/∂ζ> exists. Then, based

on the asymptotic distribution of the Polyak-Ruppert averaging scheme (Dippon and Renz,

1997; Maryak, 1997), we have

k1/3
[
Q′(ζk)−Q′(ζ∗ − µ)

]
∼ Nd(0, Q

′′(ζ∗ − µ)ΣQ′′(ζ∗ − µ)>),

where µ and Σ are quantities whose exact expressions depend on both the gain constants of

the SPSA algorithm and the characteristics of the objective function. Since the asymptotic

bias goes to zero when k → ∞, a stopping time N s ∈ N based on testing whether the

gradient is zero can be written as

N s = inf

{
k > Nm +Nf : k ≥

(z
ν

)2
max
j=1,...,p

1

N −Nf

k∑
`=Nf+1

gj`(ζ̂k)
2

}
, (13)

where z is the [(1 − ν)/2]-th quantile of the standard normal distribution and ν is a pre-

specified small value. In the above definition of N s, the lower bound Nm + Nf is specified

to avoid an early ending of the algorithm.

In some cases, the variance Q could be very large, leading to extremely large values of

N s. For example, this occurs when minimizing ARLOC of a univariate EWMA control chart

for a mean shift of δ = 0.25. In such cases, it has been observed that ζ̂k oscillates around

the optimal value, instead of converging slowly to the optimum. Therefore, a stopping rule

based on the gradient variance such as (13) may lead to an overly conservative termination

of the algorithm in this case. However, these are also the cases when the running averaging

idea described in (11) can be the most helpful, since the estimates ζ̂k oscillate around the
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true optimal value and their average could provide a good estimate of the optimal value.

See Maryak (1997) for a detailed discussion. Therefore, in such cases, it is more appropriate

to use the following stopping rule:

Na = inf
{
k > Nm +Nf : ‖ζk − ζk−1‖ < ε

}
, (14)

where ε is a pre-specified small number (e.g., ε = 10−5). By combining (13) and (14), the

following stopping rule is suggested in this paper:

N = min
{
N s, Na

}
, (15)

where the suggested values for ν, z,Nf, Nm, and ε can be found in Table 1.

2.4.4 Constrained optimization

The proposed SPSA approach requires the calculation of the control limits h(ζ̂+) and h(ζ̂−)

in each iteration. To this end, the SA algorithm described in Capizzi and Masarotto (2016)

has been used here, albeit with a lower precision than that recommended in that paper.

The SA algorithm is illustrated in Appendix A, and readers are referred to Capizzi and

Masarotto (2016) for a further discussion on the quantities involved. A reduced precision

is justified in the current research problem by the fact that ARLIC is a monotonic function

of the control limits and thus the optimization is computationally easier than that in cases

with non-monotonic functions. Based on our numerical experience, 100 iterations of the

first stage are usually sufficient to obtain a rough estimate of the optimal Robbins-Monro

gain, and a total of 100 iterations of the Polyak-Ruppert averaging are typically enough

to obtain a reasonable estimate of the control limits. For these reasons, the number of

iterations Nfixed in the adaptive stage of the algorithm, as well as the maximum number of

iterations in the algorithm, are both set to be 100. In addition, to ensure that the control

limits are close enough to the solution, the first half of the iterations in the Polyak-Ruppert

averaging is discarded. The other parameters of the SA algorithm are set to be the default
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values suggested in Capizzi and Masarotto (2016). As illustrated in Capizzi and Masarotto

(2009), it is possible to modify the SA algorithm in order to enforce a constraint on the

quantiles of the IC RL distribution, instead of ARLIC. This modification is discussed in

Appendix A.1.

After the SPSA algorithm is terminated and the estimated optimal tuning parameters

ζ∗ are obtained, a more accurate estimate of the control limit can be obtained by reapplying

the control limit optimization with an increased precision. The entire SPSA optimization

procedure is described in Algorithm 1, and the recommended values for the parameters

used in the proposed algorithm are given in Table 1.

Algorithm 1 Proposed SPSA Algorithm for Constrained Optimization
Input: α, β, a, A, c, r,Nm, Nf (see Table 1).
1: for k = 0, 1, 2, . . . do
2: ck ← c/(1 + k)β

3: ∆jk
iid∼ Rademacher(0.5) for all j = 1, . . . , d

4: ζ̂+k ← Ψ(ζ̂k + ck∆k)

5: ζ̂−k ← Ψ(ζ̂k − ck∆k)

6: Calculate h(ζ̂+k ) and h(ζ̂−k ) using the SA algorithm (Appendix A)
7: Calculate gk(ζ̂k) using (10)
8: ak ← a/(1 + A+ k)α

9: ζ̂k+1 ← Ψ
(
ζ̂k − akgk(ζ̂k)

)
10: Calculate N using (13), (14), and (15)
11: if k > N then
12: N ← k
13: break
14: end if
15: end for
Output: ζ = 1

N−Nf

∑N
k=Nf+1 ζ̂k

3 Some Numerical Results

In this section, the optimization of ARLOC for the following two control charts is discussed.

1. The two-sided EWMA chart with constant control limits that is designed for

detecting mean changes of a process (Roberts, 1959), under the assumption that the
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Table 1: Recommended parameter values for implementing the proposed SPSA algorithm.

SPSA algorithm
r = 100 see Section 2.4.1
α = 0.601 β = 0.101 nc = 20 a A c see Section 2.4.2
ν = 0.05 z = 3 Nm = 300 Nf = 100 ε = 10−5 see Section 2.4.3

SA algorithm (Appendix A)
Nfixed = 100 Nmax = 100 see Section 2.4.4

IC process distribution is the standard Normal distribution. The initial value of its

smoothing constant λ is sampled from the Beta(10,10) distribution. The estimated

optimal parameter value for detecting a given mean change is compared with the

value obtained using the R package spc. This package provides functions

for computing the IC and OC ARL values of an EWMA control chart,

using the Gauss-Legendre quadrature. The optimal value of the smoothing

constant λ is then determined using the optimize() function, which uses

a combination of golden section search and parabolic interpolation. The

value of ARL0 can change among {50, 100, 250, 370}, which are commonly used in

the literature as discussed in Crowder (1989). The considered mean shifts are equally

spaced in the range [0.25, 4.0] with the step size of 0.25.

2. The R-SADA chart, which is designed for detecting mean changes in a partially

observed multivariate data stream (Xian et al., 2019). The control chart is based

on a two-step procedure at each time t. In the first step, the observed data are

used to construct an augmented vector that contains information on all the observed

and unobserved data streams. In the second step, the augmented vector is used to

calculate the charting statistic using a formulation similar to the multivariate CUSUM

charting statistic proposed by Crosier (1988). The IC data streams are assumed to

be independent and identically distributed at different observation times and the IC

process distribution is assumed to be standard Normal. In this case, it is assumed

that there are p = 100 independent data streams, of which q = 20 can be observed

at every observation time. After the process becomes OC, each of n = 10 randomly
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selected data streams has a mean shift of size δ ∈ {0.25, 0.5, 1, 2}. In this chart, the

tuning parameters are the allowance k of the CUSUM chart and the minimum shift

size µmin to be detected by the chart. Without an analytic solution for the optimal

tuning parameter values, the results of the SPSA procedure are compared with the

recommended values k = 0.3 and µmin = 1.5 by Xian et al. (2019) in terms of ARLOC,

since the related chart is shown to be robust to a wide variety of shift sizes. These

recommended tuning parameter values are also used as the initial estimates of the

optimal tuning parameters in the optimization procedure.

Figure 1: Estimated optimal values of λ for the EWMA chart obtained from 200 inde-
pendently replicated optimizations. The solid curves denote the medians, and the shaded
intervals indicate the 10th and 90th percentiles of the estimated optimal values. The dashed
curves represent the optimal values obtained by the Gauss-Legendre quadrature procedure
via the R package spc.

The proposed SPSA algorithm was run 200 times on both control charts, using the

initial expected step size of 0.2 for the EWMA chart and 0.1 for the R-SADA chart. The

estimated optimal smoothing parameters for the EWMA chart for several selected values of

ARL0 are displayed in Figure 1. The results of the SPSA method appears to be comparable

to those obtained by the Gauss-Legendre quadrature procedure via the R package spc.

Furthermore, it can be observed that variation of the estimated optimal tuning parameter
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Table 2: Estimated optimal values of λ of the EWMA chart for detecting mean shifts
of size δ in two different settings when ARL and MRL objective functions are used. The
results shown in the table are medians based on 200 independent optimizations.

δ
minARLOC

s.t. ARLIC = 100

minMRLOC

s.t. MRLIC = 100

0.25 0.0187 0.0138
0.50 0.0798 0.0746
0.75 0.1301 0.1210
1.00 0.1893 0.1762
1.25 0.2552 0.2384
1.50 0.3275 0.3051
1.75 0.4133 0.3796
2.00 0.4982 0.4586
2.25 0.5817 0.5450
2.50 0.6549 0.6387
2.75 0.7216 0.7016
3.00 0.7842 0.7609
3.25 0.8365 0.8116
3.50 0.8718 0.8510
3.75 0.9004 0.8731
4.00 0.9117 0.8843

values is generally small, as indicated by the relatively small differences between the 10th

and 90th percentiles of the estimated optimal values, which confirms the robustness of the

algorithm to the randomly selected starting points. For a combination of relatively large

δ and small ARL0, the plot shows that the estimated optimal value is a little different

from the optimal solution obtained by the R package spc. This would not be a significant

concern since the control chart can promptly detect the shift in such a case, even with a

slightly suboptimal smoothing parameter value.

As previously discussed, the optimization problem (5) allows to use alternative objec-

tive functions other than ARLOC and ARLIC. For instance, Knoth (2015) considers the

calibration of an EWMA chart using a pre-specified value of MRLIC, and presents some

results of MRLOC for detecting certain mean shifts when the smoothing parameter λ takes

a value in a given set. The related calculation is based on numerical approximations of the

run length function, and is tailored for the EWMA charting statistic. Modifications of the
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Table 3: Summary statistics of the estimated optimal parameter values of the R-SADA
chart by the proposed SPSA approach. The results are based on 200 independent opti-
mizations.

k µmin

δ Mean SD min q10 q90 max Mean SD min q10 q90 max

0.25 0.255 0.009 0.221 0.244 0.265 0.271 0.850 0.191 0.359 0.604 1.073 1.379
0.50 0.248 0.007 0.233 0.240 0.257 0.262 1.353 0.077 1.181 1.249 1.446 1.510
1.00 0.267 0.031 0.175 0.221 0.304 0.318 1.265 0.360 0.284 0.790 1.745 2.086
2.00 0.163 0.065 0.093 0.117 0.290 0.318 2.062 0.626 0.178 0.974 2.457 2.626

proposed optimization procedure to handle such cases are discussed in Section 2.4.1 and

Section 2.4.4, and the results when MRL0 is fixed at 100 are presented in Table 2.

The summary statistics of the estimated optimal tuning parameter values for the R-

SADA chart are presented in Table 3 when ARLIC is set to be 370. From the table, it

can be seen that the estimated optimal value of µmin increases with δ, which is consistent

with its interpretation given by Xian et al. (2019) as being the smallest expected mean

shift. The comparison between the optimized and non-optimized OC performance of the

R-SADA chart is shown in Figure 2, where ARLOC is estimated based on 10,000 replicated

simulations in both cases when the estimated optimal parameter values by the proposed

method and the suggested parameter values by Xian et al. (2019) are used in each simula-

tion. The plot shows a superior performance of the optimized results in comparison to the

non-optimized results, especially when the shift size is small.

4 Comparisons with Traditional Approaches

In the literature, traditional approaches to optimize the tuning parameters of a control

chart involve estimation of the expected values in (5) using a large number of replicated

simulations. Then, under the assumption that the related expected values are deterministic,

the constrained optimization is carried out by using either a grid search or a numerical

searching algorithm. In this section, a simulation experiment is carried out to compare the

proposed SPSA algorithm with some traditional approaches, as described below.
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Figure 2: Comparison of the calculated ARLOC values when the estimated optimal param-
eter values by the proposed method and the suggested parameter values by Xian et al.
(2019) are used. Each ARLOC value is calculated based on 10,000 replicated simulations.

1. The classical univariate CUSUM control chart for detecting upward process mean

shift is considered (Page, 1954). In this case, the true optimal allowance value is

known for detecting a given mean shift. The proposed SPSA method is compared

with the following two alternative methods:

(a) The grid search algorithm described in Qiu (2008), which is briefly summarized

below. First, the algorithm specifies a range [l, u] for the tuning parameter.

Then, the interval is divided into m equally spaced subintervals. The objective

function is then evaluated at each endpoint using 10,000 replicated simulations.

The endpoints adjacent to the one with the smallest value of the objective func-

tion are used to define a new range for the tuning parameter. This iterative

process continues until the convergence criterion |ζ̂(k) − ζ̂(k−1)| < ε′ is met,

where k is the index of the iterations. In this numerical study, we choose m = 3,

and the control limit at each endpoint is obtained by using the SA algorithm in

the recommended setting discussed in Capizzi and Masarotto (2016), which has

been shown to be more efficient than the classical bisection search algorithm.
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(b) The Nelder-Mead optimization procedure (Nelder and Mead, 1965), which is

a well-known optimization technique for handling nonlinear objective functions.

This algorithm is one of the default optimizers in the NLopt optimization library

of the Julia wrapper (Johnson, 2023). Similarly to the grid search, the objective

function is evaluated each time based on 10,000 replicated simulations, and

the control limit is obtained by using the SA algorithm. The algorithm is run

with the same convergence criterion as that of the grid search algorithm, for a

maximum of 1,000 iterations.

2. The scalability of the proposed SPSA method is studied when the chart tuning pa-

rameters are d-dimensional. In this case, the method is compared with the multivari-

ate generalization of the two competing methods discussed above. The multivariate

generalization of the grid search method starts in defining an initial d-dimensional

rectangle [l,u] from which the optimal tuning parameters are searched. The interval

in each dimension is divided into m segments and the algorithm proceeds analogously

to the univariate case by considering the (m + 1)d lattice points defined by the seg-

ments. The procedure continues until the convergence criterion ‖ζ̂(k+1)− ζ̂(k)‖ < ε′ is

met. Again, we use m = 3 in the simulation study. The Nelder-Mead algorithm uses

the same convergence criterion as that of the multivariate grid search algorithm, for

a maximum of 1,000 iterations.

4.1 Accuracy of the estimated optimal tuning parameters

The efficiency of the proposed algorithm is compared with the two competitors when op-

timizing the allowance constant of a standard CUSUM chart for detecting process mean

shifts when ARLIC = 370, the IC process distribution is N(0, 1), and the objective function

is ARLOC. In such cases, the true optimal value of the allowance is k = δ/2, where δ is a

given mean shift size. The simulation study is carried out in both cases when a) the IC

mean and variance are assumed known, and b) they are assumed unknown and estimated
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Figure 3: Comparison of accuracy of the estimated optimal tuning parameter between
the proposed SPSA approach and the two traditional approaches, when the true optimal
parameter values (orange dots in the plot) are known.

from an initial IC sample with 500 observations. The comparison among the three methods

is about the accuracy of their estimated optimal allowance values and their running times

as well. All algorithms are run 200 times using the same value of tolerance ε = ε′ = 10−5.

The parameter ν used in (13) is set to be ν = 0.05. In the grid search algorithm, the

initial interval for searching the optimal allowance is set to be [l, u] = [0, 4], and the initial

value of k is set to be 1 in both the SPSA and the Nelder-Mead algorithms. When the IC

parameters are being estimated, the IC and OC run lengths are obtained via parametric

bootstrap.

The estimated optimal tuning parameter values by the three optimization methods

are displayed in Figure 3. For all considered shift sizes, optimization by SPSA yields a

substantially more accurate estimate of the optimal allowance in comparison with the two

competing methods, since the latter are not designed specifically for optimizing random

functions. More specifically, both the bias and variability of the estimated tuning parameter

by the SPSA algorithm seem smaller than those by the two competing methods in most

cases considered. Figure 4 shows the total running times of the three algorithms. From
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Figure 4: Computing times of the SPSA method and the two competing approaches, when
the IC distribution parameters are assumed known.

the plot, it can be seen that the proposed SPSA method has a better overall performance

in this regard in comparison with the two competing methods. It is only in the case when

δ = 2 that the SPSA algorithm takes a longer computing time than the Nelder-Mead

algorithm, which is partly due to the fact that both algorithms are initialized using k = 1

that is precisely the true optimal value of the tuning parameter. Consequently, the SPSA

algorithm initially deviates from the true optimal value and then converges to it, resulting

in a longer computing time. Since the SPSA algorithm has a better performance in both the

accuracy of the estimated optimal tuning parameter and computing time, we can conclude

that it outperforms the two competing methods in the case considered.

When the IC distribution parameters are estimated, the resulting estimated optimal

tuning parameter values are shown in Figure 5. From the plot, the estimated optimal val-

ues of the allowance are less precise in this case, compared to those when the IC parameters

are assumed to be known. The precision loss is due to the randomness in the estimated

IC parameters and the use of bootstrap to compute the run lengths. However, the SPSA

algorithm still shows a better accuracy for small values of δ, compared to the two compet-

25



Figure 5: Comparison of the accuracy in the estimated optimal tuning parameter values by
the proposed SPSA approach and the two competing approaches, when the IC distribution
parameters are estimated from an initial IC sample of size 500. The orange dots in the plot
indicate the true optimal tuning parameter values when the IC distribution parameters are
assumed known.

ing methods. When the shift size is larger, an improvement can be seen in the reduced

variability of the optimal parameter estimates, except in the case when δ = 3. Figure 6

shows the computing times of the three methods. The plot shows that the proposed SPSA

algorithm takes much shorter computing time than the two competing methods. From

the figure, it seems that the computing time of the grid search method in the

case when δ = 3 is larger than those in other cases. This might be due to the

large shift size when δ = 3 that would result in a large value of the allowance

constant k of the related CUSUM chart. Consequently, the charting statistic Ct

equals zero frequently, making estimation of the control limit computationally

expensive when using Monte Carlo methods like the SA algorithm. A slight

increase in computing time can also be observed for the SPSA algorithm as δ

increases.
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Figure 6: Computing times (in log scale) of the SPSA method and the two competing
approaches, when the IC distribution parameters are estimated from an initial IC sample
of size 500.

4.2 Scalability of the SPSA approach

An important feature of the proposed method is its ability to efficiently handle multidi-

mensional optimization. In this part, we consider the Multivariate Exponentially Weighted

Moving Average (MEWMA) control chart (Lowry et al., 1992) defined in (3) for monitoring

the mean of a multivariate process. In the literature, it is quite common to use the same

smoothing parameter for all quality variables when constructing the MEWMA chart for

simplicity. Let us consider cases when the IC and OC distributions of the quality variables

under monitoring are specified in Table 4. In these cases, the distributions of different

quality variables are quite different when d = 2 or 3, and the use of common smoothing

parameter for all variables may not be desirable. The OC settings considered are shifts in

the mean of each quality variable, of size δ ∈ {0.5, 1.0, 1.5, 2.0} times the standard devia-

tion of the related marginal distribution. In cases when the IC marginal distribution

is χ2
1, this is achieved by changing the degrees of freedom from 1 to 1 + δ

√
2.

Since the related quality variables have different shapes, it is reasonable to expect that the
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Table 4: IC and OC distributions for the simulated data. All variables are assumed to be
independent of each other.

d ζ IC OC

1 λ1 Xt ∼ N(0, 1) Xt ∼ N(δ, 1)

2 (λ1, λ2) Xt =

{
X1t ∼ N(0, 1)

X2t ∼ χ2
1

Xt =

{
X1t ∼ N(δ, 1)

X2t ∼ χ2
1+δ
√
2

3 (λ1, λ2, λ3) Xt =


X1t ∼ N(0, 1)

X2t ∼ χ2
1

X3t ∼ Pois(1)

Xt =


X1t ∼ N(δ, 1)

X2t ∼ χ2
1+δ
√
2

X3t ∼ Pois(1 + δ)

MEWMA control chart with multiple tuning parameters would perform better.

The proposed SPSA approach is compared with the multidimensional grid search al-

gorithm and the Nelder-Mead algorithm when the number of tuning parameters is set to

be d = 1, 2, 3, so as to study the multidimensional scalability of the algorithms. In the

simulation study, ARL0 is set to be 370, the objective function of the optimization problem

is ARLOC, and the tolerance criterion and algorithm constants are chosen to be the same

as those in Section 4.1. The initial hypercube for the multidimensional grid search is set to

[0.01, 0.99]d, and the SPSA and Nelder-Mead algorithms are initialized with each smoothing

parameter being 0.2. Due to the lack of an analytical solution for the true optimal tuning

parameter values, the accuracy of the estimated optimal values is determined by averaging

106 simulated OC run lengths for each of the 200 optimizations. The optimization results

are presented in Table 5. From the table, it can be seen that all algorithms obtain com-

parable estimates of optimal tuning parameters with similar ARLOC values. However, the

computing times of the three methods are dramatically different. When d increases, the

SPSA algorithm is much faster than the two competing methods, especially in comparison

with the multidimensional grid search algorithm.

Figure 7 shows the median and the 0.1th and 0.9th quantiles of the computing times

of the three algorithms when the number of tuning parameters increases. The results

clearly show that the computational cost to achieve the same accuracy in the estimated

optimal tuning parameters as that in univariate cases increases very rapidly for the grid
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search algorithm. The Nelder-Mead algorithm also requires much longer computing time

when d increases. As a comparison, the SPSA algorithm displays a remarkable efficiency

in computing times when d increases. When d = 3, its computing time is much less than

those of the two competing methods.

Figure 7: Median and 0.1th and 0.9th quantiles of the computing times of the SPSA
algorithm and its two competing methods. The results are based on 200 independent
optimizations.

4.3 On the choice of r

As mentioned in Section 2, the simple gradient estimator (8) is replaced by the gradient (10)

that averages r evaluations of the OC RL in the proposed SPSA algorithm. Obviously, the

computational cost would increase when r increases, with the benefit of increasing accuracy

in the gradient estimates. In this part, we study the impact of r on the accuracy of the

final estimate of the optimal tuning parameters and the computing time of the algorithm,

using the univariate CUSUM chart for monitoring process mean under the assumption of

Gaussian process observations with known IC distribution. In the simulation study, the

mean shift δ can change in the set {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, and the true optimal tuning

parameter is δ/2. Then, 200 optimizations are performed using the SPSA algorithm, with
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the initial tuning parameter value generated from the uniform distribution in the interval

[0, 3]. The numerical study shows that choosing values of r < 5 often lead to a poor

convergence. Figure 8 shows the median computing times of the proposed SPSA algorithm

for different values of r ∈ [5, 500]. The plot shows that a small value of r would result in

a larger computing time. This is because although the gradient (10) is faster to evaluate

when r is small, the lower precision requiring a larger number of iterations for the algorithm

to convergence. On the other hand, when r is larger than 200, it appears that the benefit

of reducing the randomness in the objective function is offset by the higher computational

cost. Based on these simulation results, it seems that a reasonable value of r is between 50

and 150, which balances randomness reduction and computational cost well.

Figure 9 shows the mean squared error of the estimated optimal tuning parameter in

various cases considered in Figure 8. The results indicate that the accuracy of the estimate

is not affected much by r when δ is small. However, for larger values of δ, using r ≥ 50

would yield a better overall result. In conclusion, a value of r between 50 and 150 seems

to provide a reasonably good balance between accuracy of the estimated optimal tuning

parameter and computational time.

5 Conclusions

This paper proposes a novel approach to optimize a control chart for detecting a target

OC scenario while meet constraints on some characteristics of the IC run length distri-

bution. The proposed methodology is based on stochastic approximations and uses the

SPSA algorithm (Spall, 1992) to handle optimization with a random objective function in

both univariate and multivariate settings. To perform the constrained optimization, the

SPSA algorithm is combined with a recently developed SA-based method for determining

the control limit of the control chart (Capizzi and Masarotto, 2016). Simulation results

have demonstrated the effectiveness of the proposed algorithm in comparison to some rep-

resentative traditional approaches. Notably, the proposed method displays a competitive
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Figure 8: Median computing times of the SPSA algorithm based on 200 independent
replications of the optimization procedure when r changes from 5 to 500 and the shift size
δ changes among {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} (different rows).
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Figure 9: Mean squared error of the estimated optimal tuning parameter obtained by the
SPSA algorithm in various cases considered in Figure 8. The results are based on 200
independent replications of the optimization procedure.
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accuracy in comparison with the traditional methods, while requiring significantly less

computing time, especially when the number of tuning parameters is relatively large. Al-

though the proposed methodology is discussed mainly in cases when the OC ARL and

IC ARL are used in defining the optimization problem, as highlighted in previous studies

(Capizzi and Masarotto, 2009; Knoth, 2015; Capizzi and Masarotto, 2016), it can also be

used when the median or other characteristics of the RL distribution are considered in the

optimization. In the paper, we have discussed an adjustment of the method to optimize

the median of the RL distribution. Generalizations of the method to optimize quantiles

of the RL distribution other than the median are also straightforward. An efficient Julia

implementation of the proposed SPSA algorithm and the SA algorithm are provided in the

supplementary material.

As mentioned in Section 2, the case with multiple control charts is not considered in the

present paper, although the SA algorithm as originally discussed in Capizzi and Masarotto

(2016) can handle such cases. Addressing this setting requires the development of a suitable

framework for quantifying the OC performance when multiple control charts are considered

together, which requires much future research. One possible approach involves considering

a set of OC scenarios, one for each control chart. Then, these OC scenarios can evaluated

jointly, either through a weighted average of their OC performance or by sequentially

optimizing each scenario by using the previous solution as a soft constraint for subsequent

optimizations. However, a comprehensive analysis of such approaches falls outside the

scope of this paper and is left for future research.
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A SA algorithm

The SA algorithm (Capizzi and Masarotto, 2016) aims at finding the control limit h∗(ζ)

such that the constraint

K(ζ, h(ζ)) = b,

is satisfied for a pre-determined value of b and a fixed vector of tuning constants ζ. Here,

K[ζ, h(ζ)] is a score function based on the IC run-length distribution, such as the ARLIC

or the MRLIC.

The algorithm is here described in a simplified version for a univariate control limit h(ζ),

as this is the setting considered in the present paper. When multiple control charts are

being run simultaneously, the more general formulation in Capizzi and Masarotto (2016)

can be used to handle the joint optimization. Dropping the dependence of h(ζ) from ζ for

ease of notation, the algorithm is based on the Robbins-Monro (RM) recursive iteration

(Robbins and Monro, 1951)

hk+1 = max

{
0, hk −

1

k + 1
αshk

}
, k = 0, 1, 2, . . . , Nmax (A.1)

where α is the gain of the scheme and shk is an estimate of the gradient of K at the current

iterate hk. An in-depth discussion of the choice of score shk is deferred to Appendix A.1.

To improve the standard RM algorithm (A.1), Capizzi and Masarotto (2016) suggest

two modifications: the first modification is introduced to estimate the optimal value of α
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using a preliminary adaptive stage. In the adaptive stage, the following fixed-gain recursion

is employed,

h̃k+1 = max
{

0, h̃k − Afixedshk

}
, k = 0, 1, . . . , Nfixed − 1, (A.2)

with h̃0 being the initial control limit value and Afixed > 0 is a scalar constant. The fixed-

gain recursion in Equation (A.2) is used twofold: firstly, to provide a starting point for the

iteration in (A.3), so that the initial control limit value is not too far from the solution

h∗. Secondly, during the adaptive stage, the gain constant α is obtained by simulating the

gradients s±k using the control limit values h̃k±∆. Then, the optimal gain matrix is defined

as

α =
1

max
{

1
Amax

,min
{

1
Amin

, d
}} ,

where

d =
1

2∆Nfixed

Nfixed−1∑
k=0

(s+k − s
−
k ).

The second modification is introduced to use the iterate averaging approach, which was

already discussed in Section 2.3. At the N -th recursive step, the estimate of the control

limit is

hN =
1

N

N∑
k=1

hk,

where hk is calculated using a slightly modified recursion

hk+1 = max

{
0, hk −

1

(k + 1)q
αshk

}
, k = 0, 1, 2, . . . , Nmax. (A.3)

While the original implementation of the SA algorithm also makes use of a stopping rule,

in this paper a truncated version is employed by setting an upper bound Nmax for the

maximum number of iterations. See Table 1 of Capizzi and Masarotto (2016) for the

suggested constant values for implementing the SA algorithm.
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A.1 Choice of the SA gradient

Calculation of the gradient shk depends on the selection of a suitable score function K.

Among the various options, the most commonly used score function is the ARLIC. In this

case, letting ARL0 = b, an appropriate expression for the gradient is

shk =
RL0[ζ, hk]− ARL0

ARL0

.

With this choice of gradient, the control limit h∗ found by the SA algorithm satisfies the

constraint E0{RL[ζ, h∗]} = ARL0.

Another possible choice is to place a constraint on the ρ-level quantile of the IC run

length. The most common selection is ρ = 0.5, which corresponds to constraining MRLIC =

MRL0. For the optimization of the ρ-level quantile of the IC run length, the following

gradient can be employed

shk = −
[
I(RL0(ζ, hk) ≤ b)− ρ

]
,

where I(E) is the indicator function of the event E. The choice of this score function

ensures that the obtained control limit h∗ satisfies the constraint P0{RL[ζ, h∗] ≤ b} = ρ,

where P0{·} denotes the probability under the in-control process. This property follows

immediately from the well-known property of indicator functions, E{I(E)} = P{E}.
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