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Abstract

Calculation of the control limits is a critical step when designing control charts
in statistical process control. Traditional control chart designs require the con-
trol limits to be computed so that a characteristic of the in-control run length
distribution, such as the mean or median, equals a pre-determined value. When
the complexity of the in-control process distribution hinders analytical meth-
ods, Monte Carlo approaches can be used to find the appropriate control limits.
Among these methods, the classical bisection searching algorithm is widely used.
However, a major drawback of this method is the requirement of an initial range
of values for the search. Furthermore, it is computationally very demanding when
multiple control charts are used simultaneously. In this paper, we present a mod-
ified bisection searching algorithm to enhance the computational efficiency. The
new method eliminates the initial specification of a range for searching. Addi-
tionally, an efficient generalization of this approach is proposed to handle the
multi-chart setting. Numerical results confirm that our method offers an effi-
cient and reliable way to compute the control limits, in comparison with the
conventional bisection searching algorithm and the algorithm based on stochas-
tic approximations. A Julia computer code implementing the proposed method
is provided in the supplemental materials.

Keywords: Control limits, Monte-Carlo simulation, Bisection search, Multi-chart
monitoring schemes, Stochastic approximations
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1 Introduction

Control charts are a fundamental tool of statistical process control (SPC) when moni-

toring sequential processes with the goal of enhancing quality and detecting anomalies

(Qiu, 2013). They are used to determine whether the process under monitoring has

transitioned from a condition of stability (or in-control, IC) to a condition of insta-

bility (or out-of-control, OC) by the current observation time. A common measure of

efficiency of a control chart is the run length (RL), which is the number of observation

times required to trigger an alarm.

The design of a control chart typically involves two steps. First, specify certain

nominal properties of the IC RL distribution, such as the IC average RL denoted

as ARL0 (cf., Li et al., 2014), the IC median RL denoted as MRL0 (cf., Waldmann,

1986a,b; Gan, 1993, 1994; Graham et al., 2017; Hu et al., 2021; Qiao et al., 2022),

and the quantiles of the IC RL distribution (cf., Knoth, 2015). Second, determine the

values of the control limits involved in the charting statistic to meet the pre-specified

nominal properties of the IC RL distribution.

The IC RL characteristics generally depend, in addition to the control limits, on the

underlying IC process distribution and other tuning parameters such as smoothing and

allowance constants. In practical applications, these tuning parameters are selected

prior to the start of the monitoring phase by minimizing certain characteristics of the

OC RL, such as the average run length given the expected OC scenario (cf., Qiu, 2008;

Mahmoud and Zahran, 2010). As a result, the calibration of the control limits has to

be repeated for every value of the tuning parameters considered in the minimization

of the OC RL characteristics. Thus, efficient determination of the control limits can

have a significant impact when applying control charts in real-world applications.

In traditional SPC problems with independent and identically distributed IC pro-

cess observations, ARL0 or other characteristics of the IC RL distribution could be
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computed analytically for conventional control charts, such as the Shewhart (She-

whart, 1931), EWMA (Roberts, 1959; Crowder, 1989), and CUSUM (Page, 1954;

Crosier, 1986) charts. In many modern settings, however, the characteristics of inter-

est of the IC RL distribution could be too complicated to be approximated adequately

using either analytical methods or deterministic numerical methods. This complexity

may arise due to autocorrelation in the process observations (Montgomery and Mas-

trangelo, 1991; Capizzi and Masarotto, 2008, 2009; Qiu and You, 2022) and complex

IC process distributions in cases such as multi-stage or spatial processes (Jin and Shi,

1999; Huang et al., 2002; Yang and Qiu, 2020; Zhou et al., 2003) and partially-observed

processes (Liu et al., 2015; Xian et al., 2018; Ye et al., 2023).

Nowadays, it is also common to combine multiple control charts for monitoring

multiple process parameters or for enhancing detection power when small and large

shifts are of interest (Gan, 1995; Han and Tsung, 2007; Han et al., 2007; Reynolds

and Stoumbos, 2008). In multi-chart settings, the IC RL distribution depends on a

vector of control limits. Finding appropriate values of the control limit vector thus

requires solving a more complicated design, which often includes a constraint on the

run lengths characteristics of the individual control charts.

In cases when analytical and deterministic numerical methods are unavailable to

determine control limits of a control chart, methods based on Monte Carlo simulations

offer a popular alternative. The only requirement for Monte-Carlo-based methods is to

be able to simulate IC run lengths. This is typically achieved by generating new data

from either the IC process distribution, if it is assumed known, or by approximations

such as the bootstrap (Gandy and Kvaløy, 2013).

Among Monte-Carlo-based methods, a popular technique to determine the control

limits is the bisection searching algorithm (cf., Qiu, 2008; Dickinson et al., 2014; Lai

et al., 2023). This approach leverages the fact that a typical IC RL characteristic of

interest (e.g., ARL0) is a monotone function of a control limit. Thus, the bisection
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searching algorithm would converge, provided that the pre-specified initial interval for

searching is wide enough to contain the solution. Typically, a wide initial interval is

chosen, which leads to the computation of some large run length values during the

searching process (Capizzi and Masarotto, 2016). This can result in a significant com-

putational cost to find the solution. Some authors use a preliminary search phase to

find the suitable interval for the bisection search (Bizuneh and Wang, 2019). Neverthe-

less, these approaches are designed for the specific control chart in use and may not be

readily applicable to different control charts. In addition, application of the bisection

algorithm in settings with multiple control charts can be computationally challenging.

A different approach to find the control limits is the more recent Stochastic Approx-

imation (SA) algorithm discussed originally in Capizzi and Masarotto (2016), which

uses SA methods (Robbins and Monro, 1951; Kushner and Yin, 2003) to implement

a stochastic gradient descent iterative algorithm that converges to the desired control

limit values. While efficient and developed for multi-chart settings, the SA algorithm

requires pre-specification of a large number of tuning parameters. Although the rec-

ommended parameter settings in Capizzi and Masarotto (2016) are typically robust

for single-chart designs, in our experience, parameter tuning is required in the multi-

chart scenario so as not to let the early iterations diverge from the solution. In cases

when early gradient descent iterations move the candidate control limit value far away

from the solution, the SA algorithm requires a large number of iterations to reach

convergence.

To address the computational challenges discussed above, this paper presents a

modified bisection algorithm, which is henceforth referred to as the BA–Bisection

algorithm, where “BA” stands for “bootstrap-assisted” for the reason given below.

The major goal of the BA–Bisection algorithm is to overcome the shortcomings of the

traditional bisection searching algorithm discussed above and extend its applicabil-

ity to multi-chart scenarios. Rather than approximating the IC RL distribution, as in
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the traditional bisection searching algorithm, its key idea is to simulate the IC distri-

bution of the charting statistic at each observation time during process monitoring.

Then, the traditional bisection searching algorithm can be applied to the estimated

IC distribution of the charting statistic with minimal computational cost to find the

appropriate control limit values. A similar idea was adopted in Chatterjee and Qiu

(2009), where bootstrap was used to approximate the IC distribution of the CUSUM

charting statistic conditionally on the elapsed time Tn (also called spring length) since

the statistic was last set to zero. See also Qiu and Xie (2022). This was then used

to define a sequence of control limits for the CUSUM charting statistic condition-

ally on Tn. However, their method was designed specifically for CUSUM charts, and

extensions to other types of control charts or multi-chart settings are not easy.

The BA–Bisection method does not require an initial search interval to be specified,

making it suitable for software used to automatically determine control limits for

various control charts and data distributions. Additionally, the proposed method can

be extended to the multi-chart scenario due to its computational efficiency.

The remaining parts of the paper are organized as follows. Section 2 discusses the

BA–Bisection algorithm in detail and illustrates its advantages over the traditional

bisection approach. By leveraging its computational advantages, an extension of the

BA–Bisection algorithm is also proposed to address the multi-chart scenario. Section 3

presents some simulation results to assess the performance of the proposed methodol-

ogy. First, in Section 3.1, the BA–Bisection algorithm is compared to the traditional

bisection searching algorithm. Then, in Section 3.2, the proposed method is compared

to the SA algorithm for designing multi-chart schemes. In Section 4, an example using

a recently-developed control chart for monitoring high-dimensional partially-observed

data streams (Xian et al., 2018) illustrates the applicability of the proposed method

to a complex scenario. Finally, Section 5 offers some concluding remarks.

5



231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

2 Methodology

Since determination of the control limits of a control chart is under the IC condition, all

discussions in this section are under that condition if there is no further specification.

Let Ct be the value of the charting statistic at time t ≥ 1, and C = (C1, C2, . . .)

be the trajectory of the charting statistic. For simplicity, let us assume that Ct ≥

0 (e.g., the upward CUSUM chart or the multivariate EWMA chart) and a signal

would be given by the chart if its charting statistic exceeds a control limit h > 0.

Then, RL(C, h) = inf {t > 0 : Ct > h} is the run length of the control chart, which

depends on the IC distribution of the charting statistic and h. Let G0(RL(C, h)) be

a specific characteristic of interest of the RL distribution, such as ARL0, MRL0, or

some quantiles of the IC RL distribution. In the current setup, it is obvious that G0

is a non-decreasing function of h.

The design of a typical control chart involves finding the value h∗ of the control

limit h such that G0(RL(C, h)) = a, where a > 1 is a pre-determined nominal value

of G0(RL(C, h)). In order to achieve this property using Monte-Carlo simulations, the

classical approach is to estimate G0(RL(C, h)) with a large number M of simulation

runs. Then, a bisection searching algorithm is used to search for the value of h∗. More

specifically, from each simulation run, a RL value can be recorded. Thus, G0(RL(C, h))

can be estimated using the M simulated RL values (Qiu, 2013). Then, the bisection

searching algorithm searches for h∗ in a pre-specified initial interval [hL, hU ] satisfying

the conditions that G0(RL(C, hL)) ≤ a ≤ G0(RL(C, hU )).

This traditional approach has some drawbacks, as discussed in Section 1. Most

notably, determination of the initial interval [hL, hU ] depends on the specific control

chart, and can be difficult to specify in some complicated settings. Therefore, a very

wide initial interval is typically used in applications, which would result in a large

number of “useless” run lengths (i.e., RL(C, h) � a) being simulated during the

search process (Capizzi and Masarotto, 2016). Consequently, a significant amount
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of computing is wasted. In addition, extending the traditional bisection searching

algorithm to multi-chart settings is typically complex and computationally intensive.

To address these issues, we propose a modification of the traditional bisection searching

algorithm, which is described in detail below.

2.1 Proposed BA–Bisection algorithm

The key idea in our proposed modification is to approximate the IC distribution of the

charting statistic Ct at each t ≥ 1, rather than the IC distribution of the RL. Denote

by C∗i = {C∗i,t}Tt=1 the i-th simulated trajectory of the charting statistic, where T is a

pre-specified maximum time after which the process monitoring is ignored. The value

of T is usually chosen to be large, so as not to introduce excessive bias in the resulting

control limit estimate. If G0(RL(C, h)) is ARL0, typical choices are T ≥ 10 · a (Qiu

and Xie, 2022; Xie and Qiu, 2023a). In this paper, T = 10 · a has been used in all

numerical studies. Then, prior to the application of the bisection searching algorithm,

a total of M trajectories C = {C∗1 ,C∗2 , . . . ,C∗M} has been simulated from the IC

process distribution. This can be done by either sampling from the true IC process

distribution if it is known, or from a reference IC sample by a bootstrap or other

resampling procedures.

The proposed BA–Bisection algorithm can be described as follows. In the kth

iteration, for k = 1, 2, . . . ,K, the IC characteristic G0(RL(C, h(k))) using the control

limit value h(k) is approximated by

Ĝ0(RL(C, h(k))) =

∫
G0(RL(C, h(k))) dP̂ ∗(C), (1)

where P̂ ∗ is the empirical distribution of the simulated trajectories C. As an example,

if G0 is just ARL0, then, the estimate of the ARL0 using the control limit h(k) can be

7
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approximated by

ÂRL0(h(k)) =
1

M

M∑
i=1

RL(C∗i , h
(k)). (2)

Naturally, substituting the empirical average in (2) with the empirical median or the

qth empirical quantile yields the estimates of MRL0 and the qth quantile of the IC

RL distribution, respectively. The iterative algorithm is terminated whenever

∣∣∣Ĝ0(RL(C, h(k)))− a
∣∣∣ < ε1 or

∣∣∣h(k+1) − h(k)
∣∣∣ < ε2,

where ε1, ε2 > 0 are two pre-specified small values. Due to the analogies between the

proposed method and the classical bootstrap procedure, our proposed algorithm is

referred to as the Bootstrap–Assisted Bisection (BA–Bisection) algorithm.

As a comparison, in the traditional bisection searching algorithm, the quantity in

(1) is approximated by simulating M new run lengths in each iteration k = 1, 2, . . . ,K.

The key advantage of our modified algorithm lies in its computational efficiency.

Specifically, the bulk of the computational resources is used to generate the set of

trajectories C. Once these have been generated, applying the bisection search to deter-

mine the required control limit becomes computationally trivial. This allows for a

substantial improvement in computational cost, especially when the charting statistic

is computationally expensive to evaluate.

Additionally, our proposed modification eliminates the requirement to pre-specify

an initial interval [hL, hU ] within which the control limit is searched. Instead, this

interval can be determined based on the simulated trajectories in C. Specifically, if

T > a (which is always true in reality), then the initial interval can be defined to be

[hL, hU ] =

[
min

C∗
i,t∈C

C∗i,t, max
C∗

i,t∈C
C∗i,t

]
,

and the property G0(RL(C, hL)) ≤ a ≤ G0(RL(C, hU )) can be verified easily.
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It is worth mentioning that control charts can sometimes use dynamic (or time-

varying) control limits of the form

h(t) = h · g(t), (3)

where g(t) is a known function of t. An important example is the EWMA chart for

detecting process mean shifts, where the dynamic control limit is defined to be

h(t) = ρ ·
√

λ

2− λ
[1− (1− λ)2t].

and ρ is a constant. The BA–Bisection algorithm can be modified as follows to handle

such cases by searching for the appropriate value of ρ in the initial interval

[ρL, ρU ] =

[
1

A
min

C∗
i,t∈C

C∗i,t,
1

B
max
C∗

i,t∈C
C∗i,t

]
,

where

A = max
1≤t≤T

g(t), and B = min
1≤t≤T

g(t).

Algorithm 1 below provides a pseudo-code for the proposed BA–Bisection approach.

2.2 Extension to multi-chart cases

Multi-chart monitoring schemes are characterized by the simultaneous application of

J > 1 control charts. The jth charting statistic is compared to the control limit

hj , for j = 1, . . . , J . For simplicity, it is assumed that the joint process monitor-

ing scheme triggers an alarm whenever one of the J charting statistics is larger

than its control limit. Let RLj indicate the run length of the jth control chart and

RL = min {RL1,RL2, . . . ,RLJ} be the run length of the joint monitoring scheme.

Traditionally, the vector of J control limits, h = (h1, h2, . . . , hJ), of a multi-chart

9
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Algorithm 1 BA–Bisection algorithm

Input: M , K, T , A, B, a, ε1 > 0, ε2 > 0
1: Simulate C = {C∗1 ,C∗2, . . . ,C∗M}
2: hL ← min

C∗
i,t∈C

C∗i,t/A, hU ← max
C∗

i,t∈C
C∗i,t/B.

3: for k = 1, . . . ,K do
4: h(k) ← (hU + hL)/2

5: Calculate Ĝ0(RL(C, h(k))) using Equation (1).

6: if Ĝ0(RL(C, h(k))) > a then
7: hU ← h(k)

8: else
9: hL ← h(k)

10: end if
11: if |Ĝ0(RL(C, h(k)))− a| < ε1 or |h(k) − h(k−1)| < ε2 then
12: break
13: end if
14: end for
15: return h(k)

monitoring scheme is selected to satisfy the following conditions:


G0(RL(C,h)) = a,

G0(RL1(C, h1)) = G0(RL2(C, h2)) = . . . = G0(RLJ(C, hJ)),

(4)

where a > 0 is a pre-specified nominal value for G0(RL(C,h)). The above con-

straint on the run lengths of individual control charts is enforced so that no specific

control chart is favored over another. However, weighting mechanisms can be easily

incorporated in the constraint if individual control charts differ in their importance.

To accommodate the constraints in (4) within the framework of the BA–Bisection

algorithm, an adaptation of Algorithm 1 is formulated below. This adaptation is

inspired by the nested secant algorithm of Knoth and Morais (2015), which was used

in the single-chart scenario to determine upper and lower control limits when moni-

toring asymmetric process distributions. The key property exploited here is the low

computational cost of applying the bisection search once the M replications of the IC

trajectories C∗i = {C∗i,t,j : j = 1, . . . , J}Tt=1, for i = 1, . . . ,M , have been generated,

10
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where C∗i,t,j denotes the ith simulated value of the jth charting statistic at time t. In

the general case of a time-varying control limit (3), let Cj = {C∗i,t,j , i = 1, . . . ,M, t =

1, . . . , T} be the simulated trajectories of the jth charting statistic, and

[
h
(0)
L,j , h

(0)
U,j

]
=

[
min

C∗
i,t∈Cj

C∗i,t/Aj , max
C∗

i,t∈Cj
C∗i,t/Bj

]
,

be the corresponding initial interval for search, for j = 1, . . . , J . In the above equation,

Aj = max
1≤t≤T

gj(t), and Bj = min
1≤t≤T

gj(t),

where gj(t) is the function that defines the time-varying control limit for the j-th con-

trol chart. Then, the modified algorithm for designing multi-chart monitoring schemes

can be described below:

1. In the kth iteration, for k = 1, 2, . . . ,K, the control limits {h1, h2, . . . , hJ} are

updated by the bisection search criterion using the estimated joint IC ARL value

at the (k − 1)th iteration.

2. Then, the IC RL characteristic G0(RL1(C, h(k))) of the first chart is estimated

using Equation (1).

3. The algorithm then determines the control limits hj such that G0(RLj(C, h
(k))) =

G0(RL1(C, h(k))), for all j = 2, . . . , J . This step is carried out using the

BA–Bisection algorithm described in Section 2.1 with initial search intervals

[h
(k−1)
L,j , h

(k−1)
U,j ].

4. Finally, the exit criteria are checked. Return to Step 1 if none of them are met.

Exit and report the searched control limit values otherwise.

Algorithm 2 provides the pseudo-code of the extended BA–Bisection algorithm for

handling multi-chart designs.
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Algorithm 2 BA–Bisection algorithm for multi-chart designs

Input: M , M , K, T , a, ε1 > 0, ε2 > 0
1: Simulate C = {C∗1 ,C∗2, . . . ,C∗M}
2: hL,j ← min

C∗
i,t∈Cj

C∗i,t/Aj , hU,j ← max
C∗

i,t∈Cj
C∗i,t,j/Bj for j = 1, . . . , J .

3: for k = 1, . . . ,K do

4: h
(k)
1 ← (hU,1 + hL,1)/2

5: Estimate Ĝ0(RL1(C, h
(k)
1 )) using Equation (1).

6: for j = 2, . . . , J do

7: Find h
(k)
j such that G0(RLj(C, h

(k)
j )) = Ĝ0(RL1(C, h

(k)
1 )) using Algorithm 1

and the set of simulated trajectories C.
8: end for
9: Calculate G0(RL(C,h(k))) using Equation (1).

10: if Ĝ0(RL(C,h(k))) > a then
11: hU ← h(k)

12: else
13: hL ← h(k)

14: end if
15: if |Ĝ0(RL(C,h(k)))− a| < ε1 or ‖h(k) − h(k−1)‖ < ε2 then
16: break
17: end if
18: end for
19: return h(k)

The following proposition ensures that Algorithm 2 can indeed find reasonable

values for the control limits. Its proof is given in Section A.

Proposition 1. If G0(RL(C,h)) is a non-decreasing function of each element of h

and G0 can be calculated accurately, then the solution from Algorithm 2 satisfies the

constraints in Equation (4).

3 Simulation Results

In this section, we evaluate the numerical performance of the proposed BA–Bisection

algorithm using various control charts. First, the proposed BA–Bisection algorithm

is compared with the traditional bisection searching algorithm in terms of accuracy

and computing time when determining the control limit values. Then, the proposed

BA–Bisection algorithm is compared with the SA algorithm using various multi-chart

12



553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

monitoring schemes. The results presented here were obtained on a Red Hat Enterprise

Linux release 8.7 machine with 2GHz Intel Xeon Gold 6348H CPUs.

3.1 Comparison with the traditional bisection searching

algorithm

In this part, the proposed BA–Bisection algorithm is compared with the traditional

bisection searching algorithm using the following control charts for monitoring the

mean of a p-dimensional process that has i.i.d. IC Gaussian observations:

1. A MEWMA chart (Crowder, 1989) when p = 3, and the smoothing matrix is set

to be Λ = diag(0.2, 0.2, 0.2).

2. A MCUSUM chart (Crosier, 1988) when p = 5, and the allowance constant is set

to be k = 0.25.

3. A distribution-free CUSUM chart (Qiu, 2008) based on data categorization using

the IC medians when p = 3, and the allowance constant is set to be k = 1. Its

RL values are simulated as suggested in Qiu (2008) by generating data from the

categorized process using its IC probability distribution.

We consider the design of the three control charts by setting the nominal value of

the IC RL characteristic to be a = 200 in the following two scenarios: i) G0(RL(C, h))

is ARL0, and ii) G0(RL(C, h)) is MRL0. For both algorithms, different values of M are

considered to examine their impact on the computational cost. For both algorithms,

the tolerance parameters are set to be ε1 = 1, ε2 = 10−6, and the RL values are

capped at T = 2000. The traditional bisection searching algorithm is run using the

initial interval [hL, hU ] = [0, 100] for all control charts. Table 1 and Table 2 present

the results for G0 = ARL0 and G0 = MRL0, respectively, based on 100 replicated

simulations of the control limit search. In each search, after the control limit value h

is determined, the value of G0 is estimated using 105 simulated RL values.
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Table 1: Searched control limit (h) values of several control charts
computed via the proposed BA–Bisection algorithm and the traditional
bisection searching algorithm in cases when G0 = ARL0. The table
displays means with standard deviations in parentheses of the related
quantities based on 100 replicated simulations.

M time (s) ARL0 h

MEWMA

BA-Bisection
1000 0.755 (0.081) 200.090 (6.498) 11.866 (0.077)
5000 3.823 (0.391) 199.653 (2.823) 11.863 (0.033)
10000 7.737 (0.811) 199.811 (1.918) 11.864 (0.023)
25000 19.383 (2.044) 199.909 (1.492) 11.864 (0.017)

Bisection
1000 2.742 (0.603) 200.236 (4.244) 11.868 (0.051)
5000 11.865 (2.474) 200.332 (2.475) 11.870 (0.029)
10000 22.918 (4.124) 199.861 (1.947) 11.865 (0.022)
25000 55.375 (7.078) 199.965 (1.207) 11.865 (0.012)

MCUSUM

BA-Bisection
1000 1.660 (0.151) 199.274 (5.539) 14.789 (0.099)
5000 8.265 (0.743) 199.882 (2.271) 14.801 (0.041)
10000 16.554 (1.447) 199.989 (2.015) 14.804 (0.036)
25000 41.516 (3.574) 200.184 (1.204) 14.808 (0.020)

Bisection
1000 5.654 (1.267) 199.988 (3.722) 14.805 (0.067)
5000 25.031 (4.437) 200.491 (2.105) 14.813 (0.036)
10000 47.766 (6.994) 200.016 (1.625) 14.807 (0.027)
25000 118.352 (13.283) 200.093 (1.280) 14.807 (0.019)

Distribution-free CUSUM

BA-Bisection
1000 86.578 (3.340) 199.841 (6.572) 12.172 (0.085)
5000 430.578 (16.411) 199.985 (3.040) 12.176 (0.076)
10000 859.844 (32.569) 200.622 (2.160) 12.182 (0.072)
25000 2139.365 (83.603) 200.470 (1.610) 12.181 (0.070)

Bisection
1000 283.607 (57.736) 200.514 (4.447) 12.181 (0.074)
5000 1244.497 (200.503) 200.268 (2.633) 12.179 (0.073)
10000 2404.964 (245.073) 199.659 (1.834) 12.174 (0.069)
25000 5976.661 (419.766) 200.269 (1.386) 12.180 (0.068)

From the tables, it can be seen that the proposed BA–Bisection algorithm is much

faster than the traditional bisection searching algorithm while providing a similar

degree of accuracy for the searched control limit values in all cases considered. As seen

in Tables 1 and 2, computation of the control limits using the traditional bisection

searching algorithm could be expensive, and the computational cost can be reduced
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Table 2: Searched control limit (h) values of several control charts
computed via the proposed BA–Bisection algorithm and the traditional
bisection searching algorithm in cases when G0 = MRL0. The table
displays means with standard deviations in parentheses of the related
quantities based on 100 replicated simulations.

method M time (s) MRL0 h

MEWMA

BA-Bisection
1000 0.752 (0.083) 201.130 (9.294) 12.736 (0.109)
5000 3.836 (0.385) 199.320 (4.175) 12.716 (0.049)
10000 7.751 (0.750) 199.800 (3.204) 12.720 (0.036)
25000 19.394 (1.913) 200.140 (1.912) 12.726 (0.020)

Bisection
1000 4.267 (0.979) 201.110 (6.549) 12.735 (0.075)
5000 20.322 (4.291) 199.830 (2.613) 12.721 (0.030)
10000 39.990 (8.282) 200.090 (2.283) 12.724 (0.023)
25000 94.317 (15.510) 199.970 (1.594) 12.721 (0.016)

MCUSUM

BA-Bisection
1000 1.650 (0.149) 201.550 (6.601) 15.940 (0.119)
5000 8.285 (0.645) 199.565 (3.472) 15.904 (0.062)
10000 16.618 (1.277) 199.620 (2.469) 15.906 (0.046)
25000 42.465 (3.994) 200.270 (1.734) 15.915 (0.031)

Bisection
1000 7.387 (1.815) 200.795 (5.590) 15.927 (0.104)
5000 32.424 (7.753) 200.250 (2.472) 15.914 (0.045)
10000 61.631 (14.222) 199.995 (1.782) 15.913 (0.029)
25000 151.042 (27.429) 199.970 (1.167) 15.911 (0.018)

Distribution-free CUSUM

BA-Bisection
1000 95.149 (8.052) 201.540 (9.951) 13.051 (0.187)
5000 477.569 (41.588) 199.915 (4.388) 13.034 (0.152)
10000 956.087 (81.867) 199.990 (3.112) 13.034 (0.145)
25000 2383.169 (205.662) 200.400 (2.507) 13.036 (0.143)

Bisection
1000 470.683 (83.921) 199.420 (5.961) 13.027 (0.165)
5000 2484.026 (472.182) 199.870 (3.212) 13.035 (0.147)
10000 4822.338 (946.967) 199.690 (2.497) 13.033 (0.140)
25000 11187.710 (1918.285) 200.380 (1.698) 13.038 (0.137)

significantly by using the proposed BA–Bisection algorithm while providing a similar

degree of accuracy.
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3.2 Comparison with the SA algorithm for designing

multi-chart monitoring schemes

In this part, we compare the proposed BA–Bisection algorithm with the SA algorithm

Capizzi and Masarotto (2016) for designing a multi-chart monitoring scheme that

meets the constraints in Equation (4). The comparison considers the same IC pro-

cess distribution considered in Section 3.1, and the following multi-chart monitoring

schemes are considered:

1. A multi-chart scheme based on the combination of four univariate EWMA control

charts (Roberts, 1959) when p = 1 with the weighting parameters set to be 0.05,

0.1, 0.2, and 0.5, respectively.

2. A multi-chart scheme combining the Hotelling’s T 2 chart (Mason and Young, 2002;

Montgomery, 2020) and three MCUSUM control charts when p = 5 with allowance

constants set to be 0.1, 0.25, and 0.5, respectively.

3. A multi-chart scheme by using two univariate distribution-free CUSUM charts,

when p = 2 with the allowance constants set to be 0.1 and 0.5, respectively.

In this simulation, we set the nominal value a = 200 and consider the search of

the control limits for all the multi-chart schemes when G0(RL(C,h)) = ARL0 or

G0(RL(C,h)) = MRL0. We set M = 10000 for the proposed BA–Bisection algo-

rithm, and the tolerance parameters are set to be ε1 = 1 and ε2 = 10−3. The SA

algorithm is used with its parameter values recommended by Capizzi and Masarotto

(2016). The accuracy parameter γ = 0.01 of the SA algorithm is used, which is an

intermediate value between the low-accuracy and high-accuracy choices considered in

their simulation study. Additionally, we fine-tune the parameter Amax of the SA algo-

rithm to ensure convergence within reasonable time frames for each control chart.

Thus, the simulation study presented here favours the SA algorithm over the proposed

BA–Bisection algorithm, since the latter does not require selection of such tuning

16



737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

Table 3: Searched control limit values of several multi-chart schemes computed via the
proposed BA–Bisection algorithm and the SA algorithm when G0 = ARL0 or MRL0.
The table displays means with standard errors in parentheses of the indicated quantities
based on 100 replicated simulations. For each case, the best average computing times
are indicated in bold.

G0 = ARL0 G0 = MRL0

BA–Bisection SA BA–Bisection SA

Multiple EWMA

time (s) 260.937 (115.763) 1223.064 (242.84) 370.747 (111.832) 2520.891 (1148.35)
G0(RL) 200.106 (2.020) 203.864 (1.678) 200.355 (3.439) 204.480 (2.935)
G0(RL1) 407.691 (5.546) 420.696 (7.077) 419.685 (7.684) 430.200 (5.350)
G0(RL2) 407.751 (5.147) 411.695 (1.804) 419.90 (8.084) 429.050 (5.912)
G0(RL3) 407.983 (5.499) 417.093 (4.586) 420.52 (9.302) 428.465 (6.65)
G0(RL4) 407.662 (5.274) 414.143 (2.905) 419.815 (9.118) 428.785 (7.39)
h1 0.405 (0.001) 0.407 (0.001) 0.430 (0.001) 0.432 (0.001)
h2 0.628 (0.001) 0.629 (0.000) 0.661 (0.002) 0.663 (0.001)
h3 0.964 (0.002) 0.967 (0.001) 1.008 (0.002) 1.011 (0.002)
h4 1.737 (0.002) 1.739 (0.001) 1.806 (0.003) 1.810 (0.003)

T 2 and multiple MCUSUM

time (s) 280.015 (66.046) 2228.464 (751.684) 302.637 (73.588) 3623.74 (681.274)
G0(RL) 199.972 (1.986) 200.598 (0.562) 200.260 (2.485) 200.550 (0.947)
G0(RL1) 493.311 (6.935) 493.072 (1.860) 468.235 (8.328) 457.895 (2.254)
G0(RL2) 487.451 (5.414) 493.606 (1.734) 468.930 (7.327) 504.360 (1.755)
G0(RL3) 490.067 (6.695) 493.418 (1.913) 468.410 (7.976) 474.325 (2.192)
G0(RL4) 492.432 (6.351) 493.592 (1.992) 469.115 (8.261) 463.340 (2.438)
h1 18.877 (0.031) 18.875 (0.006) 19.607 (0.039) 19.553 (0.004)
h2 29.622 (0.098) 29.736 (0.019) 31.653 (0.141) 32.341 (0.014)
h3 18.024 (0.047) 18.048 (0.007) 19.017 (0.059) 19.062 (0.006)
h4 10.879 (0.020) 10.881 (0.004) 11.362 (0.027) 11.343 (0.003)

Multiple distribution-free CUSUM

time (s) 393.793 (68.299) 3886.558 (2597.667) 387.281 (69.074) 7516.773 (5718.945)
G0(RL) 199.915 (2.318) 200.412 (0.820) 200.010 (3.704) 200.960 (1.253)
G0(RL1) 325.853 (4.063) 327.259 (1.314) 328.575 (6.735) 326.845 (2.037)
G0(RL2) 326.801 (4.118) 326.793 (1.319) 329.765 (6.347) 334.560 (2.529)
h1 8.893 (0.041) 8.899 (0.034) 9.646 (0.063) 9.635 (0.048)
h2 9.127 (0.035) 9.128 (0.023) 9.851 (0.028) 9.874 (0.016)

parameters. When MRL0 is the IC RL characteristic of interest, the SA algorithm

is applied using the gradient descent iteration described in Capizzi and Masarotto

(2009). All results reported here are obtained from 100 replicated simulations of the

control limit search. In each simulation, the ARL0 or MRL0 values are estimated using

105 simulated RL values once the control limits are determined.

Table 3 shows the results for both algorithms. From the table, it can be seen

that the BA–Bisection algorithm can successfully find the control limits that satisfy

17



783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

Fig. 1: Computing times of the BA–Bisection and the SA algorithm for the three
considered multi-charts when G0 = ARL0 (top row) and G0 = MRL0 (bottom row).
Results are based on 100 independent simulations, and are displayed on a log scale.

the constraints in Equation (4) in all cases considered. Furthermore, its solution is

obtained at a small fraction of the computational cost of the SA algorithm. In cases

when MRL0 is concerned, the difference in computing times of the two algorithms is

remarkably large.

Figure 1 illustrates the computing times of the two algorithms. From the figure, it

can be seen that the computing cost of the BA–Bisection algorithm is substantially

lower, especially when considering the multiple distribution-free CUSUM chart. This

may be a result of the discreteness of the monitoring statistics, which makes the
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Fig. 2: Estimated values of G0 using the solutions obtained by the BA–Bisection and
the SA algorithm when G0 = ARL0 (top row) and G0 = MRL0 (bottom row). Results
are based on 100 replicated simulations, and each estimate is based on 105 simulated
run lengths. The dashed black line indicates the nominal value of G0.

application of gradient-based approaches more difficult. Additionally, Figure 2 displays

the estimated value of G0 using the solution obtained by the two algorithms. The BA–

Bisection algorithm appears to be more accurate when G0 = MRL0 compared to the

SA algorithm. In this case, the solutions obtained by the SA algorithm have slightly

larger values of MRL0 than the nominal value of 200. The same behavior can also be

seen in the multiple EWMA case when G0 = ARL0. These results suggest that the
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proposed extension of the proposed BA–Bisection algorithm presents a competitive

alternative to the SA algorithm for designing multi-chart monitoring schemes.

4 Improving the Efficiency Using Parallel

Computation

Whenever a high level of precision in estimating the control limits is required, the com-

putational demand could be substantial. In contemporary computing environments,

availability of multiple central processing units (CPUs) presents an avenue for cost-

efficient computation through parallelization. To this end, the proposed BA–Bisection

algorithm is inherently parallelizable. Specifically, the initial generation of the set of

trajectories C can be efficiently distributed across multiple CPUs. This paralleliza-

tion strategy is characterized by its simplicity of implementation and no coordination

requirements among the CPUs engaged in the computation process.

Here, we present an example to illustrate the application of the proposed BA–

Bisection algorithm in a high-dimensional setting using parallel computation. Let us

consider the R-SADA control chart introduced recently by Xian et al. (2018) for moni-

toring partially-observed data streams. This control chart depends on two parameters:

1) the CUSUM chart allowance constant k, and 2) the minimum shift µmin to be

detected by the control chart. The choice of appropriate values of k and µmin depends

on the underlying process distribution and the number of observable data streams.

Therefore, even with prior information on the shift to be detected, an appropriate

choice of parameters might be challenging. On the other hand, a multi-chart scheme

using different combinations of the parameters could have satisfactory performance

in various OC scenarios. As a demonstration, let us consider a multi-chart monitor-

ing scheme consists of four R-SADA control charts with the following four sets of
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parameters, respectively:

1) k = 0.5, µmin = 1.5; 2) k = 0.75, µmin = 2.0;

3) k = 1.0, µmin = 2.5; 4) k = 1.25, µmin = 3.0.

The multi-chart monitoring scheme is then used to monitor p = 200 independent

Normally-distributed data streams, of which q = 20 are observable at each observation

time. The results presented in Table 4 are based on 100 replicated simulations. For

each replication, the trajectories C are computed using one CPU, and in parallel using

four and eight CPUs. For each control limit value, the values of G0 are calculated

using 104 simulated RL values. From the table, it can be seen that the proposed BA–

Bisection algorithm can find a satisfactory solution in both cases when ARL0 and

MRL0 are considered. Furthermore, computing times are kept in a reasonable range

by allowing parallel computation in generating the IC trajectories C.

5 Conclusions

In this paper, we have introduced a modified version of the traditional bisection

searching algorithm, termed BA–Bisection algorithm, designed for determining control

limits of control charts. It has been has shown that the proposed method significantly

improves the computational efficiency of the traditional bisection searching algorithm

while maintaining a comparable level of accuracy. Leveraging this enhanced compu-

tational efficiency, an extension of the algorithm has also been proposed to design

multi-chart monitoring schemes.

The proposed approach has been compared to the traditional bisection searching

algorithm and a recent SA algorithm designed for multi-chart applications (Capizzi

and Masarotto, 2016). The results show that the proposed method is computationally

efficient, compared to the traditional bisection searching algorithm while maintaining
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Table 4: Searched control limit values of the
multi-chart scheme combining four R-SADA
control charts, computed via the proposed
BA–Bisection algorithm when G0 = ARL0 or
MRL0. The table displays means with stan-
dard deviations in parentheses of the related
quantities based on 100 replicated simulations.

G0 = ARL0 G0 = MRL0

Single CPU

time (s) 2580.348 (67.892) 2578.348 (74.283)
G0(RL) 200.665 (3.192) 200.610 (4.953)
G0(RL1) 518.274 (10.358) 543.305 (14.108)
G0(RL2) 514.692 (8.674) 543.135 (12.932)
G0(RL3) 513.227 (10.178) 543.345 (15.211)
G0(RL4) 512.690 (10.418) 543.550 (15.272)
h1 82.768 (0.234) 88.681 (0.222)
h2 87.613 (0.149) 91.833 (0.166)
h3 86.512 (0.180) 90.864 (0.193)
h4 84.443 (0.203) 89.334 (0.218)

4 CPUs

time (s) 1444.891 (50.947) 1442.693 (39.195)
G0(RL) 200.271 (3.328) 200.245 (4.042)
G0(RL1) 515.602 (9.023) 544.505 (12.396)
G0(RL2) 514.415 (8.594) 543.83 (13.716)
G0(RL3) 513.609 (9.043) 544.755 (14.091)
G0(RL4) 511.686 (9.414) 543.95 (13.875)
h1 82.731 (0.204) 88.725 (0.228)
h2 87.587 (0.156) 91.831 (0.181)
h3 86.49 (0.176) 90.865 (0.183)
h4 84.399 (0.19) 89.334 (0.194)

8 CPUs

time (s) 1091.088 (57.765) 1054.506 (33.929)
G0(RL) 199.874 (3.361) 200.565 (4.793)
G0(RL1) 515.723 (9.711) 545.74 (15.9)
G0(RL2) 511.143 (8.222) 540.95 (13.287)
G0(RL3) 511.199 (8.869) 544.125 (14.397)
G0(RL4) 510.909 (9.192) 543.815 (15.301)
h1 82.734 (0.223) 88.712 (0.249)
h2 87.555 (0.151) 91.79 (0.173)
h3 86.466 (0.164) 90.847 (0.185)
h4 84.402 (0.192) 89.331 (0.233)

the accuracy of the solution. Compared to the SA algorithm, the results indicate that

the BA–Bisection algorithm often achieves similar accuracy with substantially reduced

computational costs.
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To illustrate the versatility of the method, an example involving online monitoring

of high-dimensional partially-observed data streams using a recently-proposed control

chart has been presented. This example shows the practical applicability of the pro-

posed method, and harnesses parallel computation to further reduce computational

burden.

Our proposed algorithm removes the requirement of the traditional bisection

searching algorithm to specify initial intervals for bisection search of the control lim-

its, making the method more convenient to use. In addition, the algorithm appears

to be particularly useful when generation of process observations from the IC process

distribution is computationally expensive. This may be due to the complexity of the

data pre-processing steps, such as data decorrelation, involved in implementation of

the related control charts (Qiu and Xie, 2022; Xie and Qiu, 2023b).

Appendix A Proof of Proposition 1

Proof of Proposition 1. Since G0(RL(C,h)) is a non-decreasing function of all com-

ponents of h, in the (k + 1)th iteration, it holds that


G0(RL(C,h(k+1))) < G0(RL(C,h(k))), if G0(RL(C,h(k))) > a,

G0(RL(C,h(k+1))) > G0(RL(C,h(k))), otherwise.

Therefore, the algorithm is a valid bisection search for G0(RL(C,h)), and the final

solution h∗ satisfies G0(RL(C,h∗)) = a. Furthermore, at the kth iteration for

k = 1, 2, . . ., the constraint G0(RLj(C, h
(k)
j )) = G0(RL1(C, h

(k)
1 )) is satisfied for

all j = 2, . . . , J , since the inner loop of Algorithm 2 applies a bisection search on

G0(RLj(C, hj)), which is a non-decreasing function of hj . Since the constraint is

satisfied for all k = 1, 2, . . ., it will also be satisfied in h∗.
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