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Abstract

In cancer and other medical studies, time-to-event (e.g., death) data are common.
One major task to analyze time-to-event (or survival) data is usually to compare
two medical interventions (e.g., a treatment and a control) regarding their effect on
patients’ hazard to have the event in concern. In such cases, we need to compare
two hazard curves of the two related patient groups. In practice, a medical treatment
often has a time-lag effect, i.e., the treatment effect can only be observed after a time
period since the treatment is applied. In such cases, the two hazard curves would
be similar in an initial time period, and the traditional testing procedures, such as
the log-rank test, would be ineffective in detecting the treatment effect because the
similarity between the two hazard curves in the initial time period would attenuate
the difference between the two hazard curves that is reflected in the related testing
statistics. In this paper, we suggest a new method for comparing two hazard curves
when there is a potential treatment time-lag effect based on a weighted log-rank test
with a flexible weighting scheme. The new method is shown to be more effective
than some representative existingmethods in various cases when a treatment time-lag
effect is present.
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1 INTRODUCTION

Survival analysis is widely used in medical studies and other applications for analyzing time-to-event data1,2,3. In medical

studies, when assessing treatment effects for some life-threatening diseases like cancers, heart diseases, and HIV infections,

the primary outcome is often a patient’s time-to-death after a treatment is applied. In some other applications to treat milder

diseases like influenza, researchers usually focus on a patient’s time-to-recovery from such diseases. Besides medical studies,
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survival analysis is also essential in many other fields, such as credit risk analysis, production adoption analysis, and quality

control in medical systems. When assessing treatment effect, the most commonly used approach in practice is to compare two

hazard curves of the treatment and control groups. This paper develops a new method for comparing two hazard curves in cases

when there is a treatment time-lag effect (i.e., there would be a delay in time the treatment effect can be observed).

Because of its importance, there are already many methods developed in the literature for effective comparison of two hazard

curves3,4. Traditional methods, such as the Log-rank, Gehan-Wilcoxon, and Peto-Peto tests, are developed under the assumption

that the Cox proportional hazards model is appropriate for describing the hazard curves2. In practice, however, there are many

cases when this assumption is invalid. One important case is when the two hazard curves cross each other. There have been some

methods developed for comparing two crossing hazard curves. See, for instance, the papers5,6,7,8,9,10,11,12,13 and the references

cited therein.

In practice, a medical treatment often has a time-lag effect. In some applications, a treatment does not show a benefit early on,

but it has a long-term advantage. For example, immuno-oncology is a rapidly evolving area in the development of anti-cancer

drugs. The effect of Immuno-oncology is not typically directed to the tumor itself; it instead boosts or releases the brake from

a patient’s immune system, and this positive effect may not be observed immediately14. See Section 4 for another real-data

example. In such cases, the Cox proportional hazards assumption would be violated, and the two hazard curves would be similar

in an initial time period of a study and become different afterward. If a traditional method (e.g., the Log-rank test) is used to

compare such hazard curves, then the treatment effect shown after the initial time period would be difficult to detect, because

the similarity between the two curves in the initial time period would attenuate the overall difference between the two hazard

curves in the entire study period that is reflected in the related testing statistic.

To address the treatment time-lag effect, there have been some discussions in the literature. For instance, Dinse et al15 proposed

a method for estimating the length of the time-lag period based on the Kaplan-Meier estimates of the survival functions. The

resulting estimate has been confirmed positively biased16. Gierz et al17 developed an alternative method for estimating the

length of the time-lag period by using an empirical divergence measure. Although it has been shown that this method performs

better than the one by Dinse et al in various cases, both methods cannot test whether the treatment effect is significant or not. In

cases when the time-lag period can be pre-specified, Zucker and Lakatos18 proposed two weighted Log-rank tests for comparing

the related hazard curves. In practice, however, a precise specification of the time-lag period could be challenging. Park and

Qiu16 proposed a generalized Cox proportional hazards model that can accommodate the time-lag effect. However, this method

assumed the log hazard ratio to be a linear function of time, which could be too restrictive for some applications.

In this paper, a novel weighted Log-rank test is suggested for comparing two hazard curves when there is a potential treatment

time-lag effect. The new weighted Log-rank test employs a flexible weighting scheme based on the Box-Cox transformation.
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It does not require any prior knowledge about the length of the potential time-lag period, and is not confined to any particular

parametric forms for the hazard ratio. Numerical studies show that it is effective in various cases considered.

The remainder of the paper is organized as follows. Section 2 provides a formulation of the research problem and a detailed

description of our proposedmethod. Section 3 presents some simulation results about the numerical performance of the proposed

method in comparison with some representative existing methods. Section 4 demonstrates the proposed method using two

real-world datasets. Section 5 gives some concluding remarks.

2 PROPOSED METHOD

In this paper, our major goal is to test whether there is a treatment time-lag effect based on the observed survival data. Let ℎ1

and ℎ0 represent the hazard rate functions of the treatment and control groups, respectively. Then, we are interested in testing

the following hypotheses:

H0 ∶ ℎ1(t) = ℎ0(t), for all t ∈ [0,  ] versus

H1 ∶

⎧

⎪

⎨

⎪

⎩

ℎ1(t) = ℎ0(t), if t ≤ �, � ∈ (0,  )

ℎ1(t) ≠ ℎ0(t), otherwise
, (1)

where [0, ] denotes the entire study period, [0,�] is the time-lag period, and � is the length of this period and also called the

time-lag point hereafter.

To test the hypotheses in (1), we suggest a weighted log-rank testing procedure described below. Let nj be the number of

subjects in group j, for j = 1, 2, and {t1, t2, … , tD} be the set ofD distinct ordered event times in the pooled sample. For the jth

group at time ti, dij denotes the observed number of events and Yij denotes the number of individuals at risk, for i = 1, 2,⋯ , D,

and j = 1, 2. Let di = di1+di2 and Yi = Yi1+Yi2, for each i. Then, the test statistic of the weighted log-rank test3 is defined to be

U =

∑D
i=1w(ti)

(

di1 − Yi1
di
Yi

)

√

∑D
i=1w2(ti)

Yi1
Yi

Yi2
Yi

Yi−di
Yi−1

di
, (2)

where {w(ti), i = 1, 2,⋯ , D} are the pre-specified weights.

For the test statistic U defined in (2), the difference between two estimated hazard rate functions is calculated at each time

point ti, and U is just a standardized weighted average of all such differences at {ti, i = 1, 2, … , D}. Intuitively, for testing

the hypotheses in (1), the weight w(ti) should be 0 when ti ≤ � (i.e., before the time-lag point) because the inclusion of the

terms corresponding to {ti, ti ≤ �} in U cannot improve its power to detect the treatment effect after �. On the other hand, when

ti > � and ti increases, the weightw(ti) should get larger since the related terms in U could provide more information about the
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treatment effect. Based on these intuitions, we suggest using the following weighting function in (2):

w(t; �, �) =
[

BC�(t) − BC�(�)
]

I(t > �), (3)

where I(t > �) is an indicator function that equals 1 when t > � and 0 otherwise, BC�(t) is the modified Box-Cox transformation

defined by

BC�(t) =
⎧

⎪

⎨

⎪

⎩

log(t), if � = 0

t� , otherwise,
(4)

and � > 0 is a coefficient. It should be pointed out that the regular Box-Cox transformation is defined to be log(t) when � = 0

and (t�−1)∕� otherwise. Because the weights are used in both the numerator and denominator of (2) and the difference BC�(t)−

BC�(�) is used in defining the weight function, it can be easily checked that the test statistic U would not change if the regular

Box-Cox transformation is replaced by its simplified version in (4). See the paper9 for some related discussions. By changing the

value of �, the weighting function w(t; �, �) can have many different patterns. So, it is flexible. In this paper, we only consider

non-negative values for � to make sure thatw(t; �, �) is an increasing function of t after the time-lag point �. This restriction can

be lifted easily if it is unreasonable in some applications, making the weighting function even more flexible. Figure 1 shows the

weighting functionw(t; �, �) in cases when  = 3, � = 1, and � changes its value among {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}.

From the plot, it can be seen that the increasing rate is larger when � is larger. When � = 0, the weighting function increases

slowly with t in a logarithm rate. When � = 2, it increases quite fast in a quadratic rate.
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Figure 1 The weighting function w(t; �; �) in cases when  = 3, � = 1, and � changes its value among
{0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}.
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In the case when the time-lag point � is known, the test statistic of the weighted Log-rank test using the weighting function

defined in (3) is then

U�,� =

∑D
i=1w(ti; �, �)

(

di1 − Yi1
di
Yi

)

√

∑D
i=1w2(ti; �, �)

Yi1
Yi

Yi2
Yi

Yi−di
Yi−1

di
. (5)

In practice, however, � is usually unknown, and the parameter � should be chosen properly too. To address these issues, the test

statistic of our proposed weighted Log-rank test is defined to be

Ũ = max
�≥0

max
�∈[0, ]

|

|

U�,� || . (6)

In (6), the value of � is first searched for a given � so that the magnitude of the weighted Log-rank test statistic U�,� defined in

(5) is maximized. The maximizer, denoted as �̃(�), should be a good estimate of the time-lag point if the given � value is a good

choice for the weighting function w(t; �, �). Then, the value of � is also searched to maximize the value of ||
|

U�,�̃(�)
|

|

|

, and Ũ is

defined to be the maximum.

In the survival analysis literature, it has been shown that the weighted Log-rank test statistic U�,� , for given values of � and

�, would have a normal asymptotic distribution under some regularity conditions4,19. However, the proposed test statistic Ũ

involves two maximizations of |
|

U�,� || with respect to � and �. In a different case involving a maximization of a weighted Log-

rank test statistic, O’Quigley and Pessione20 showed that the distribution of the resulting maximum would be bimodal, and they

introduced a method called the Direct Bootstrap for computing the p-value for the related testing procedure. Next, we will show

that the distribution of the proposed test statistic Ũ is also bimodel. Thus, the Direct Bootstrap procedure is also considered here

for computing the p-value of the testing procedure using Ũ defined in (6).

In cases when ℎ0(t) = ℎ1(t) = 1 (i.e.,H0 in (1) is true), n1 = n2 = 200, [0,  ] = [⨗, ⨘.] and the censoring times are generated

from uniform distributions on [0; 1.8], the density histogram of Ũ based on 8,000 replicated simulations is shown in Figure 2(a).

In each simulation, n1 = n2 = 200 survival times are generated as specified above for both the treatment and control groups,

and then the value of Ũ is computed. So, Figure 2(a) is made based on 8,000 values of Ũ . From the plot, it can be seen that the

null distribution of Ũ is indeed bimodal and symmetric about 0. Figure 2(b) and 2(c) show the density histograms of Ũ in cases

when ℎ1(t) changes to

ℎ1(t) = {exp[1.5(t − 1.2)]} I(t > 1.2) + I(t ≤ 1.2)

and

ℎ1(t) = {exp[1.5(t − 0.9)]} I(t > 0.9) + I(t ≤ 0.9),

respectively, and other settings are kept unchanged. Obviously, the time-lag point is respectively 1.2 and 0.9 in these two cases

whenH0 is violated and there is a treatment time-lag effect. From the two plots, it can be seen that i) the bimodal shape of the

density histogram is retained, but the distribution of Ũ becomes skewed towards the direction of the alternative hypothesis, and
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ii) when the time-lag point � is larger (i.e., � = 1.2 in plot (b)), the distribution is less skewed, implying that the alternative

hypothesis is more difficult to confirm by the test due to the fact that a longer time-lag period would attenuate the overall

difference between the two related hazard curves more seriously.
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Figure 2 Panels (a)-(c) show the density histograms of Ũ in cases when ℎ0(t) = 1, and ℎ1(t) = 1 (plot (a)), ℎ1(t) = {exp[1.5(t−
1.2)]}I(t > 1.2) + I(t ≤ 1.2) (plot (b)), or ℎ1(t) = {exp[1.5(t − 0.9)]}I(t > 0.9) + I(t ≤ 0.9) (plot (c)).

To calculate the p-value of the test using Ũ by the Direct Bootstrap procedure, a bootstrap sample of size nj is first drawn

with replacement from the observed data of group j, for j = 1, 2, and then the value of Ũ is computed by (6). This bootstrap

resampling process is repeated for B times. Among the B values of Ũ , let B+ be the number of positive values and B− be the

number of negative values. Then, the p-value of the test using Ũ for testing the hypotheses in (1) is defined to be

p-value = 2min(B+, B−)∕B.

See the paper20 for a related discussion.
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3 SIMULATION STUDY

In this section, we evaluate the numerical performance of our proposed method in detecting the treatment time-lag effect using

simulation studies in comparisonwith several representative existingmethods. The existingmethods considered in the simulation

studies include the Log-rank (LR), Gehan-Wilcoxon (GE), Tarone-Ware (TW), Peto-Peto (PE), Fleming-Harrington (FH), and

Zucker and Lakatos (ZC) testing procedures. In the Fleming-Harrington testing procedure, there are two parameters � and �

used in its weighting function. As in Park and Qiu’s paper16, the following three combinations for these two parameters are

considered here: (�=0, �=1), (�=1, �=0), and (�=1, �=1), and the related testing procedures are denoted as FH01, FH10, and

FH11, respectively. To use the Zucker and Lakatos testing procedure, the potential time-lag point �∗ should be specified in

advance. In this section, we set �∗ to be the following three values: � -0.05, �, and �+0.05, where � denotes the true time-lag

point. The three related testing procedures are denoted as ZC−, ZC, and ZC+, respectively, representing the testing approach

when the pre-specified time-lag point is smaller than, equal to, or larger than the true time-lag point. Since our proposed method

is a special weighted Log-rank test that incorporates the modified Box-Cox transformation (4), it is denoted as BC hereafter.

The simulation is performed in the following cases. In Case 1, it is assumed that ℎ0(t) = ℎ1(t) = 1 (i.e., H0 in (1) is true).

The other cases are described below whenH0 is invalid, ℎ0(t) = 1, and ℎ1(t) takes one of the following patterns:

Exponential patterns: ℎ1(t) = {exp[1.5(t − �)]} I(t > �) + I(t ≤ �), where � changes among {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2},

and the related cases are denoted as Cases E2– E8, respectively.

Linear patterns: ℎ1(t) = [5(t − �) + 1] I(t > �) + I(t ≤ �), where � changes among {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}, and the

related cases are denoted as Cases L2–L8, respectively.

Quadratic patterns: ℎ1(t) =
[

(t − � + 1)2
]

I(t > �) + I(t ≤ �), where � changes among {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}, and

the related cases are denoted as Cases Q2–Q8, respectively.

These cases are shown in Figure 3, from which it can be seen that various cases with different time-lag points and different

patterns of ℎ1(t) have been considered here.

In each case considered above, n1 (n2) observations of survival times are generated randomly from a survival time distribution

with the hazard function ℎ0(t) (ℎ1(t)), where n1 = n2 and n1 can take the value of 100, 150, or 200. Two different censoring

schemes are considered, which are referred to as censoring scheme I and censoring scheme II. Under the censoring scheme I,

the censoring times are generated randomly from the uniform distribution on the interval [0, 3.6], while the censoring times

are generated randomly from the uniform distribution on the interval [0, 1.8] under the censoring scheme II. Therefore, the

maximum observed survival time in the simulated data is 3.6 and 1.8, respectively, under these two censoring schemes. Tables 1-

2 summarize the censoring rates of the observed survival data in the control and treatment groups in each case considered under
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Figure 3 Panels (a)-(c) present the hazard rate functions in cases when ℎ0(t) = 1, and ℎ1(t) has the exponential, linear, and
quadratic patterns, respectively, with different time-lag periods between the two hazard functions.

the two censoring schemes. It can be seen that the censoring rates range from 18% to 28% under the censoring scheme I, and

from 37% to 47% under the censoring scheme II. Thus, the two censoring schemes can represent a low and a high censoring

level, respectively.

[Tables 1-2 about here]

Next, we study the empirical sizes and powers for all the following tests: LR, GE, TW, PE, FH01, FH01, FH01, ZC−, ZC, ZC+,

and BC, under different censoring schemes and sample sizes. To determine the critical value of a given test, a Monte Carlo

simulation with 8,000 replications is performed under the null hypothesis that both hazard rate functions of the control and

treatment groups are the constant 1. Then, the critical values of the test are selected to be the 2.5% and 97.5% quantiles of the

empirical distribution of the test statistic obtained from the 8,000 replicated simulations, given the significance level � of the test

to be 0.05. Then, the size and power of the test are obtained by performing another 1,000 replicated simulations under the null
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(i.e., ℎ1(t) = 1) and an alternative (i.e., ℎ1(t) takes one of the alternative patterns shown in Figure 3) hypothesis, respectively.

The results under the two censoring schemes and three sample sizes considered are presented in Tables 3-8, respectively.

[Tables 3-8 about here]

From Tables 3-8, it can be seen that the sizes of all testing methods are quite close to the nominal significance level of 0.05 in

all cases considered. The proposed method BC has the largest power in all cases considered, except the seven cases E7, E8, L8,

Q7, and Q8 when n1 = n2 = 100 and E8 and Q8 when n1 = n2 = 150 under the censoring scheme II. In these 7 out of a total

126 cases considered in the tables, the time-lag point � is quite large, and the data censoring rate is quite high. In these cases,

the methods ZC and/or ZC+ perform slightly better than BC, with the price that the time-lag point needs to be pre-specified.

If the time-lag point is not pre-specified properly, then the method ZC may not perform well since BC performs better than

one of ZC−, ZC, and ZC+ in 4 out of the 7 cases mentioned above. From the tables, we can also observe that the traditional

methods LR, GE, TW, and PE for comparing the two hazard rate functions are not effective in cases when there is a treatment

time-lag effect, since their power values are much smaller than those of other methods in all cases considered. Therefore, if a

treatment time-lag effect is present, they should be avoided. For the methods FH and ZC, their performance is reasonably good

only when their parameters (i.e., � and � in FH and �∗ in ZC) are chosen properly, which may not be easy in practice. From the

tables, it can be seen that the power of each method decreases when the time-lag point increases, which is intuitively reasonable

because the overall difference between the two hazard rate functions becomes smaller when the time-lag point increases. When

other simulation settings remain unchanged, all methods seem to have larger powers when the censoring rate is lower and/or the

sample sizes are larger, which is intuitively reasonable as well. As a summary, this example confirms that the proposed method

BC provides a powerful tool for comparing two hazard rate functions when there is a treatment time-lag effect.

4 CASE STUDY

In this section, we apply our proposed method BC and other comparative approaches discussed in Section 3 to two real-data

examples. The first example was originally discussed in Mantel et al’s paper21 and became a popular example in the survival

analysis literature. The data were from a study to investigate whether a drug is useful in preventing the formation of tumors in

rats. To this end, 100 distinct litters were used, and each litter contained three rats. One randomly selected rat from each litter

received the drug treatment; the other two were treated with a placebo. The event of interest was the tumor incidence, and the

study was conducted over a period from day 0 to day 100 after the treatment. The observed survival data are available in the R-

package survival. Due to the limited number of male rats with tumors (only 2 out of 150), our analysis focuses only on female

rats. Consequently, there were 31 rats in the drug group (treatment group) with a censoring rate of 48% and 50 rats in the placebo

group (control group) with a censoring rate of 66%. By using kernel-based methods22, the estimated hazard rate functions for
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both the control and treatment groups are shown in Figure 4. From the figure, it can be seen that the two hazard curves are almost

the same until about 80 days, and the hazard curve of the drug group tends to be above that of the placebo group afterward.
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Figure 4 Estimated hazard curves of the treatment and control groups of the Rats dataset.

Next, we apply the methods LR, GE, TW, PE, FH01, FH01, FH01, ZC−, ZC, ZC+, and BC to this dataset to compare the two

hazard curves. For each method, the conventional significance level of 0.05 is used. To compute the p-value of the proposed

method BC, the Direct Bootstrap procedure discussed at the end of Section 2 is used, in which the bootstrap sample size is

chosen to be 2,000. For the ZC method, the time-lag point is pre-specified to be 77, 81 (the point estimate of � by BC), or 85,

and the three versions of the method are denoted as ZC−, ZC, and ZC+, respectively. Table 9 presents the p-values of all the

testing methods considered. From the results in the table, it can be seen that the four conventional testing methods LR, GE, TW,

and PE cannot detect the treatment effect in this example, as expected, since the treatment time-lag effect would attenuate the

overall difference between the two hazard curves so that their test statistic values become small in magnitude. The methods FH

and ZC can detect the treatment effect only when their parameters are pre-specified properly (i.e., �=0 and �=1 in FH and � =

85 in ZC). As a comparison, the proposed testing method BC is very significant in this example and its p-value is much smaller

than those of the other methods. Therefore, this example confirms that BC is a powerful tool for comparing two hazard curves

when the treatment time-lag effect is present.

[Table 9 about here]
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Additionally, we apply the related methods to another example with the Veteran dataset that was discussed in the paper23.

The data are included in the R-package survival and can be downloaded there. This Veteran study included 106 lung cancer

patients over 50 years old. Among them, 55 patients were randomly assigned to receive a test therapy (treatment group), and

another 51 patients were assigned to receive standard therapy (control group). The primary outcome for each patient was the

time to death. During the study, two censored observations were recorded in the treatment group and five in the control group.

Figure 5 illustrates the estimated hazard rate functions for both groups. The treatment time-lag effect can be seen from Figure 5.

Specifically, there is a slight variation in the difference between the two hazard rate functions of the treatment and control groups

before day 360. After day 360, the hazard rate function of the control group is significantly higher than the hazard rate function

of the treatment group. Then, we apply all related methods to the dataset using the same setups as those in the previous example.

Specifically, we employ a bootstrap sample size of 2000 for the BC method, and the pre-specify time-lag point is set at 355, 370,

and 385 for the methods ZC−, ZC, and ZC+, respectively. The testing results of all methods are presented in Table 10. From the

table, it can be seen that only ZC+ and BC can successfully detect the time-lag difference between the two hazard rate functions.

The ZC method can detect the difference when the pre-specified time-lag point is relatively large and our proposed BC method

has the smallest p-value among all methods in this example. So, this example further confirms the effectiveness of the proposed

method for comparing two hazard curves when there is a treatment time-lag effect.
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Figure 5 Estimated hazard curves of the treatment and control groups of the Veteran dataset.

[Table 10 about here]
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5 CONCLUDING REMARKS

In the previous several sections, we have discussed our proposed method for comparing two hazard rate functions in cases when

there is a treatment time-lag effect. This method is constructed under a weighted log-rank testing framework with a flexible

weighting scheme that incorporates the modified Box-Cox transformation (4). Numerical studies in Sections 3 and 4 show that

it provides an effective tool for detecting treatment effect when there is a treatment time-lag effect. However, there are still some

issues about the proposed method. For instance, our study focuses on hypothesis testing of a treatment time-lag effect rather

than point estimation of the time-lag point. It is still unknown yet how to define a proper estimate for the time-lag point based

on the proposed testing procedure. Also, although the weighting function defined in (3)-(4) is already very flexible, it is still

unknown whether it is possible to derive a data-driven nonparametric weighting scheme for the proposed testing procedure. In

addition, observed survival times are often associated with some covariates (e.g., gender, age) in practice. It is still unknown

how to accommodate such covariates in the proposed method. All these issues need much future research.
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Table 1 Censoring rates of the control and treatment groups in various cases under the censoring scheme I.

n1 = n2 = 100 150 200
Case Control Treatment Control Treatment Control Treatment
1 0.2704 0.2697 0.2697 0.2707 0.2701 0.2700
E2 0.2704 0.2034 0.2697 0.2043 0.2701 0.2037
E3 0.2704 0.2105 0.2697 0.2111 0.2701 0.2107
E4 0.2704 0.2168 0.2697 0.2175 0.2701 0.2170
E5 0.2704 0.2225 0.2697 0.2232 0.2701 0.2227
E6 0.2704 0.2277 0.2697 0.2284 0.2701 0.2279
E7 0.2704 0.2323 0.2697 0.2330 0.2701 0.2325
E8 0.2704 0.2368 0.2697 0.2374 0.2701 0.2368
L2 0.2704 0.1866 0.2697 0.1874 0.2701 0.1870
L3 0.2704 0.1950 0.2697 0.1959 0.2701 0.1954
L4 0.2704 0.2027 0.2697 0.2036 0.2701 0.2032
L5 0.2704 0.2103 0.2697 0.2106 0.2701 0.2100
L6 0.2704 0.2164 0.2697 0.2169 0.2701 0.2164
L7 0.2704 0.2219 0.2697 0.2228 0.2701 0.2224
L8 0.2704 0.2271 0.2697 0.2281 0.2701 0.2275
Q2 0.2704 0.2019 0.2697 0.2028 0.2701 0.2023
Q3 0.2704 0.2094 0.2697 0.2100 0.2701 0.2095
Q4 0.2704 0.2158 0.2697 0.2165 0.2701 0.2159
Q5 0.2704 0.2214 0.2697 0.2222 0.2701 0.2217
Q6 0.2704 0.2269 0.2697 0.2275 0.2701 0.2270
Q7 0.2704 0.2316 0.2697 0.2321 0.2701 0.2316
Q8 0.2704 0.2359 0.2697 0.2366 0.2701 0.2361
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Table 2 Censoring rates of the control and treatment groups in various cases under the censoring scheme II.

n1 = n2 = 100 150 200
Case Control Treatment Control Treatment Control Treatment
1 0.4641 0.4634 0.4638 0.4640 0.4638 0.4643
E2 0.4641 0.4062 0.4638 0.4070 0.4638 0.4067
E3 0.4641 0.4194 0.4638 0.4198 0.4638 0.4196
E4 0.4641 0.4300 0.4638 0.4309 0.4638 0.4308
E5 0.4641 0.4393 0.4638 0.4404 0.4638 0.4404
E6 0.4641 0.4467 0.4638 0.4479 0.4638 0.4479
E7 0.4641 0.4521 0.4638 0.4533 0.4638 0.4534
E8 0.4641 0.4564 0.4638 0.4575 0.4638 0.4579
L2 0.4641 0.3738 0.4638 0.3741 0.4638 0.3739
L3 0.4641 0.3903 0.4638 0.3907 0.4638 0.3908
L4 0.4641 0.4057 0.4638 0.4061 0.4638 0.4058
L5 0.4641 0.4190 0.4638 0.4196 0.4638 0.4193
L6 0.4641 0.4302 0.4638 0.4311 0.4638 0.4311
L7 0.4641 0.4398 0.4638 0.4410 0.4638 0.4410
L8 0.4641 0.4480 0.4638 0.4491 0.4638 0.4490
Q2 0.4641 0.4025 0.4638 0.4033 0.4638 0.4030
Q3 0.4641 0.4161 0.4638 0.4165 0.4638 0.4161
Q4 0.4641 0.4270 0.4638 0.4276 0.4638 0.4277
Q5 0.4641 0.4362 0.4638 0.4375 0.4638 0.4375
Q6 0.4641 0.4444 0.4638 0.4455 0.4638 0.4454
Q7 0.4641 0.4505 0.4638 0.4518 0.4638 0.4517
Q8 0.4641 0.4550 0.4638 0.4562 0.4638 0.4565
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Table 3 Sizes and powers of different testing procedures for detecting the treatment time-lag effect in various cases under the
censoring scheme I and the sample size n1 = n2 = 100. The number in bold in each row is the largest value in that row.

Methods
Cases LR GE TW PE FH01 FH10 FH11 ZC− ZC ZC+ BC
1 0.049 0.054 0.052 0.050 0.035 0.055 0.043 0.039 0.043 0.038 0.037
E2 0.426 0.081 0.159 0.098 0.830 0.113 0.384 0.691 0.710 0.729 0.909
E3 0.320 0.066 0.125 0.083 0.708 0.085 0.271 0.605 0.614 0.645 0.850
E4 0.246 0.059 0.095 0.071 0.574 0.072 0.197 0.512 0.539 0.557 0.784
E5 0.194 0.057 0.079 0.062 0.457 0.061 0.144 0.433 0.453 0.471 0.698
E6 0.155 0.058 0.069 0.056 0.362 0.059 0.102 0.367 0.383 0.404 0.596
E7 0.119 0.056 0.063 0.058 0.285 0.056 0.083 0.309 0.325 0.348 0.500
E8 0.093 0.054 0.058 0.057 0.211 0.053 0.062 0.263 0.274 0.288 0.427

L2 0.700 0.135 0.303 0.192 0.980 0.191 0.679 0.942 0.949 0.958 0.990
L3 0.550 0.101 0.222 0.141 0.937 0.147 0.526 0.881 0.905 0.916 0.974
L4 0.444 0.081 0.159 0.097 0.859 0.108 0.390 0.810 0.840 0.864 0.936
L5 0.335 0.063 0.122 0.081 0.758 0.082 0.270 0.742 0.772 0.790 0.893
L6 0.256 0.055 0.095 0.069 0.615 0.068 0.194 0.649 0.686 0.699 0.835
L7 0.198 0.057 0.078 0.062 0.493 0.062 0.142 0.557 0.586 0.613 0.764
L8 0.155 0.058 0.069 0.057 0.384 0.057 0.103 0.472 0.500 0.528 0.672
Q2 0.451 0.084 0.178 0.111 0.836 0.123 0.413 0.706 0.733 0.752 0.883
Q3 0.338 0.070 0.126 0.086 0.724 0.090 0.294 0.619 0.645 0.672 0.821
Q4 0.258 0.061 0.100 0.072 0.586 0.072 0.211 0.530 0.567 0.577 0.755
Q5 0.201 0.055 0.080 0.063 0.465 0.063 0.153 0.447 0.466 0.487 0.669
Q6 0.161 0.058 0.069 0.057 0.375 0.060 0.113 0.389 0.402 0.420 0.565
Q7 0.123 0.057 0.067 0.058 0.299 0.054 0.089 0.323 0.335 0.360 0.478
Q8 0.099 0.055 0.059 0.057 0.223 0.055 0.067 0.280 0.287 0.309 0.419
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Table 4 Sizes and powers of different testing procedures for detecting the treatment time-lag effect in various cases under the
censoring scheme II and the sample size n1 = n2 = 100. The number in bold in each row is the largest value in that row.

Methods
Cases LR GE TW PE FH01 FH10 FH11 ZC− ZC ZC+ BC
1 0.050 0.047 0.052 0.051 0.043 0.053 0.045 0.041 0.041 0.044 0.049
E2 0.132 0.052 0.061 0.061 0.299 0.066 0.152 0.249 0.264 0.287 0.390
E3 0.089 0.049 0.058 0.056 0.179 0.062 0.096 0.175 0.192 0.199 0.276
E4 0.068 0.049 0.056 0.053 0.107 0.052 0.066 0.116 0.123 0.143 0.166
E5 0.062 0.049 0.055 0.056 0.080 0.049 0.050 0.100 0.109 0.111 0.130
E6 0.054 0.047 0.055 0.054 0.060 0.048 0.046 0.081 0.088 0.085 0.092
E7 0.056 0.047 0.053 0.054 0.048 0.048 0.046 0.066 0.073 0.071 0.060
E8 0.053 0.047 0.052 0.054 0.044 0.050 0.045 0.060 0.063 0.065 0.060
L2 0.303 0.069 0.118 0.104 0.657 0.112 0.373 0.573 0.611 0.646 0.752
L3 0.205 0.058 0.086 0.081 0.493 0.077 0.233 0.450 0.487 0.512 0.616
L4 0.125 0.050 0.063 0.061 0.318 0.064 0.144 0.340 0.357 0.374 0.457
L5 0.090 0.047 0.057 0.052 0.189 0.059 0.092 0.228 0.253 0.275 0.331
L6 0.069 0.048 0.057 0.055 0.119 0.052 0.061 0.161 0.169 0.183 0.207
L7 0.062 0.048 0.054 0.053 0.079 0.050 0.042 0.121 0.134 0.139 0.141
L8 0.053 0.047 0.054 0.054 0.056 0.049 0.046 0.092 0.095 0.096 0.090
Q2 0.153 0.056 0.070 0.069 0.330 0.067 0.170 0.281 0.298 0.322 0.400
Q3 0.103 0.049 0.057 0.056 0.211 0.063 0.106 0.200 0.218 0.233 0.294
Q4 0.072 0.048 0.058 0.052 0.126 0.053 0.073 0.137 0.146 0.169 0.189
Q5 0.067 0.048 0.057 0.054 0.088 0.049 0.053 0.108 0.122 0.128 0.139
Q6 0.057 0.047 0.055 0.054 0.066 0.048 0.047 0.090 0.090 0.090 0.105
Q7 0.052 0.047 0.055 0.054 0.053 0.049 0.045 0.069 0.077 0.083 0.082
Q8 0.053 0.047 0.053 0.054 0.045 0.050 0.043 0.064 0.066 0.070 0.066
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Table 5 Sizes and powers of different testing procedures for detecting the treatment time-lag effect in various cases under the
censoring scheme I and the sample size n1 = n2 = 150. The number in bold in each row is the largest value in that row.

Methods
Cases LR GE TW PE FH01 FH10 FH11 ZC− ZC ZC+ BC
1 0.050 0.050 0.049 0.050 0.047 0.047 0.065 0.050 0.051 0.049 0.045
E2 0.594 0.087 0.234 0.125 0.944 0.125 0.530 0.859 0.881 0.888 0.988
E3 0.487 0.071 0.161 0.094 0.876 0.094 0.383 0.780 0.811 0.829 0.969
E4 0.365 0.062 0.114 0.076 0.783 0.080 0.261 0.711 0.731 0.755 0.935
E5 0.271 0.054 0.092 0.064 0.660 0.065 0.185 0.622 0.643 0.674 0.884
E6 0.212 0.052 0.074 0.059 0.544 0.058 0.139 0.541 0.564 0.586 0.811
E7 0.162 0.048 0.067 0.054 0.433 0.055 0.104 0.469 0.490 0.509 0.730
E8 0.124 0.048 0.060 0.051 0.308 0.055 0.091 0.382 0.405 0.429 0.638

L2 0.860 0.192 0.452 0.279 0.997 0.283 0.845 0.987 0.990 0.994 0.999
L3 0.741 0.117 0.320 0.186 0.988 0.188 0.694 0.970 0.977 0.980 0.997
L4 0.610 0.082 0.227 0.118 0.963 0.122 0.537 0.942 0.959 0.966 0.993
L5 0.503 0.069 0.161 0.092 0.903 0.088 0.378 0.903 0.919 0.931 0.981
L6 0.387 0.062 0.112 0.073 0.814 0.077 0.260 0.835 0.856 0.871 0.957
L7 0.286 0.054 0.090 0.063 0.695 0.065 0.181 0.757 0.783 0.808 0.915
L8 0.220 0.051 0.076 0.057 0.575 0.058 0.141 0.678 0.704 0.722 0.861
Q2 0.621 0.096 0.250 0.141 0.946 0.145 0.567 0.876 0.892 0.905 0.977
Q3 0.509 0.074 0.176 0.101 0.887 0.100 0.413 0.801 0.821 0.843 0.949
Q4 0.389 0.064 0.123 0.078 0.791 0.083 0.281 0.730 0.749 0.770 0.912
Q5 0.284 0.057 0.096 0.068 0.674 0.069 0.197 0.636 0.669 0.701 0.850
Q6 0.227 0.052 0.079 0.061 0.558 0.064 0.153 0.570 0.590 0.609 0.784
Q7 0.177 0.048 0.069 0.056 0.442 0.054 0.109 0.495 0.517 0.534 0.705
Q8 0.135 0.049 0.061 0.052 0.321 0.056 0.092 0.405 0.422 0.451 0.624
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Table 6 Sizes and powers of different testing procedures for detecting the treatment time-lag effect in various cases under the
censoring scheme II and the sample size n1 = n2 = 150. The number in bold in each row is the largest value in that row.

Methods
Cases LR GE TW PE FH01 FH10 FH11 ZC− ZC ZC+ BC
1 0.056 0.046 0.053 0.052 0.053 0.047 0.053 0.054 0.055 0.048 0.052
E2 0.185 0.051 0.069 0.063 0.438 0.064 0.208 0.355 0.380 0.401 0.561
E3 0.117 0.049 0.055 0.053 0.277 0.055 0.125 0.258 0.272 0.296 0.404
E4 0.085 0.046 0.053 0.051 0.178 0.057 0.091 0.175 0.179 0.203 0.275
E5 0.065 0.045 0.053 0.055 0.110 0.051 0.073 0.125 0.130 0.130 0.181
E6 0.057 0.043 0.054 0.054 0.075 0.050 0.060 0.100 0.107 0.101 0.121
E7 0.057 0.044 0.054 0.052 0.064 0.047 0.054 0.084 0.078 0.073 0.096
E8 0.054 0.045 0.052 0.053 0.054 0.047 0.055 0.067 0.075 0.082 0.075
L2 0.451 0.068 0.146 0.128 0.847 0.132 0.526 0.772 0.792 0.813 0.910
L3 0.294 0.054 0.091 0.082 0.665 0.080 0.330 0.632 0.657 0.691 0.815
L4 0.178 0.052 0.060 0.058 0.484 0.061 0.197 0.469 0.496 0.525 0.660
L5 0.116 0.046 0.053 0.052 0.286 0.051 0.121 0.335 0.350 0.376 0.485
L6 0.081 0.044 0.053 0.053 0.171 0.056 0.087 0.228 0.242 0.261 0.335
L7 0.063 0.045 0.054 0.054 0.100 0.051 0.066 0.149 0.161 0.172 0.208
L8 0.059 0.043 0.054 0.050 0.069 0.048 0.053 0.088 0.103 0.116 0.135
Q2 0.204 0.055 0.075 0.070 0.477 0.067 0.242 0.394 0.426 0.448 0.584
Q3 0.129 0.049 0.056 0.055 0.324 0.055 0.144 0.293 0.311 0.335 0.439
Q4 0.094 0.047 0.055 0.053 0.205 0.055 0.101 0.208 0.228 0.239 0.306
Q5 0.071 0.044 0.054 0.054 0.121 0.056 0.076 0.143 0.159 0.158 0.210
Q6 0.061 0.044 0.054 0.054 0.085 0.051 0.064 0.105 0.111 0.116 0.139
Q7 0.057 0.043 0.054 0.051 0.068 0.047 0.054 0.086 0.091 0.081 0.106
Q8 0.054 0.046 0.053 0.053 0.057 0.048 0.055 0.071 0.075 0.085 0.080
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Table 7 Sizes and powers of different testing procedures for detecting the treatment time-lag effect in various cases under the
censoring scheme I and the sample size n1 = n2 = 200. The number in bold in each row is the largest value in that row.

Methods
Cases LR GE TW PE FH01 FH10 FH11 ZC− ZC ZC+ BC
1 0.058 0.0530 0.055 0.058 0.058 0.057 0.066 0.056 0.062 0.061 0.510
E2 0.728 0.104 0.272 0.159 0.988 0.158 0.630 0.935 0.956 0.965 0.996
E3 0.590 0.079 0.194 0.109 0.952 0.115 0.461 0.890 0.904 0.923 0.991
E4 0.466 0.062 0.134 0.088 0.883 0.083 0.315 0.823 0.844 0.859 0.983
E5 0.349 0.063 0.106 0.066 0.783 0.071 0.230 0.755 0.777 0.792 0.962
E6 0.268 0.060 0.086 0.059 0.660 0.063 0.164 0.664 0.686 0.716 0.933
E7 0.191 0.060 0.072 0.062 0.538 0.063 0.127 0.562 0.607 0.625 0.869
E8 0.150 0.057 0.064 0.062 0.419 0.056 0.098 0.492 0.515 0.545 0.795
L2 0.938 0.218 0.532 0.329 1.000 0.335 0.928 0.999 0.999 0.999 1.000
L3 0.857 0.141 0.396 0.218 1.000 0.218 0.811 0.995 0.997 0.998 1.000
L4 0.749 0.095 0.273 0.148 0.992 0.154 0.635 0.985 0.987 0.991 0.998
L5 0.611 0.075 0.195 0.104 0.965 0.106 0.467 0.965 0.973 0.977 0.996
L6 0.487 0.061 0.131 0.085 0.906 0.083 0.315 0.918 0.930 0.943 0.987
L7 0.361 0.062 0.103 0.065 0.810 0.071 0.221 0.848 0.874 0.894 0.980
L8 0.275 0.059 0.085 0.059 0.689 0.063 0.161 0.785 0.811 0.833 0.952
Q2 0.745 0.113 0.301 0.181 0.990 0.180 0.671 0.947 0.960 0.968 0.994
Q3 0.611 0.085 0.212 0.115 0.956 0.119 0.504 0.904 0.922 0.941 0.986
Q4 0.485 0.067 0.146 0.093 0.894 0.092 0.340 0.840 0.858 0.873 0.973
Q5 0.363 0.062 0.113 0.070 0.795 0.074 0.247 0.775 0.799 0.812 0.945
Q6 0.277 0.059 0.086 0.061 0.675 0.067 0.177 0.695 0.711 0.731 0.912
Q7 0.202 0.059 0.076 0.062 0.556 0.063 0.135 0.591 0.625 0.652 0.849
Q8 0.159 0.055 0.067 0.061 0.435 0.057 0.105 0.522 0.536 0.567 0.779
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Table 8 Sizes and powers of different testing procedures for detecting the treatment time-lag effect in various cases under the
censoring scheme II and the sample size n1 = n2 = 200. The number in bold in each row is the largest value in that row.

Methods
Cases LR GE TW PE FH01 FH10 FH11 ZC− ZC ZC+ BC
1 0.059 0.051 0.049 0.052 0.064 0.056 0.052 0.064 0.065 0.057 0.060
E2 0.217 0.051 0.080 0.075 0.534 0.072 0.240 0.434 0.470 0.500 0.656
E3 0.142 0.052 0.056 0.053 0.332 0.061 0.142 0.305 0.320 0.346 0.485
E4 0.093 0.054 0.056 0.055 0.210 0.053 0.096 0.210 0.225 0.244 0.340
E5 0.064 0.052 0.055 0.055 0.132 0.052 0.077 0.140 0.156 0.164 0.228
E6 0.055 0.053 0.054 0.057 0.087 0.050 0.060 0.096 0.112 0.118 0.151
E7 0.055 0.050 0.051 0.052 0.069 0.053 0.052 0.082 0.087 0.087 0.098
E8 0.055 0.051 0.050 0.050 0.069 0.054 0.052 0.072 0.075 0.075 0.077
L2 0.556 0.076 0.183 0.148 0.940 0.151 0.639 0.876 0.901 0.918 0.974
L3 0.379 0.058 0.100 0.093 0.798 0.097 0.397 0.752 0.783 0.813 0.916
L4 0.223 0.051 0.074 0.069 0.576 0.065 0.231 0.581 0.613 0.648 0.787
L5 0.142 0.051 0.055 0.055 0.362 0.056 0.132 0.414 0.446 0.484 0.604
L6 0.087 0.053 0.055 0.055 0.216 0.053 0.090 0.284 0.301 0.335 0.423
L7 0.062 0.051 0.052 0.054 0.123 0.052 0.073 0.179 0.197 0.214 0.265
L8 0.056 0.050 0.051 0.055 0.085 0.052 0.058 0.129 0.129 0.136 0.163
Q2 0.253 0.054 0.087 0.078 0.584 0.080 0.281 0.483 0.520 0.551 0.679
Q3 0.153 0.052 0.063 0.058 0.374 0.062 0.161 0.353 0.372 0.411 0.527
Q4 0.106 0.054 0.056 0.056 0.240 0.053 0.107 0.254 0.275 0.282 0.382
Q5 0.068 0.053 0.055 0.055 0.151 0.056 0.079 0.169 0.186 0.195 0.253
Q6 0.058 0.051 0.053 0.055 0.101 0.051 0.066 0.118 0.136 0.139 0.280
Q7 0.057 0.049 0.051 0.056 0.076 0.051 0.056 0.092 0.091 0.098 0.112
Q8 0.055 0.051 0.050 0.050 0.069 0.053 0.051 0.077 0.081 0.078 0.084

Table 9 Calculated p-values of various methods for detecting treatment effect in the Rats data example. The number in bold
denotes the smallest p-values.

LR GE TW PE FH01 FH10 FH11 ZC− ZC ZC+ BC
0.231 0.686 0.512 0.454 0.038 0.584 0.110 0.149 0.050 0.012 0.003

Table 10 Calculated p-values of various methods for detecting the delayed effect in the Veteran data example. The numbers in
bold denote the smallest p-values.

LR GE TW PE FH01 FH10 FH11 ZC− ZC ZC+ BC
0.518 0.890 0.903 0.933 0.169 0.936 0.725 0.141 0.095 0.042 0.039
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