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Abstract

Modern applications of statistical process monitoring involve checking the stability
of multivariate processes with mixed data types, such as a combination of continuous,
ordinal, and categorical quality variables. Appropriate statistical modeling for such
data is often challenging, especially when the observed data are serially correlated,
which explains why there is only a limited existing discussion on sequential monitoring
of processes with mixed data. This paper introduces a general methodology to solve
the problem. The main idea behind our approach is to sequentially transform the
original observed data into continuous data through innovative data pre-processing,
achieved by encoding the ordinal and categorical variables into continuous numerical
variables using dummy and score variables and data transformation and decorrelation.
Numerical studies show that the proposed method is effective in monitoring mixed
data, in comparison with some state-of-the-art existing methods. The new method is
illustrated in a case study involving online monitoring of hotel customers’ behaviors.
Computer codes in Julia for implementing the proposed methodology are provided in
the supplemental material.

Keywords: Data decorrelation; Heterogeneous data; Mixed data; Self-starting charts; Sta-
tistical process monitoring; Transformation.
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1 Introduction

Statistical process control (SPC) charts provide a main analytic tool for online process

monitoring that has broad applications in manufacturing, healthcare, environmental mon-

itoring, and more (Montgomery, 2008; Qiu, 2013). Most existing SPC charts are designed

for monitoring either continuous numerical quality variables or categorical quality vari-

ables, but not both. In practice, however, it is common to have both continuous (e.g.,

air temperature) and categorical (e.g., sunny, rainy, or cloudy weather) variables involved.

This paper focuses on online monitoring of sequential processes with both continuous and

categorical quality variables.

Traditional SPC charts assume that in-control (IC) process observations are indepen-

dent and identically distributed (i.i.d.) and follow a parametric (e.g., normal) distribution

(e.g., Crosier, 1988; Lowry et al., 1992). In the SPC literature, it has been well demon-

strated that such charts are unreliable to use when their model assumptions are violated

(Qiu and Hawkins, 2001; Apley and Lee, 2008; Capizzi and Masarotto, 2009). To handle

cases when the normality assumption is violated, many distribution-free or nonparametric

SPC charts have been developed based on ranks (Qiu and Hawkins, 2001; Zou and Tsung,

2010; Li et al., 2017; Chakraborti and Graham, 2019) or data categorization (Qiu, 2008;

Li et al., 2012; Wang et al., 2017). While these charts can be used without strong para-

metric distributional assumptions, they only use partial (e.g., ranking) information in the

observed data, reducing their effectiveness in detecting changes in the process distribution

(Xie and Qiu, 2022). To monitor processes with serially correlated observations, many

control charts have been developed using either parametric time series modeling (Apley

and Lee, 2008; Capizzi and Masarotto, 2008; Lee and Apley, 2011; Prajapati and Singh,

2012) or nonparametric moment estimation and data decorrelation (Xue and Qiu, 2021;

Qiu and Xie, 2022; Xie and Qiu, 2024).

All the SPC charts mentioned above are for monitoring processes with continuous qual-

ity variables only. In practice, however, there are many applications involving both con-
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tinuous and categorical quality variables. Some examples are given below. In logistics,

numerical data regarding the volume of freight managed by a contractor is often recorded

alongside categorical quality variables like container type (Ning and Tsung, 2010, 2012). In

manufacturing, ordinal categorical variables such as the qualitative leakage of material after

welding are usually used in conjunction with some numerical product characteristics for

improving the quality of manufactured products (Ding et al., 2016b). In meteorological ap-

plications, continuous variables like air temperature and ozone level are typically recorded

along with ordinal (e.g. air quality indices) and categorical (e.g., presence or absence of

extreme events) data. In healthcare, continuous, categorical, and ordinal data are usually

recorded and monitored together for each admitted patient (Johnson, 2023). Additionally,

there are many cases in practice when numerical quality variables are recorded as ordinal

variables to reduce the cost of data collection (Tucker et al., 2002).

In the SPC literature, the problem to monitor processes with mixed data of both con-

tinuous and categorical quality variables has received limited attention due mainly to the

challenges in modelling the mixed data properly. Existing methods to solve this problem

typically require assumed latent structure on the observed ordinal categorical variables for

monitoring processes with both continuous and ordinal categorical quality variables (Ning

and Tsung, 2010; Ding et al., 2016a,b; Wang et al., 2017, 2018), or are constructed based

on density estimation, multiple comparisons, and other statistical methods for monitoring

processes with both continuous and categorical quality variables (Ning and Tsung, 2010,

2012; Huang et al., 2023). These methods either impose extra structure on the observed

data or make memoryless decisions by Shewhart charts based on the i.i.d. and other model

assumptions.

In this paper, we propose a general framework for the online monitoring of processes

that involve mixed data, including continuous numerical, ordinal categorical, and nominal

categorical quality variables. The core idea is briefly outlined as follows: In situations where

all quality variables are numerical, flexible SPC charts have been developed for monitoring

multivariate processes. These charts can handle cases where IC distributions do not con-
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form to any parametric distribution families and observations might be serially correlated

(cf., Wang et al., 2024; Xie and Qiu, 2022). Building on this, a natural approach is to

transform all categorical quality variables into numerical variables without significant loss

of information from the original data. For ordinal categorical variables, we recommend

using rank transformation to convert them into numerical variables. For nominal cate-

gorical variables, we suggest replacing them with corresponding dummy variables. Once

all categorical quality variables have been transformed into numerical variables, the trans-

formed data should be pre-processed to remove serial correlation and further transformed

to achieve a normal distribution, as suggested by Xie and Qiu (2022). Subsequently, a

multivariate control chart can be applied to the transformed and pre-processed data for

online process monitoring.

Our proposed method offers an effective way to monitor processes with mixed data

without imposing additional structure on the categorical quality variables, as commonly

done in previous literature (e.g., Wang et al., 2018). It also accommodates serial data

correlation and complex data distributions. Numerical studies presented in this paper

confirm that this method is effective in detecting mean shifts in processes with mixed data,

outperforming some representative existing methods.

The remainder of the paper is organized as follows. In Section 2, our proposed method-

ology is described in detail. In Section 3, simulation studies are presented to evaluate its

numerical performance, in comparison with some representative existing methods. The

proposed method is illustrated in a case study about online monitoring of hotel customers’

behaviors in Section 4. Some remarks conclude the paper in Section 5.

2 Methodology

At time t ≥ 1, let Xt be the observation of p heterogeneous quality variables of the process

under monitoring, and

Xt = (Y >t ,O
>
t ,C

>
t )>, (1)
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where Yt denotes the observation of a vector of dY continuous quality variables, Ot denotes

the observation of a vector of dO ordinal categorical quality variables with attribute levels

being {hO,k, k = 1, . . . , dO}, and Ct denotes the observation of a vector of dC nominal

categorical quality variables with the numbers of categories being {hC,l, l = 1, . . . , dC}.

The goal of our proposed method is to sequentially monitor the process {Xt, t ≥ 1} and

give a signal once a distributional shift is detected.

The core concept of our proposed method is to convert observations of ordinal cat-

egorical quality variables, Ot, and nominal categorical quality variables, Ct, into nu-

merical data. To achieve this, we suggest replacing each element in Ot with its rank

among all ordinal categories of the related variable. As a result, Ot can be relaced by

Rt ∈ {1, . . . , hO,1} × · · · × {1, . . . , hO,dO}.

For each nominal categorical variable in Ct, we recommend substituting it with dummy

variables. Specifically, consider the lth element of Ct, which has hC,l categories. This

element can be replaced by hC,l − 1 dummy variables without losing any information.

Let’s assume the first category is chosen as the reference category. The hC,l − 1 dummy

variables can be defined as follows: the first dummy variable is set to 1 if the original

categorical variable takes the value of the second category and 0 otherwise; the second

dummy variable is 1 if the original variable takes the value of the third category and 0

otherwise, and so on. Then, Ct can be relaced by the vector of dummy variables, It ∈

{0, 1}hC,1−1 × · · · × {0, 1}hC,dC
−1.

There are different methods to define dummy variables for a given nominal categorical

variable. For instance, instead of choosing the first category as the reference, the last

category could be selected as the reference. In this case, the first dummy variable would

be 1 if the original variable takes the value of the first category and 0 otherwise, and so on.

It is straightforward to verify that these two methods are equivalent in representing the

observed data of the original categorical variable (Agresti, 2013). In most software packages

(e.g., R), the default method for defining dummy variables is to use the first category as

the reference.
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As an example, consider an ordinal categorical variable with four possible values: “Low,”

“Medium,” “Medium High,” and “High,” and a nominal categorical variable with three

possible categories: “Black,” “White,” and “Red.” At a given time point, let’s assume the

first variable has the observation “Medium,” and the second variable takes the value “Red.”

In this example, the first variable is replaced by a numerical value of 2, representing its rank

among the ordinal categories. The second variable is replaced by two dummy variables.

When “Black” is chosen as the reference category, the dummy variables take the values (0,

1) at this time point, indicating the selection of “Red.”

Our proposed online monitoring procedure is constructed in the transparent sequential

learning framework (Qiu and Xie, 2022), and requires an initial IC dataset of m > 0

observations available in advance, which is denoted as X (0) = {X−m+1, . . . ,X0}. By the

transformation described above, the tth observation in this dataset can be transformed into

the numerical vector:

X∗
t = (Y >t ,R

>
t , I

>
t )>, for t = −m+ 1,−m+ 2, . . . , 0,

where X∗
t is a d∗-dimensional vector with d∗ = dY + dO +

∑dC
l=1(hC,l − 1).

It is assumed in this paper that serial correlation in X (0)∗ = {X∗
t , t = −m + 1,−m +

2, . . . , 0} is stationary. Namely, γ(s) = Cov(X∗
t ,X

∗
t+s) depends on s only. In addition, the

correlation structure is assumed to be short-ranged, namely, γ(s) ≈ 0, for s > bmax, where

bmax denotes the range of autocorrelation. Under these assumptions, the IC mean µ and

the set of IC covariance matrices {γ(s), 0 ≤ s ≤ bmax} can be initially estimated from the

IC dataset by their moment estimates as follows:

µ̂(0) =
1

m

0∑
i=−m+1

X∗
i ,

γ̂(0)(s) =
1

m− s

−s∑
i=−m+1

(
X∗

i − µ̂(0)
) (
X∗

i+s − µ̂(0)
)>
, for 0 ≤ s ≤ bmax. (2)

It should be pointed out that the stationarity assumption would be reasonable in many
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applications (e.g., manufacturing applications). In cases when this assumption is violated,

the kernel estimation of the covariance matrices discussed in Xie and Qiu (2023) can be

considered in place of the moment estimates defined in (2). In many applications, it is

reasonable to assume that correlation between two process observations is weaker when the

two observation times are farther away and thus the short-range autocorrelation assumption

is also reasonable. See Qiu and You (2022) and Xie and Qiu (2023) for some real-data

examples.

After calculating the IC parameter estimates, the initial IC data X (0)∗ is then stan-

dardized and decorrelated using the algorithm similar to the one in Qiu and You (2022).

More specifically, let Wi = ((X∗
i−b)

>, (X∗
i−b+1)

>, . . . , (X∗
i )>)> be the long vector of the

observation X∗
i and all its previous observations that need to be decorrelated with X∗

i ,

where b = min{i+m−1, bmax} and −m+ 1 ≤ i ≤ 0. Then, the variance-covariance matrix

Cov(Wi,Wi) can be written as

Σi,i =


γ̂(0)(0) · · · γ̂(0)(b)

... . . . ...

γ̂(0)(b)> · · · γ̂(0)(0)

 =

Σi−1,i−1 Σi−1,i

Σ>i−1,i γ̂(0)(0)

 ,

and the standardized and decorrelated observation at time i is defined to be

X∗∗
i =


γ̂(0)(0)−1/2

(
X∗

i − µ(0)
)
, if i = −m+ 1,

D
−1/2
i

(
X∗

i − µ(0) − Σ>i−1,iΣ
−1
i−1,i−1êi−1

)
, if i > −m+ 1,

(3)

where êi−1 = Wi−1 − µ(0) and Di = γ̂(0)(0) − Σ>i−1,iΣ
−1
i−1,i−1Σi−1,i. As pointed out by

Xie and Qiu (2024), when the IC sample size m is small, the inverse matrices Σ−1i−1,i−1,

γ̂(0)(0)−1/2, and D
−1/2
i may not exist. In such cases, a matrix modification is needed to

make these matrices positive semidefinite. In this paper, we suggest using the matrix

modification method discussed in Higham (1988) to modify the related matrices to positive

semidefinite matrices, which can be implemented using the function nearPD() in the
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R-package Matrix.

It can be checked that the standardized and decorrelated observation X∗∗
i , for each i,

would have the asymptotic mean 0 and asymptotic identity covariance matrix. In addition,

the components of X∗∗
i would be asymptotically independent. Next, the following data

transformation discussed originally in Xie and Qiu (2022) is considered. Let Fj(·) be

the IC cumulative distribution function (cdf) of the jth decorrelated quality variable, for

j = 1, 2, . . . , d∗. Then, these cdf’s can be estimated by the following empirical cdf’s:

F̂
(0)
j (x) =

1

m

0∑
i=−m+1

I(X∗∗ij ≤ x), for j = 1, 2, . . . , d∗,

where I(A) is the indicator function of the event A, and X∗∗ij denotes the jth element of

X∗∗
i . Then, the following Rosenblatt transformation (Rosenblatt, 1952; Nataf, 1962) is

applied to the standardized and decorrelated data:

Zij = Φ−1
[
F̂

(0)
j (X∗∗ij )

]
, for i = −m+ 1,−m+ 2, . . . , 0, j = 1, 2, . . . , d∗, (4)

where Φ−1 denotes the inverse of the cdf of a standard normal distribution. Note that

Equation (4) ensures that scale differences among different variables are accommodated

well so that each of the d∗ transformed variables has the asymptotic mean 0 and the

asymptotic variance 1 under some regularity conditions.

As a side note, some researchers (e.g., Shen et al., 2016) pointed out that the distribu-

tion of the transformed quantity Zij by (4) may not be well approximated by a standard

normal distribution when the original quantity X∗∗ij is discrete. For the SPC problem

focused in this paper, the main issue caused by this phenomenon is that the IC mean

of the transformed data Zi = (Zi1, . . . , Zid∗)> could be substantially different from zero.

Consequently, control charts designed for monitoring the process mean could have the IC

performance substantially different from what is expected. This issue, however, is not new

in the SPC literature. In developing nonparametric control charts by using ranks or data

categorization, the charting statistics are often discrete and the related charts can hardly
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reach a pre-specified ARL0 value. To overcome this difficulty, Qiu (2008) suggested adding

small random numbers to some related discrete quantities used in computing the chart-

ing statistic value to reduce the discreteness of the charting statistic. This idea can also

be used here. More specifically, small random numbers generated independently from the

N(0, ξ2) distribution can be added to each element of Rt and It before data decorrelation

and transformation, where ξ > 0 is a small number. In all numerical examples presented

in Sections 3 and 4, ξ is chosen to be 0.01. After this small modification, all quantities in

X (0)∗ would have no ties, and the mean of the transformed data Zt would be approximately

zero.

Next, we discuss how to monitor the process {Xt, t ≥ 1} (cf., (1)) by a self-starting

chart. At the current observation time t, the observed mixed data Xt are first converted

into numerical data X∗
t . Then, X∗

t needs to be standardized and decorrelated with all

previous data, as discussed above for the initial IC data. The standardized and decorrelated

observation X∗∗
t is then transformed by the Rosenblatt transformation as follows:

Zt =
(

Φ−1[F̂
(t−1)
1 (X∗∗t1 )],Φ−1[F̂

(t−1)
2 (X∗∗t2 )], . . . ,Φ−1[F̂

(t−1)
d∗ (X∗∗td∗)]

)
, (5)

where F̂ (t−1)
j is the empirical cdf of the j-th standardized and decorrelated variable com-

puted from the IC data at time t− 1 (see Equation (7) below).

After the data transformation by (5), the random vector Zt should have the asymptotic

joint distribution N(0, Id∗×d∗). Then, a conventional multivariate chart can be applied to

Zt for online process monitoring. For this purpose, many existing multivariate SPC charts

can be considered (e.g., Huang and Yeh, 2024; Qiu, 2013, Chapter 7). In this paper, we

use the MCUSUM chart suggested by Crosier (1988) whose charting statistic is defined as

follows. Let

St =


0, if Ct ≤ k,

(1− k/Ct)(St−1 +Zt), if Ct > k,
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where k > 0 is a pre-specified allowance, and

Ct =
√

(St−1 +Zt)>(St−1 +Zt).

Then, the chart gives a signal when

Yt =
√
S>t St > ρ, (6)

where ρ > 0 is a control limit chosen to achieve a pre-specified ARL0 value. The chart (6)

is called R-MCUSUM chart hereafter, where the first letter “R” indicates the use of the

Rosenblatt transformation in Equation (5).

In cases when the R-MCUSUM chart does not give a signal at the current time t, the pro-

cess under monitoring is declared to be IC and the current observationXt is combined with

the IC dataset. The IC data at time t is denoted as X (t) = {X−m+1, . . . ,X0,X1, . . . ,Xt},

and the numerical version is denoted as X (t)∗ = {X∗−m+1, . . . ,X
∗
0 ,X

∗
1 , . . . ,X

∗
t }. Then,

estimates of the IC quantities can be updated recursively as follows: for j = 1, 2, . . . , d∗

and s = 0, 1, . . . , bmax,

F̂
(t)
j (x) =

m+ t− 1

m+ t
F̂

(t−1)
j (x) +

1

m+ t
I(X∗∗tj ≤ x), (7)

µ̂(t) =
m+ t− 1

m+ t
µ̂(t−1) +

1

m+ t
X∗t ,

γ̂(t)(s) =
m+ t− s− 1

m+ t− s
γ̂(t−1)(s) +

1

m+ t− s
(
X∗t − µ̂(n)

) (
X∗t−s − µ̂(t)

)>
,

where X∗∗tj is the jth element of X∗∗t , and X∗∗t is the standardized and decorrelated obser-

vation at time t obtained from X (t)∗ in a similar way to that described in (3).

To use the R-MCUSUM chart (6), its control limit ρ should be chosen properly. To

this end, numerical methods based on Monte Carlo simulations, such as the ones based on

bisection search (see, for example, Qiu, 2013) and stochastic approximations (Capizzi and

Masarotto, 2016), can be considered. However, because the standardized and decorrelated

process observations {X∗∗t , t ≥ 1} would still contain some residual serial correlation and
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the data distribution would not be exactly normally distributed, in the current research

problem we suggest using the following circular block bootstrap procedure (Politis and

Romano, 1992) with the block length l > bmax to determine the value of ρ. Interested

readers can see Bühlmann (2002) and Lahiri (2003) for overviews on bootstrap methods

for analyzing autocorrelated data. To use the circular block bootstrap procedure, the initial

IC data are first wrapped around a circle. Namely, we first define Qi = Z(i+m) mod m, for

−m + 1 ≤ i ≤ 0, where “a mod b” indicates “a modulo b”, and {Zi,−m + 1 ≤ i ≤ 0}

are defined in (4). Then, a sequence of integers i0, i1, . . . is drawn with replacement from

the uniform distribution on the set {−m + 1,−m + 2, . . . , 0}. The process observations

generated by the circular block bootstrap procedure for online process monitoring are then

defined to be

Z∗h·l+j = Qih+j−1, for j = 1, 2, . . . , l, h = 0, 1, 2, . . . .

Then, the R-MCUSUM chart with a given value of ρ can be applied to each sequence

of process observations generated by the circular block bootstrap procedure, and the run

length (RL) value can be recorded. This process is then repeated for B times, and the

average of the B RL values is used for estimating the ARL0 value. The ρ value is then

searched by the bisection searching algorithm or other alternative algorithms so that a

pre-specified ARL0 value is reached.

It should be pointed out that the computational burden is quite heavy to determine

the control limit value ρ by the above procedure using the bisection searching algorithm,

because B sequences of process observations need to be generated for each given ρ value

and many such ρ values need to be considered in the searching process. To reduce the com-

putational burden, we suggest using a modified bisection searching algorithm to determine

ρ, which is described in Appendix A.

In the proposed R-MCUSUM chart, there are a few parameters to choose in advance.

The decorrelation window size bmax can usually be determined by the autocorrelation func-

tion (ACF) of the initial IC dataset in practice. In the next section, we also report some

numerical results about its impact on the R-MCUSUM chart. Once bmax is determined, it
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is found that the block size used in the circular block bootstrap procedure can be chosen

to be two times bmax to have reasonably good results.

3 Simulation Studies

In this section, we evaluate the numerical performance of the R-MCUSUM chart for moni-

toring processes with mixed data, compared to three representative existing methods based

on data categorization described below. To make the comparison fair, all four charts are

applied to the standardized and decorrelated process observations {X∗∗
t , t ≥ 1}.

• The LLCUSUM chart discussed in Xue and Qiu (2021). This chart is constructed

by categorizing each quality variable into a binary variable and then describing the

relationship among different binary variables by a log-linear model.

• The LLD chart suggested by Li et al. (2012). This chart generalizes the LLCUSUM

chart in several aspects. First, it categorizes each quality variable into a categorical

variable with multiple categories. Then, an ordinal log-linear model with second-order

interactions is considered for describing the joint distribution of all the categorical

variables. In this paper, each continuous or ordinal categorical quality variable is

categorized into 3 categories to use this chart.

• The MOC chart proposed by Wang et al. (2017) for monitoring processes with ordinal

categorical quality variables. This chart employs the same data categorization pro-

cedure as the one in the LLD chart, followed by constructing an EWMA chart based

on an approximation of the GLR test statistic derived from an estimated log-linear

model with the second-order interactions. To use this method, each continuous or

ordinal categorical quality variable is categorized into 3 categories in this paper.

In all examples considered in this section, we consider the problem of monitoring p = 3

heterogeneous quality variables. Their observations are generated in the following way.

First, observations of three continuous variables, denoted as {St = (St1, St2, St3) ∈ R3, t ≥
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1} are generated. Then, observations of the three heterogeneous quality variables, denoted

as {Xt = (Xt1, Xt2, Xt3), t ≥ 1}, are defined to be

Xt = (St1,min {[St2], 2} , I(St3 > 0)) , for t ≥ 1,

where [a] denotes the integer part of a. Namely, observations of the first quality variable

are just {St1, t ≥ 1} which are continuous numerical, observations of the second quality

variable are {min{[St2], 2}, t ≥ 1} which are ordinal categorical, and observations of the

third quality variable are {I(St3 > 0), t ≥ 1} which are binary. The main consideration

to generate observations of the three heterogeneous quality variables in this way is that

serial correlation in {St, t ≥ 1} is easier to control, compared to the serial correlation in

{Xt, t ≥ 1}.

Then, the following four scenarios with different correlation structures and/or data

distributions in {St, t ≥ 1} are considered:

• Case I: St1, St2 and St3 are independent of each other, {St1, t ≥ 1} are generated inde-

pendently from N(0, 1), and {St2, t ≥ 1} and {St3, t ≥ 1} are generated independently

from the standardized version of the χ2
2 distribution.

• Case II: Same as Case I, except that {St1, t ≥ 1} are generated independently from

the standardized version of the t3 distribution.

• Case III: The vector St is defined to be St = C1/2εt, where each component of εt is

generated independently from the standardized version of the χ2
2 distribution, and

C =


1 0.5 0.52

0.5 1 0.5

0.52 0.5 1

 .

• Case IV: The vector St is defined to be St = ASt−1 + C1/2εt, where each element of

εt is generated independently from the standardized version of the χ2
2 distribution,
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C is the same as the one in Case III, and A = diag(0.3, 0.2, 0.1).

Obviously, in Case I, there is no serial correlation in {St, t ≥ 1}, the three continuous

variables are independent of each other, the first variable has a standard normal distribu-

tion, and the second and third variables have skewed distributions. Case II is the same

as Case I, except that the first continuous variable has a heavy-tail distribution. In Case

III, there is still no serial correlation in the data, but the three continuous variables are

correlated with each other and each of them has a skewed distribution. In Case IV, there

is vector AR(1) serial correlation in the data, the three continuous variables are also cor-

related with each other, and each of them has a skewed distribution. Since the process

observations {Xt, t ≥ 1} are generated from {St, t ≥ 1}, the former should have similar

correlation structures to those in the latter.

3.1 Evaluation of the IC performance

We first investigate the IC performance of the four control charts R-MCUSUM, LLCUSUM,

LLD, and MOC in cases when the initial IC sample size m changes its value among

{250, 500, 750, 1000, 2000}. In the four charts, the smoothing parameter of the R-MCUSUM

chart is set to be 0.25, the allowance constant of the LLCUSUM chart is chosen to be 0.01,

and the smoothing parameters of the MOC and LLD charts are set to be 0.05, as suggested

in the related papers. For all charts, bmax is chosen to be 5 for data decorrelation.

The actual ARL0 value of each chart is calculated in the following way in a given

case. First, an initial IC dataset of size m is generated from the IC process distribution to

estimate the related IC process parameters. Second, the circular block bootstrap procedure

with block size of l = 10 and B = 1, 000 bootstrap samples, together with the modified

bisection searching algorithm discussed in Appendix A, is used for determining the control

limit such that the nominal ARL0 = 200 is reached. Third, the control chart with the

searched control limit is used to monitor 100 sequences of process observations generated

from the true IC process distribution directly, and the average of the 100 resulting run

length values is used to estimate the actual ARL0 value of the chart conditional on the
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initial IC data. Finally, the entire simulation mentioned above, from generation of the

initial IC data, determination of the control limit, to computation of the conditional ARL0

value, is repeated for 100 times, and the actual ARL0 value of the chart is estimated by

the average of the 100 conditional ARL0 values. In the above simulation, the length of

individual sequence is truncated at 2,000. Namely, a total of 2,000 process observations

are used in each simulation run of online process monitoring.

Figure 1 presents the actual ARL0 values of the four control charts in various cases

considered. From the figure, it can be seen that the R-MCUSUM chart has a reasonably

good IC performance in all cases considered, since its actual ARL0 values are all within

15% of the nominal ARL0 value of 200 for all considered values of m. As a comparison, the

three competing methods could have unreliable IC performance in some cases when m is

relatively small. For instance, the charts LLCUSUM and MOC do not perform well in all

cases when m = 250. The figure also shows that the IC performance of all charts become

more reliable when m gets larger, which is intuitively reasonable.

3.2 Evaluation of the OC performance

In this part, we evaluate the OC performance of the four charts R-MCUSUM, LLCUSUM,

LLD, and MOC using various simulation examples. To make the comparison among dif-

ferent control charts fair, their control limits have been adjusted properly so that their

actual ARL0 values are all the same to be 200. For detecting a given shift, their optimal

ARL1 values are considered, which are obtained by changing their parameter values such

that their ARL1 values are minimized. In the first example, the initial IC data size m is

fixed at 500, and the three continuous variables in St have the same shift size δ that can

change among {±0.25,±0.5,±0.75,±1.0}. The results are presented in Figure 2. From

the figure, it can be seen that the R-MCUSUM chart is the best or close to the best in all

cases considered. The other three charts do not perform well in some cases, especially in

cases when the shift is negative, which is mainly due to the information loss during data

categorization in these methods.
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Figure 1: Estimated actual ARL0 values of the four control charts when their nom-
inal ARL0 values are all fixed at 200 and the initial IC sample size m changes in
{250, 500, 750, 1000, 2000}.

For the proposed R-MCUSUM chart, we also study its OC performance when its the

allowance constant k is pre-specified to be one of {0.05, 0.1, 0.25, 0.5} and all other setups

are kept to be the same as those in Figure 2. The ARL1 values are shown in Figure 3. From

the figure, it can be seen that the IC performance of the proposed chart is quite robust

with respect to the choice of the allowance constant, although k should not be chosen too

large for detecting relatively small shifts. Based on the results in this example, it appears

that a value of k ∈ [0.1, 0.25] can provide a satisfactory OC performance for detecting a

wide range of shifts.

In the previous two examples, the decorrelation window size bmax is fixed at 5. To study

the impact of bmax on the OC performance of the proposed R-MCUSUM chart, we next

consider an example when bmax can change among {5, 10, 20} and all other setups are the
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Figure 2: Optimal ARL1 values of the four control charts in cases when their actual ARL0

values are fixed at 200, the initial IC sample size m is fixed at 500, and all continuous
variables in St are shifted by δ ∈ {±0.25,±0.5,±0.75,±1.0}.

same as those in the example of Figure 2. As pointed out by Apley and Tsung (2002)

and You and Qiu (2019), decorrelating the process observations can potentially mask the

process shift, leading to decreased effectiveness of the related control chart in detecting the

shift. The optimal ARL1 values of the proposed R-MCUSUM chart in the cases considered

are shown in Figure 4. From the results, it can be seen that a larger decorrelation window

size appears to adversely impact the detection power of the control chart in this example,

which is consistent with the results in Apley and Tsung (2002) and You and Qiu (2019). In

addition, the impact of the decorrelation window size on the optimal ARL1 values seems

to be more obvious for smaller shifts, and this impact might also be aggravated by the

well-known fact that small shifts are more difficult to detect by self-starting control charts

(Wardell et al., 1994; Tsung and Apley, 2002; Zantek, 2005; Capizzi and Masarotto, 2010).
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Figure 3: ARL1 values of the proposed R-MCUSUM chart in cases when its allowance
constant k changes among {0.05, 0.1, 0.25, 0.5}, its actual ARL0 value is fixed at 200, the
initial IC sample size m is set to to 500, and all continuous variables in St are shifted by
δ ∈ {±0.25,±0.5,±0.75,±1.0}.

All numerical examples discussed above focus on cases when there are only 3 hetero-

geneous quality variables, although the proposed R-MCUSUM chart can be applied to a

process of arbitrary dimensions. It is expected that when the dimensionality of the process

increases, the initial IC sample size should also increase to have a satisfactory performance.

To study these issues, we consider an example in which the dimensionality of the process

could be 3, 6, or 9. In the case where the dimension is 6, the vector Xt is generated by

sampling a vector St of six latent variables. The observationsXt are then defined by select-

ing the first two latent variables, transforming the second two latent variables into ordinal

categorical, and discretizing the last two latent variables into binary variables. Similarly,

in the case where the dimension is 9, the same procedure is followed, but with nine latent
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Figure 4: Optimal ARL1 values of the proposed R-MCUSUM chart in cases when bmax ∈
{5, 10, 20}, its actual ARL0 value is fixed at 200, the initial IC sample size m is set to to
500, and all continuous variables in St are shifted by δ ∈ {±0.25,±0.5,±0.75,±1.0}.

variables being sampled and then processed three at a time.

The correlation matrix C of the latent variables is defined, for dimensions p = 6 and 9,

as

C = (cij)i,j=1,...,d∗ =
(
0.5|i−j|

)
i,j=1,...,d∗

.

When p = 6, the matrix A is given by A = diag (0.3, 0.3, 0.2, 0.2, 0.1, 0.1), and when p = 9,

A = diag (0.3, 0.3, 0.3, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1). All other settings are the same as those in

the example of Figure 4, except that only Case IV is considered here for simplicity. All

latent variables are therefore sampled from the standardized version of the χ2
2 distribution.

The optimal ARL1 values of the proposed R-MCUSUM chart are shown in Figure 5.

From the plot, it can be seen that i) the OC performance of the proposed chart is quite ro-
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bust to the dimensionality when detecting large shifts, and ii) its OC performance becomes

worse when the dimensionality increases when detecting positive small shifts. As seen in

Figure 2, negative shifts appear to be easier to detect than positive shifts of the same

magnitudes, because of the fact that the distribution of each quality variable is skewed to

the right in Case IV. Consequently, the dimensionality appears to have a smaller impact

on the OC performance of R-MCUSUM when detecting negative shifts in this example.

Figure 5: Optimal ARL1 values of the proposed R-MCUSUM chart in cases when process
observations are generated in Case IV when the dimension of the process varies in {3, 6, 9},
its actual ARL0 value is fixed at 200, the initial IC sample size m is set to to 500, and all
continuous variables in St are shifted by δ ∈ {±0.25,±0.5,±0.75,±1.0}.
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4 An Application

In this section, we demonstrate our proposed R-MCUSUM chart using an example of mon-

itoring the behaviors of hotel customers. The dataset is publicly available as part of the R

package modeldata (Kuhn, 2023) that is described in Antonio et al. (2019). It contains 28

variables for each customer, including the date of arrival, family composition, and informa-

tion related to the hotel booking. For the purpose of demonstrating our proposed method,

the following three quality variables are used, which are relevant for identifying patterns in

the customer base:

1. Meal: Indicates the type of meal package requested alongside the room. It is an

ordinal categorical variable with the following possible values: “none” (1), “breakfast”

(2), “breakfast and one meal” (3), “breakfast, lunch and dinner” (4).

2. Special requests: A numerical variable indicating the number of special requests made

by the customer.

3. Repeated guest: A binary variable indicating whether the customer of a booking is a

repeated guest (1) or not (0).

To facilitate the analysis, we first identify a stable subset of the data as the initial IC

data, and then use the remaining observations for online process monitoring. The original

data are shown in Figure 6. From the figure, it is evident that the variable “Special requests”

takes values from the finite set {0, 1, 2, 3, 4, 5}. Therefore, it can be viewed as either an

ordinal categorical variable or a continuous variable. In fact, these two different treatments

would result in the same outcomes, as explained below. If “Special requests” is treated

as an ordinal categorical variable, it would be transformed according to the suggested

method discussed in the second paragraph of Section 2. This transformation results in a

numerical variable taking values from {1, 2, 3, 4, 5, 6}, which is equivalent to adding 1 to

the “Special requests” values treated as a continuous variable. As a result, the standardized

and decorrelated data of this variable remain identical in both setups. Consequently, all
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process monitoring results would remain unchanged.

In this example, the first 1,900 observations of the three variables are used as the initial

IC data, while the remaining observations are used for process monitoring. These two

segments are separated by a vertical dashed line in each plot of Figure 6. For the initial

IC data, the Box-Pierce tests show significant autocorrelation in the observed data of all

three variables, with p-values of ≤ 2.2× 10−16, 2.9× 10−11, and ≤ 2.2× 10−16, respectively.

The Augmented Dickey-Fuller Test (ADF) indicates that the serial correlation in each

sequence is stationary, with p-values smaller than 0.01 (Note: stationarity is the alternative

hypothesis of this test and thus confirmed when the test is significant). The Shapiro-Wilk

normality tests show that none of the variables are normally distributed with all three

p-values smaller than 2.2× 10−16.

After conducting data standardization, decorrelation, and the Rosenblatt transforma-

tion, as discussed in Section 2, the observed data are shown in Figure 7. For the initial

IC data, the Box-Pierce tests confirm that the autocorrelation in the observed data has

been mostly removed by the data transformations, with p-values for the three variables

being 0.9941, 0.9947, and 0.9776, respectively. The normality of the data has improved, as

indicated by the substantially increased test statistic values of the Shapiro-Wilk normality

tests. However, the tests cannot confirm the normality of the transformed data, which is

expected, as discussed in the second-to-last paragraph of Section 2.

To assess the performance of our proposed method, we apply the four control charts

R-MCUSUM, LLCUSUM, LLD, and MOC to this dataset. In this example, the nominal

ARL0 values of all charts are fixed at 500, the data decorrelation window is set to be

bmax = 20, and the block size of the circular block bootstrap procedure is set to be 40.

All other setups are the same as those in the simulation studies. The four control charts

are shown in Figure 8. From the figure, it can be seen that the LLCUSUM control chart

gives its first signal at the 8th observation. Based on our numerical experience, the run

length distribution of the LLCUSUM chart tends to have a large variance, leading to a

large probability to have small run length values. By checking the transformed data shown
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Figure 6: Original observations of the three quality variables in the hotel customer example.
The dashed vertical line in each plot separates the initial IC data from the data for online
process monitoring.

in Figure 7, it seems that there is no obvious shifts at or before the 8th observation time

after the online process monitoring starts. Therefore, this signal by the LLCUSUM chart

could be a spurious signal.

Among the remaining three charts, the proposed R-MCUSUM chart gives the earliest

signal at the 302nd observation time during process monitoring, while the charts LLD and

MOC give their signals at the 304th and 324th observation times, respectively. From Figure

7, it can be seen that there is a positive shift in the average number of special requests. This

shift is successfully detected by the charts R-MCUSUM, LLD and MOC, and R-MCUSUM

gives the earliest signal among them.
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Figure 7: Transformed observations of the three quality variables in the hotel customer
example. The dashed vertical line in each plot separates the initial IC data from the data
for online process monitoring, and the dotted vertical line indicates the first signal time of
the proposed R-MCUSUM chart.

5 Conclusions

Monitoring processes with mixed data of heterogeneous quality variables can be challeng-

ing due to the difficulty in properly modelling the observed data. In this paper, a general

framework has been developed for this purpose. Instead of relying on data categorization

that would lead to information loss, our method uses various data transformations to sim-

plify the related problem into a process monitoring problem for processes with multivariate

numerical quality variables. Numerical studies presented in Section 3 and Section 4 have

shown that it is effective for monitoring mixed data in various cases considered. In practice,

there could be many quality variables involved. Although our proposed method can handle

such cases by theory, it may need a quite large initial IC dataset in order to have a reliable

performance. In such cases, it may be beneficial to incorporate a dimensionality reduc-
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Figure 8: Control charts R-MCUSUM, LLCUSUM, MOC, and LLD when they are applied
to the properly transformed hotel customer data. The horizontal dashed line in each plot
indicates the control limit of the related chart when ARL0 = 500. The red point in each
plot indicates the first signal time by the related control chart.
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tion technique, such as the variable selection (Hastie et al., 2013) and principal component

analysis (Xie and Qiu, 2023) procedures. This requires much future research.
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A Modified Bisection Search Algorithm

Calculating the control limit ρ to obtain an average run length E0[RL] = ARL0 can be time-

consuming due to the heavy computational requirements of the decorrelation procedure

(3). To address this concern, a workaround is implemented by simulating and storing a

large number (B = 1, 000) of Phase II decorrelated datasets of length 10 · ARL0 from

the IC process. This initial simulation employs the block bootstrap procedure discussed

in Section 2. Next, a bisection search algorithm (see Qiu, 2013, for details) is employed.

For each control chart, the Phase II samples are resampled using a bootstrap approach

to calculate the ARL0 value for the current estimate of the control limit. This iterative

process continues until the bisection algorithm terminates. Furthermore, the initial interval

required by the bisection search can be set to

[hL, hU ] =

[
min
Ci,b∈C

Ci,t, max
Ci,b∈C

Ci,t

]
, (A.1)

where C = {Ci,n : i = 1, . . . , 10 · ARL0, b = 1, . . . , B} is the set of all values that the moni-

toring statistic takes in the B simulated Phase II datasets. Note that, by using the initial

interval defined in (A.1), the property 1 = ARL0(hL) ≤ ARL0 ≤ ARL0(hU) = 10 · ARL0
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required by the bisection algorithm is trivially verified. By storing the decorrelated data in

advance and using this choice of initial interval in the bisection search, the computational

cost of finding the control limit is greatly reduced.
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