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ABSTRACT8

In survival data analysis, comparison of two hazard rate curves is critically important9

for evaluating a treatment effect. In many applications, the two hazard curves could10

potentially cross each other, violating the proportional hazards assumption in the11

Cox’s model. In such cases, the traditional tests like the log-rank test and the Peto-12

Peto test that were developed based on that assumption would be ineffective. There13

have been some discussions in the literature on comparison of two potentially cross-14

ing hazard curves, based on either parametric modeling or nonparametric testing15

approaches. However, the assumed models of the existing parametric methods are16

often difficult to justify in practice. On the other hand, the existing nonparametric17

tests are usually based on the maximization with respect to an unknown crossing18

point, leading to complex null distributions for the corresponding test statistics.19

We suggest a novel method in this paper for comparing two hazard curves based20

on a nonparametric testing procedure. Its test statistic avoids the maximization21

mentioned above and consequently has the desirable asymptotic normality property22

under some regularity conditions. We show that the new method is effective for23

comparing two potentially crossing hazard curves.24
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1. Introduction28

Comparison of two hazard rate functions is critically important for the purpose of29

evaluating treatment effects when analyzing survival data [cf., 14,15]. To this end, the30

log-rank test is the most widely used test whose performance is optimal when the two31

hazard rate functions satisfy the Cox proportional hazard model assumption. Many32

modified versions of the log-rank test, including the Gehan test and the Peto-Peto test,33

have been proposed in the literature to place more emphasis on earlier failure times34

[14, Chapter 7]. However, it has been well demonstrated that all these tests could35

have low power when the two related hazard curves cross each other so that the Cox36

proportional hazard assumption is violated [e.g., 2,18,19,21,22]. This paper suggests a37

general approach for effective comparison of two potentially crossing hazard curves.38

The crossing hazards phenomenon is common in applications where treatment ef-39

fects are quite different in different time periods. For instance, surgeries can usually40
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improve a patient’s long-term health. But, in a short term, they may cause high mor-1

tality due to infections or other short-term risks [24]. In the literature, there have2

been many existing methods for proper comparison of two potentially crossing hazard3

curves. Some early methods employ the modeling approach by including the crossing4

structure of the hazard rate functions explicitly in a parametric model [e.g., 1,2,19].5

However, their assumed parametric models are often difficult to justify in practice.6

Therefore, some methods based on nonparametric tests have also been developed based7

on the following observation about the log-rank test. When two hazard rate functions8

cross each other, early differences between the two functions would be canceled out9

by late differences of opposite sign in the log-rank test statistic, which explains why10

that test would be ineffective in such cases. To avoid this cancelation, many existing11

methods for comparing two crossing hazard rate functions define their test statistics12

using the absolute or squared differences between the two estimated hazard rate func-13

tions [cf., 9,18], or adopt the weighted log-rank testing framework by choosing special14

weights that change signs before and after a potential crossing point [cf., 20,21]. Some15

recent methods suggested combining several weighted log-rank tests for comparing two16

potentially crossing hazard curves [e.g., 5,16]. [10] suggested two tests based on the17

Pearson chi-squared test and the log-likelihood ratio test for comparing multiple non-18

proportional hazard rate functions. For comprehensive numerical comparisons among19

various existing methods, see [6,17].20

In many existing methods mentioned above, the test statistics are derived specif-21

ically for the alternative hypothesis that the related hazard curves cross each other22

at an unknown crossing point. Such a problem formulation excludes some important23

cases when two hazard curves are different but not crossing. To overcome this limita-24

tion, [24] suggested a two-stage additive testing procedure in which the log-rank test25

was used in the first stage to detect non-crossing difference between the two hazard26

curves and a specific weighted log-rank test was used in the second stage to detect27

any crossing difference. In the original two-stage procedure, the p-value was computed28

using the method suggested for additive tests in [26]. [4] showed that the testing pro-29

cedure could be improved by using the Fisher’s combined probability test in order to30

compute the p-value. The two-stage method was generalized for comparing multiple31

hazard rate functions in [3].32

In some existing methods [e.g., 20,24] including the two-stage method, the test33

statistics for comparing two potentially crossing hazard curves are constructed based34

on certain metrics measuring the difference between the two estimated hazard curves35

that are maximized with respect to an unknown crossing point. As studied originally36

by [23] and confirmed by [24], such test statistics have bimodal asymptotic null dis-37

tributions, and therefore their p-values are difficult to compute accurately. This is38

one major reason why the related methods are ineffective in certain cases. Regarding39

the existing weighted log-rank tests designed for comparing two potentially crossing40

hazard curves, [24] pointed out that it was inappropriate to use the constant weights41

-1 and 1 before and after the potential crossing point, as done in [1] and [20]. So, in42

their suggested weighted log-rank test statistic, two different constants with opposite43

signs were used as weights. Their weighting scheme, however, still has the following44

two limitations. First, non-constant weights might be more reasonable to use since45

intuitively observed data closer to the crossing point would contribute less to testing46

the difference between the two hazard curves because the difference between the two47

hazard curves is smaller at such places. Second, the weight suggested in [24] is dis-48

continuous at the potential crossing point, making the distribution of the related test49

statistic analytically complex to study.50
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In this paper, we propose a novel weighted log-rank test for comparing two po-1

tentially crossing hazard curves. Its test statistic uses a continuous weighting scheme2

that takes larger values at places farther away from the potential crossing point. It also3

avoids the maximization with respect to the unknown crossing point when defining its4

test statistic. Consequently, the null distribution of its test statistic is asymptotically5

normal, which is preferable compared to the bimodal asymptotic distributions of cer-6

tain existing methods discussed above. This novel weighted log-rank test is then used7

in the two-stage additive testing framework for detecting any difference between the8

two hazard curves, including the crossing or non-crossing (e.g., parallel) differences. To9

properly define the overall p-value of the two-stage additive testing procedure, the test10

statistics used in the two stages are designed to be asymptotically independent of each11

other. Then, the method by [26] and the Fisher-test method [7] are combined properly12

to compute the overall p-value of the two-stage additive test. The proposed method13

is shown to be effective in many cases, compared to some state-of-the-art competing14

methods.15

The rest of the paper is organized as follows. Our suggested method is described16

in detail in Section 2. The asymptotic normality of the proposed weighted log-rank17

test for comparing two potentially crossing hazard curves is established in Section18

3. Some simulation results for evaluating the numerical performance of our proposed19

method in comparison with some competing methods are given in Section 4. Section20

5 demonstrates a real data analysis by using our proposed method. Some remarks21

conclude the paper in Section 6. Proofs of two theorems are provided in Appendix.22

2. The Proposed Method23

Our proposed method is described in several parts. The problem formulation in the24

two-stage additive testing framework is introduced in Subsection 2.1. The proposed25

weighted log-rank test for comparing two potentially crossing hazard curves is dis-26

cussed in Subsection 2.2. The proposed method to determine the overall p-value of the27

two-stage testing procedure is described in Subsection 2.3.28

2.1. Problem formulation and the two-stage additive tests29

In most applications for comparing two hazard rate functions, we are interested in30

testing whether the two functions are the same or not in a study time period. To be31

more specific, let h0(t) and h1(t) be the hazard rate functions of the survival times of32

the subjects in the control and treatment groups, respectively. Then, we are interested33

in the following hypothesis:34

H0 : h1(t) = h0(t), for all t ∈ [0, T ] versus

H1 : h1(t) 6= h0(t), for some t ∈ [0, T ], (1)

where [0, T ] is the study time period. The alternative hypothesis H1 in (1) contains35

cases when the two hazard curves are different but not crossing (denoted as H
(1)
1 ) and36

the cases when they cross each other in [0, T ] (denoted as H
(2)
1 ).37

In the literature, many existing methods for comparing two potentially crossing haz-38

ard curves have been deveoped for testing H0 versus H
(2)
1 (e.g., [19]). These methods39

cannot effectively detect the non-crossing difference between the two hazard curves.40
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To overcome this limitation, [24] suggested to handle the testing problem (1) using a1

two-stage additive testing procedure with the following two stages:2

First Stage: Test for hypotheses H0 versus H
(1)
1 by the conventional log-rank test,3

and4

Second Stage: Test for hypotheses H0 versus H
(2)
1 by a testing procedure designed5

specifically for detecting a crossing pattern of the two hazard curves.6

The entire two-stage additive test rejects H0 when either the Stage-I test rejects H0 or7

the Stage-I test fails to reject H0 but the Stage-II test rejects H0. For this two-stage8

additive testing procedure, it should be reasonable to use the conventional log-rank9

test as the Stage-I test since it would be optimal or close to optimal for detecting10

non-crossing difference between the two hazard curves. But, the weighted log-rank11

test suggested in [24] as a Stage-II test would have several fundamental limitations,12

as pointed out in Section 1.13

2.2. Proposed two-stage additive testing procedure14

Let nj be the number of subjects in group j, for j = 1, 2, and {t1, t2, . . . , tD} be the15

set of D distinct ordered event times in the pooled sample. For the jth group at time ti,16

dij denotes the observed number of events and Yij denotes the number of individuals17

at risk, for i = 1, 2, · · · , D, and j = 1, 2. Let di = di1 + di2 and Yi = Yi1 + Yi2, for18

each i. Then, the test statistic of the conventional log-rank test used in Stage-I of the19

two-stage additive testing procedure is defined to be20

U =

∑D
i=1wi1

(
di1 − Yi1 diYi

)
√∑D

i=1w
2
i1
Yi1

Yi

Yi2

Yi

Yi−di
Yi−1 di

, (2)

where the weights wi1 are all equal to 1 in the log-rank test. It has been well discussed21

in the literature that the asymptotic null distribution of U is standard normal under22

some regularity conditions [25].23

For the second stage of the two-stage additive testing procedure, we propose a new24

weighted log-rank test for detecting a possible crossing pattern of the two hazard rate25

functions. To be more specific, for j = 1, 2, let Fj and Gj represent the cumulative26

distribution functions (cdf) of the event time and the censoring time, respectively, of27

the jth group, and Sj and Lj represent the survival functions of the event time and28

the censoring time, respectively. Then,29

Sj(t) = 1− Fj(t), Lj(t) = 1−Gj(t), for t ∈ [0, T ].

Under H0 in (1), we have S1(t) = S2(t) = S(t) and F1(t) = F2(t) = F (t), for any30

t ∈ [0, T ]. Then, the new weighted log-rank test statistic has the same expression as31

that of U in (2), except that the weight at time t is defined to be32

w2(t) = −1 + c(t− tD), (3)

where c ≤ 0 is a constant and tD is the largest observed event time among all subjects33

in the pooled sample. The new weighting function is shown in Figure 1, from which it34

can be seen that it is a linear function that changes signs at t = tD+1/c. Because of this35
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property of the weighting function w2(t), early differences between the two estimated1

hazard rate functions would be avoided to be mostly cancelled out by late differences2

in the related weighted log-rank test statistic in cases when the two hazard curves3

cross each other. Thus, the resulting weighted log-rank test could detect a potential4

crossing pattern of the two hazard rate functions.

Figure 1. Proposed weighting function used in the weighted log-rank test for a Stage-II test in the two-stage

additive testing procedure.

5

To calculate the overall p-value of the two-stage additive testing procedure properly,6

[26] suggested that the test statistics used in its two stages should be asymptotically7

independent of each other. To make the new weighted log-rank test statistic with the8

weighting function w2(t) in (3) uncorrelated with the Stage-I test statistic U defined9

in (2), it can be checked that c in (3) should be estimated by10

ĉ =

∑D
i=1

L̂1(ti)L̂2(ti)

(n1/n)L̂1(ti)+(n2/n)L̂2(ti)
∆Ŝ(ti)∑D

i=1(ti − tD) L̂1(ti)L̂2(ti)

(n1/n)L̂1(ti)+(n2/n)L̂2(ti)
∆Ŝ(ti)

, (4)

where L̂j(t), for j = 1, 2, are the Kaplan-Meier estimates of the survival functions of11

the censoring times of the two groups, and Ŝ(t) is the Kaplan-Meier estimate of the12

survival function of the event times computed from the pooled sample. Furthermore,13

the resulting test statistic used in the second stage becomes14

V =

∑D
i=1 ŵ2(ti)

(
di1 − Yi1 diYi

)
√∑D

i=1 ŵ
2
2(ti)

Yi1

Yi

Yi2

Yi

Yi−di
Yi−1 di

, (5)

where ŵ2(ti) is defined in (3) after c is replaced by ĉ in (4). In the next section, it will15

be shown that U and V are indeed asymptotically independent of each other under16

H0 and some regularity conditions.17

From (5), it can be seen that our proposed test statistic V for detecting the crossing18

difference between the two hazard curves avoids the maximization with respect to the19

unknown crossing point that many existing methods require [cf., 24]. That is because20

ĉ is a data-driven constant that can be adjusted automatically by the observed data21

5



to meet the requirement of asymptotic independence between the test statistics in1

the two stages. See the proof of Theorem 2 in Appendix B for details. Because of2

this property, it will be shown in the next section that its null distribution would be3

asymptotically normal under some regularity conditions, instead of the complicated4

bimodal asymptotic distributions that many existing test statistics for comparing two5

potentially crossing hazard curves have [cf., 23]. This asymptotic normality property6

makes the calculation of the p-value of the test using V much easier, and the test7

becomes more effective as well because i) the bootstrap procedure that is routinely8

used for computing the p-value related to a bimodal asymptotic distribution can be9

avoided, and ii) the boundary problem of the maximization procedure mentioned above10

that the crossing point cannot be in the boundary regions of the study time peroid11

[0, T ] is avoided as well. Numerical results presented in Section 4 will confirm these12

conclusions.13

2.3. Calculation of the p-value for the proposed two-stage additive test14

As discussed in Subsection 2.1, the two-stage additive testing procedure rejects H0 if15

and only if the Stage-I test rejects H0 or the Stage-I test fails to reject H0 but the16

Stage-II test rejects H0. It fails to reject H0 if and only if both the Stage-I and Stage-II17

tests fail to reject H0. Let α1, α2, and α be the significance levels of the Stage-I test,18

the Stage-II test, and the entire two-stage additive test, respectively. Then, based on19

the asymptotic independence between the test statistics U and V used in the two20

stages that will be confirmed in Section 3 below, it can be checked that the following21

equation is asymptotically valid:22

α1 + α2(1− α1) = α. (6)

By this result, Sheng and Qiu [26] defined the overall p-value of the two-stage additive23

testing procedure to be24

p-valueSQ =

{
p1, if p1 ≤ α1

α1 + p2(1− α1), otherwise,
(7)

where p1 and p2 denoted the p-values of the Stage-I and Stage-II tests, respectively. The25

quantity p-valueSQ in (7) depends on α1. [26] suggested choosing α1 = α2 = 1−
√

1− α26

by the result (6) in cases when there is no prior information about the crossing pattern27

of the two hazard curves. This selection, however, treats the two stages equally, which28

may result in a less effective testing procedure.29

When the two test statistics used in a two-stage additive testing procedure are30

independent, another popular method to compute the overall p-value of the two-stage31

additive test is the Fisher-test method [4,7]. Under H0 in (1), both p1 and p2 would32

follow a uniform distribution on [0,1]. Therefore, both −2 log(p1) and −2 log(p2) would33

follow a chi-square distribution with degrees of freedom 2. So, −2 log(p1p2) would34

follow a chi-square distribution with degrees of freedom 4, and the overall p-value of35

the two-stage additive test can be defined to be36

p-valueF = H[−2 log(p1p2)], (8)

where H(·) is the survival function of the chi-square distribution with degrees of free-37

dom 4.38
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Based on a large numerical study, [4] has shown that the Fisher-test method would1

be more robust than the method by [26] in cases when both p1 and p2 are small, in the2

sense that the two-stage additive test with its p-value calculated by the former method3

would be more powerful than the test with its p-value calculated by the later method4

in such cases. In other cases considered in their numerical study, the two-stage additive5

test with its p-value calculated by the method of [26] could be more robust. To make6

use of the strength of both methods, we suggest calculating the overall p-value of the7

two-stage additive testing procedure by the following formula:8

p-value = min
{[
p-valueSQ(α1=0) + p-valueSQ(2α1=α2) + p-valueSQ(α1=α2)+ (9)

p-valueSQ(α1=2α2) + p-valueSQ(α1=α)

]/
(5c1), p-valueF

}/
c2,

where c1 > 0 and c2 > 0 are two constants chosen such that the type-I error probability9

of the two-stage additive testing procedure is the pre-specified value α. In Expression10

(9), we first calculate 5 p-values by the method (7) in cases when α1 and α2 are chosen11

such that Equation (6) holds and i) α1 = 0, ii) 2α1 = α2, iii) α1 = α2, iv) α1 = 2α2,12

and v) α1 = α, respectively. These five cases are considered to accommodate major13

crossing and non-crossing patterns of the two hazard curves. Under H0, each of the14

five p-values would have a uniform distribution on [0,1]. Their average, however, would15

not usually be uniformly distributed [cf., 11]. So, the constant c1 is chosen such that16

their average divided by c1, which is the first element in “min{·, ·}” of (9), would have17

the property that the event of “the first element is less than or equal to α” has the18

probablity of α under H0. As pointed out earlier, the second element in “min{·, ·}”19

of (9) would have a uniform distribution on [0,1] under H0. Then, our defined overall20

p-value of the two-stage additive testing procedure is the minimum of the two elements21

in “min{·, ·}” of (9), and the adjustment constant c2 is used to make sure that the22

type-I error probability of the test is α. It has been confirmed numerically that for all23

α values in {0.001, 0.005, 0.01, 0.05, 0.1, 0.2},24

c1 = 1.37, c2 = 0.76.

In (9), instead of setting α1 = α2 as done in [24], we have considered five cases25

when α1 changes from 0 to α when using the method (7) to compute the overall p-26

value of the two-stage additive testing procedure, which represent different degrees27

of importance of the Stage-I test in calculating the overall p-value by the method28

(7). The proposed overall p-value is the minimum of the average of the five p-values29

computed by the method (7) and the p-value computed by the method (8), after proper30

adjustments made by the two constants c1 and c2. So, by using this approach, major31

crossing and non-crossing patterns of the two hazard curves have been accommodated32

in calculating the overall p-value by the method (7), and the observed data have33

been used to determine whether the method (7) or the method (8) should be used in34

calculating the overall p-value of the two-stage additive testing procedure. Instead of35

the average of the five values of p-valueSQ used in (9), we have also considered using36

their minimum. Based on a large numerical study, it turns out that the method using37

the average would perform better in most cases considered.38
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3. Statistical Properties1

In this section, we derive some statistical properties of the test statistics U and V (cf.,2

(2) and (5)) used in the proposed two-stage additive testing procedure.3

Theorem 1 For j = 1, 2, assume that the event time in the jth group has the cdf4

Fj with a continuous probability density function (pdf), the censoring time has the cdf5

Gj, observations in the treatment and control groups are independent of each other,6

and the censoring times are independent of the event times in each group. Then, under7

H0 in (1), the asymptotic null distribution of V is N(0, 1).8

Theorem 2 Under the assumptions in Theorem 1, the two statistics U and V9

defined in (2) and (5) are asymptotically independent of each other.10

Proofs of Theorems 1 and 2 are given in Appendix.11

4. Simulation Study12

In this section, we evaluate the numerical performance of the proposed two-stage13

additive testing procedure discussed in Sections 2 and 3 by Monte Carlo simulations.14

First, we investigate the finite-sample distributional properties of the test statistics15

U and V defined in (2) and (5). For this simulation, we assume that the treatment16

and control groups have the same hazard rate functions 1 (i.e., h0(t) = h1(t) = 1, for17

all t). We consider the sample size of both groups being 100 (i.e., n1 = n2 = 100),18

and generate the censoring times from a uniform distribution on the interval [0, 1.6].19

The procedure is repeated for 5,000 times, from which 5,000 values of U and V are20

computed. The two plots in the first row of Figure 2 show the density histograms of21

the 5,000 values of U and the 5,000 values of V , respectively, where the solid curve22

in each plot is the density curve of the standard normal distribution. It can be seen23

from these two plots that both U and V follow approximately the standard normal24

distribution under the null hypothesis H0. To check the asymptotic independence25

between U and V , we can compare the joint density histogram of the 5,000 values26

of (U, V ) and their joint density histogram constructed under the assumption that U27

and V are independent of each other. Under the assumption of independence, the joint28

density of (U, V ) equals the product of two individual densities of U and V . The two29

plots in the second row of Figure 2 show the joint density histograms of (U, V ) with30

and without the assumption of independence, respectively. It can be seen that the two31

joint density histograms are almost identical, which is consistent with the result in32

Theorem 2 that U and V are asymptotically independent under the null hypothesis33

H0.34

Next, we evaluate the numerical performance of the proposed two-stage additive35

testing procedure, denoted as NP representing “new procedure”, in comparison with36

some existng competing methods. In the simulation study, the sample sizes of both37

the treatment and control groups are fixed at 100, and the following 7 cases under 338

different censoring schemes are considered, where the censoring times are generated39

from the uniform distributions on the intervals [0, 1], [0, 1.6] and [0, 2.6], respectively,40

in the three censoring schemes. Under each censoring scheme, the hazard rate function41

of the control group is set to be h0(t) = 1, and that of the treatment group is set to42

be h1(t) = 1 in Case 1 and h1(t) = a(t − b) + 1 in Cases 2-7, where a is the slope43

taking the values of 2.0, 2.0, 2.0, 1.2, 1.2, and 1.2, and b is the crossing time taking44

the values of 0.2, 0.3, 0.4, 0.4, 0.5, and 0.6, respectively, in Cases 2-7. The two hazard45

rate functions in Cases 1-7 are shown in Figure 3.46
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Figure 2. Individual density histograms of U and V based on 5,000 replicated simulations (left and right
panels in the first row), and their joint density histograms with and without the assumption of independence

between U and V (left and right panels in the second row).

Based on the comparative studies in [6,17], the two-stage test TS suggested by1

[24], the tests KONGC and KONGL by [10] that are based on the Pearson’s chi-2

squared test and the log-likelihood ratio test, respectively, the MDIR test by [5] that3

combines multiple weighted log-rank tests, and the MAXC test by [16] that combines4

multiple Fleming-Harrington weighted log-rank tests [8] have good overall performance5

compared to many other competing methods. Therefore, in this paper we evaluate6

the numerical performance of NP in comparison with these alternative methods that7

were designed for comparing two potentially crossing hazard rate curves, plus the8

traditional log-rank (LR) test and Peto-Peto (PP) test. The LR and PP tests are9

constructed under the Cox proportional hazard assumption. Thus, they are powerful in10

cases when two hazard curves are different but do not cross each other. In comparison,11

the TS, KONPC, KONPL, MDIR, MAXC, and NP tests are constructed for detecting12

arbitrary difference between two hazard rate curves, including the ones with crossing13

patterns.14

In our simulation study, the overall significance level α of each method is fixed at15

0.05, and all results are based on 1,000 replications. For the TS test, the bootstrap16

sample size for computing its p-value is fixed at 1,000. For the KONPC, KONPL and17

MDIR tests, the number of permutations for computing their p-values is also set to be18

1,000. For the MDIR test, two different versions considering two and four directions,19

denoted as MDIR2 and MDIR4, respectively, are considered as suggested in [5]. For20

9



0.0 0.5 1.0 1.5

0
1

2
3

4

Time

H
az

ar
d 

ra
te

s

Treatment Groups
Control Group

Figure 3. The dashed line represents h1(t) = h0(t) = 1 in Case 1, and the solid lines denote h1(t) in Cases
2-7.

the MAXC test, different Fleming-Harrington weighted log-rank tests are combined in1

the way as suggested in [16]. For the NP test, its Stage-I test (i.e., the one using the2

test statistic U in (2)) is denoted as LR and the Stage-II test (i.e., the one using the3

test statistic V in (5)) is denoted as WLR. When the overall p-value of the NP test is4

computed by (7) with 2α1 = α2, α1 = α2, or α1 = 2α2, the related NP test is denoted5

as NPSQ(2α1 = α2), NPSQ(α1 = α2), and NPSQ(α1 = 2α2), respectively. When the6

overall p-value of the NP test is computed by (8), the NP test is denoted as NPF.7

The NP test with its overall p-value computed by (9) is denoted as NPSQF. These are8

considered here to demonstrate the overall strength of NPSQF in comparison with its9

variants.10

The censoring rates of the control and treatment groups in the seven cases described11

above under the three different censoring schemes are presented in Table 1. From the12

table, it can be seen that the censoring rates are between 58%-75% under the censoring13

scheme 1, between 40%-56% under the censoring scheme 2, and between 25%-37%14

under the censoring scheme 3. Thus, the three censoring schemes can represent the15

high, medium and low censoring levels, respectively.16

Table 2 tabulates the crossing patterns in different simulation settings under Cen-17

soring Schemes I-III. In the simulation study, two different slopes for the treatment18

hazard rate function are considered (cf., Figure 3). For each slope, three different19

crossing point locations are considered. However, a crossing point can be considered20

as early or late also depends on the censoring rates. Under all three censoring schemes,21

crossing points in various different cases are roughly classified as Early, Middle, and22

Late in Table 2 for convenience of discussions later.23

The empirical sizes and powers of the related testing methods are presented in Tables24

3-5 under the censoring schemes I-III, respectively, where the sizes of the tests are given25

in the first columns of the tables corresponding to Case 1 (i.e., h0(t) = h2(t) = 1).26

10



Table 1. Censoring rates in the seven cases under the three censoring schemes considered in the simulation

study.

Censoring Scheme I Censoring Scheme II Censoring Scheme III
Cases Control Treatment Control Treatment Control Treatment
1 0.632 0.632 0.499 0.498 0.357 0.355
2 0.632 0.587 0.499 0.403 0.357 0.250
3 0.632 0.634 0.499 0.441 0.357 0.275
4 0.632 0.687 0.499 0.487 0.357 0.305
5 0.632 0.664 0.499 0.487 0.357 0.312
6 0.632 0.698 0.499 0.519 0.357 0.335
7 0.632 0.734 0.499 0.556 0.357 0.362

Table 2. Crossing patterns in various cases considered under Censoring Schemes I-III.

Censoring Scheme
Cases Slope Crossing Time I II III
2 2.0 0.2 Middle Early Early
3 2.0 0.3 Late Middle Early
4 2.0 0.4 Late Late Middle
5 1.2 0.4 Middle Early Early
6 1.2 0.5 Late Middle Early
7 1.2 0.6 Late Late Middle

In each table, the three largest power values in each column corresponding to Cases1

2-7 are highlighted by bold numbers. From these tables, we can have the following2

conclusions. First, the sizes of all tests are close to the nominal significance level of3

α = 0.05. Second, compared to the existing tests including LR, PP, TS, KONPC,4

KONPL, MDIR2, MDIR4 and MAXC tests, our proposed method NPSQF has larger5

power in all cases considered, except a small number of cases when the two hazard6

curves cross early or late in which the performance of NPSQF is close to the best ones7

of the existing tests. Third, the traditional tests LR and PP perform poorly in most8

cases considered. Fourth, MDIR2 and MAXC perform well in some cases when the9

crossing time is small (e.g., Case 2 in Tables 4 and 5).10

Next we focus on the performances of the various versions of NP as presented in11

Tables 3-5. First, NPF is more powerful than NPSQ when both of the Stage-I test12

(i.e., LR) and the Stage-II test (i.e., WLR) have relatively large powers to detect13

the crossing difference between the two hazard curves, which usually happens when14

the two hazard curves cross at an early or late time (e.g., Cases 4 and 7 in Table 3,15

Cases 2 and 7 in Table 4, and Cases 2 and 3 in Table 5). Second, among the five16

versions of NPSQ (note: LR is the same as NPSQ with α1 = α and WLR is same as17

NPSQ with α1 = 0), the one with a smaller α1 value would perform better in most18

cases considered, because the Stage-II test (WLR) would be more focused in such a19

two-stage test which is favorable to compare two crossing hazard curves. However, in20

some cases when the crossing point is small or large (e.g., Case 7 in Table 3), the above21

conclusion may not be true because the crossing pattern is not obvious in the observed22

data in such cases. Third, NPSQF performs well in all cases considered. Therefore,23

NPSQF is recommended if there is no prior information about the crossing pattern of24

the two hazard curves.25

We also conduct some simulations in cases when h1(t) is non-monotonic linear, cubic26

11



polynomial, and exponential under the censoring scheme III and the same simulation1

setups as before. The figure of h0(t) and h1(t) are shown in Figure 5 and the results2

are presented in Table 7 in Appendix C. From the results, it can be seen that our3

proposed methods WLR, NPSQ(2α1 = α2), NPSQ(α1 = α2), NPSQ(α1 = 2α2),4

NPF, and NPSQF have larger powers, compared to alternative methods LR, PP, TS,5

KONPC, KONPL, MDIR2, MDIR4, and MAXC in all cases considered.6

Table 3. Sizes and powers of different methods for comparing two hazard curves in various cases under the
censoring scheme I.

Cases
Methods 1 2 3 4 5 6 7
PP 0.047 0.053 0.084 0.322 0.141 0.305 0.552
TS 0.046 0.252 0.289 0.497 0.166 0.275 0.460
KONPC 0.054 0.157 0.131 0.275 0.119 0.242 0.418
KONPL 0.054 0.155 0.135 0.282 0.118 0.240 0.421
MDIR2 0.048 0.283 0.326 0.552 0.187 0.326 0.543
MDIR4 0.049 0.219 0.240 0.454 0.149 0.262 0.430
MAXC 0.039 0.198 0.125 0.261 0.097 0.219 0.429
LR 0.042 0.079 0.050 0.203 0.093 0.234 0.476
WLR 0.049 0.330 0.404 0.568 0.207 0.258 0.320
NPSQ(2α1 = α2) 0.050 0.292 0.348 0.541 0.191 0.293 0.468
NPSQ(α1 = α2) 0.048 0.262 0.318 0.520 0.183 0.295 0.484
NPSQ(α1 = 2α2) 0.045 0.232 0.274 0.474 0.166 0.292 0.496
NPF 0.054 0.273 0.313 0.559 0.194 0.337 0.577
NPSQF 0.051 0.294 0.354 0.575 0.203 0.327 0.546

Table 4. Sizes and powers of different methods for comparing two hazard curves in various cases under the

censoring scheme II.

Cases
Methods 1 2 3 4 5 6 7
PP 0.048 0.114 0.053 0.176 0.088 0.212 0.447
TS 0.045 0.586 0.621 0.768 0.304 0.404 0.564
KONPC 0.049 0.546 0.467 0.467 0.179 0.216 0.358
KONPL 0.048 0.548 0.462 0.473 0.179 0.218 0.362
MDIR2 0.044 0.664 0.660 0.767 0.330 0.443 0.619
MDIR4 0.041 0.567 0.553 0.679 0.258 0.339 0.506
MAXC 0.055 0.618 0.445 0.351 0.139 0.181 0.358
LR 0.051 0.323 0.101 0.052 0.051 0.096 0.241
WLR 0.050 0.556 0.708 0.834 0.455 0.530 0.627
NPSQ(2α1 = α2) 0.045 0.605 0.673 0.799 0.382 0.485 0.621
NPSQ(α1 = α2) 0.049 0.601 0.631 0.774 0.341 0.455 0.603
NPSQ(α1 = 2α2) 0.052 0.577 0.583 0.740 0.281 0.403 0.556
NPF 0.510 0.661 0.631 0.753 0.322 0.443 0.628
NPSQF 0.048 0.662 0.681 0.800 0.373 0.493 0.658
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Table 5. Sizes and powers of different methods for comparing two hazard curves in various cases under the

censoring scheme III.

Cases
Methods 1 2 3 4 5 6 7
PP 0.054 0.203 0.061 0.096 0.061 0.147 0.330
TS 0.041 0.840 0.877 0.935 0.543 0.645 0.775
KONPC 0.040 0.849 0.822 0.855 0.421 0.469 0.571
KONPL 0.040 0.855 0.821 0.857 0.430 0.474 0.576
MDIR2 0.045 0.922 0.916 0.951 0.599 0.659 0.805
MDIR4 0.050 0.848 0.846 0.910 0.481 0.525 0.667
MAXC 0.044 0.907 0.806 0.706 0.393 0.324 0.385
LR 0.048 0.633 0.353 0.121 0.098 0.051 0.088
WLR 0.041 0.693 0.867 0.961 0.662 0.753 0.846
NPSQ(2α1 = α2) 0.040 0.844 0.892 0.950 0.605 0.718 0.818
NPSQ(α1 = α2) 0.042 0.847 0.865 0.940 0.576 0.673 0.795
NPSQ(α1 = 2α2) 0.045 0.839 0.830 0.918 0.519 0.615 0.754
NPF 0.050 0.915 0.907 0.933 0.577 0.637 0.787
NPSQF 0.041 0.906 0.906 0.952 0.625 0.705 0.819

5. A Case Study1

In this section, we demonstrate the proposed method using a real dataset from the2

Veterans’ Administration Lung Cancer study discussed in [13] that aimed to compare3

the effects of a standard therapy (control group) with a test therapy (treatment group)4

in the treatment of advanced inoperable lung cancer. Among 130 patients under the5

age of 70 in the study, 67 of them were randomized to the control group and 63 to6

the treatment group. Time to death for each patient was recorded as the primary7

outcome measure. There were 5 censored observations in the control group and 48

censored observations in the treatment group. This dataset can be obtained from the9

R-package survival. The estimated hazard rate functions of the control and treatment10

groups, using kernel-based methods [12], are shown in Figure 4. From the figure, it11

can be seen that the two hazard curves cross around the 100th day after the study12

started.13

Next, the alternative methods LR, PP, TS, KONPC, KONPL, MDIR2, MDIR4,14

MAXC, as well as WLR, NPSQ(2α1 = α2), NPSQ(α1 = α2), NPSQ(α1 = 2α2),15

NPF, and NPSQF are applied to the dataset to compare the two hazard curves. All16

these methods are set up in the same way as that in the simulation studies pre-17

sented in Section 4 with the overall significance level of each method being α = 0.05.18

Their p-values are given in Table 6. From the table, it can be seen that the cross-19

ing pattern between the two hazard curves in this example can only be detected by20

WLR, NPSQ(2α1 = α2), NPSQ(α1 = α2), and NPSQF, although the p-values of TS,21

KONPC, KONPL, MDIR2, NPSQ(α1 = 2α2) and NPF are also quite small. It is rea-22

sonable in this example that WLR has the smallest p-value since WLR is developed23

specially for detecting a crossing pattern of the two hazard curves, and the crossing24

pattern is quite obvious in Figure 4. It can be seen that NPSQF can also detect such25

a crossing difference between the two hazard curves, while the alternative existing26

methods LR, PP, TS, KONPC, KONPL, MDIR2, MDIR4, and MAXC cannot.27
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Figure 4. Estimated hazard curves of the treatment and control groups of the Veterans’ Administration Lung
Cancer study.

Table 6. Calculated p-values of various methods for comparing two hazard curves in the Veterans’ Adminis-

tration Lung Cancer study. The numbers in bold denote the four smallest p-values.

Method PP TS KONPC KONPL MDIR2 MDIR4 MAXC
p-value 0.329 0.092 0.107 0.106 0.104 0.155 0.452

Method LR WLR NPSQ NPSQ NPSQ NPF NPSQF
(2α1 = α2) (α1 = α2) (α1 = 2α2)

p-value 0.991 0.023 0.040 0.048 0.056 0.072 0.046

6. Concluding Remarks1

We have presented a new two-stage additive testing procedure to compare two haz-2

ard curves that may or may not cross each other. In the new testing procedure, the3

traditional log-rank test is used in its first stage, and a special weighted log-rank test4

with a linear weighting function (cf., (3)) is used in its second stage. Compared to the5

existing tests designed for comparing two potentially crossing hazard curves, the new6

test used in the second stage avoids the maximization with respect to the unknown7

crossing point. Thus, its test statistic has the preferable asymptotic normality under8

the null hypothesis, instead of the complex bimodal null distribution. Consequently,9

calculation of its p-value becomes more convenient and accurate, and the resulting10

test becomes more powerful, which has been confirmed by the numerical studies pre-11

sented in Sections 4 and 5. There are still some issues with the proposed method that12

need to be addressed in future research. For instance, the current version of our pro-13

posed method cannot estimate the crossing point well since it is constructed mainly14

for comparing the two hazard curves, instead of estimation of the crossing point. It15

cannot accommodate potential impact of covariates either. In addition, the proposed16

new method can only handle cases with one crossing point between the two hazard17

14



curves. In reality, the two hazard curves could have multiple crossing points. There1

are applications where we need to compare more than two hazard curves as well. All2

these research problems will be pursued elsewhere.3
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7. Appendices20

Appendix A. Proof of Theorem 121

For j = 1, 2 and k = 1, 2, . . . , nj , let Tkj be the event time of the kth subject in22

group j with c.d.f. Fj , Ckj be the censoring time with c.d.f. Gj , and23

Sj(s) = 1− Fj(s), Lj(s) = 1−Gj(s), Xkj = min(Tkj , Ckj),

δkj = I{Tkj<Ckj}, πj(s) = P (Xkj > s) = Sj(s)Lj(s).

In the above expression for πj(s), we have made a conventional assumption that the24

event times Tkj and censoring times Ckj are independent of each other. Also, under25

H0, S1 = S2 = S.26

Let w = (w1, w2, · · · , wD)T denote a vector of weights used in either U or V . Then,27

we define the test statistic Z(w) and its estimated variance σ̂(w) as follows:28

Z(w) = h

D∑
i=1

wi

(
di1 − Yi1

di
Yi

)
, σ̂(w) = h2

D∑
i=1

w2
i

Yi1
Yi

Yi2
Yi

Yi − di
Yi − 1

,

where h =
√
n/(n1n2). We also define the following counting processes: for j=1,2,29

Ȳj(s) =

nj∑
k=1

I{Xkj≥s}, N̄j(s) =

nj∑
k=1

I{Xkj≤s,δkj=1}.

For group j, Ȳj(s) defined above is the at-risk process which is left continuous, and30

N̄j(s) is the event process which is right continous. Let Ŝ(s) be the Kaplan-Meier31

estimator of the survival function S(s), and W (s) be a bounded predictable function32

of Ŝ(s−) having the property that (W (t1),W (t2), · · · ,W (tD))T = w. Then, Z(w) can33

16



be written as1

Z(w) = h

∫ u

0
W (s)

Ȳ1(s)Ȳ2(s)

Ȳ1(s) + Ȳ2(s)

{
dN̄1(s)

Ȳ1(s)
− dN̄2(s)

Ȳ2(s)

}
, (A.1)

where u = min{s : min(π1(s), π2(s)) = 0}.2

We can explore the properties of V by regarding it as a statistic of the class K3

discussed in Section 3.3 of Fleming and Harrington (1991), where K is defined as4

K(s) = hW (s)
Ȳ1(s)Ȳ2(s)

Ȳ1(s) + Ȳ2(s)
. (A.2)

Next, let us define π̂(s) = (n1 +n2)−1(Ȳ1(s)+ Ȳ2(s)) to be the pooled sample estimator5

of p1π1(s) + p2π2(s), where πj(s) is the proportions of subjects who are still at risk6

at time s, for j = 1, 2, π(s) is the proportion of subjects in the pooled sample who7

are still at risk at time s, p1 = n1/(n1 + n2) and p2 = n2/(n1 + n2). Then, π̂(s),8

π̂1(s) = Ȳ1(s)/n1 and π̂2(s) = Ȳ2(s)/n2 are all consistent estimators of π(s), π1(s) and9

π2(s), respectively. The asmptotic normality of V can be confirmed by checking the10

three regularity conditions of Corollary 7.2.1 in Fleming and Harrington (1991) below.11

The first regularity condition of Corollary 7.2.1 in Fleming and Harrington (1991)12

is that: for j = 1, 2,13

K2(s)

Ȳj(s)

p−→ ξj(s), as n −→∞,

where the convergence is uniform on [0, t] for any t ∈ I = {t : π1(t)π2(t) > 0}, ξj(s)14

is a nonnegative, left-continuous function with right-hand limits such that ξj(t) <∞,15

ξ+
j (s) has bounded variation on each closed subinterval of I, and ξj(s) = 0 for any16

t /∈ I. This condition is satisfied here if we define ξj(s) = W 2(s) p1p2π2
1(s)π2

2(s)
pjπj(p1π1(s)+p2π2(s))217

based on Equation (A.2).18

To discuss the second regularity condition, let us define19

σ2(w) =

∫ u

0
[h1(s) + h2(s)][1−∆Λ(s)]dΛ(s), for u /∈ I,

where Λ(s) =
∫ s

0 {1 − F (s−)}−1dF (s) is the common cumulative hazard function of20

the event time under H0 which is continous because the common c.d.f. is assumed to21

have a continous density function. Then, the second regularity condition of Corollary22

7.2.1 in Fleming and Harrington (1991) is that for any ε > 0,23

lim
t↑u

lim sup
n→∞

P

{∫ u

t
K2 Ȳ1 + Ȳ2

Ȳ1Ȳ2
dΛ > ε

}
, for any ε > 0. (A.3)
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To check (A.3), we first notice that1

σ2(w) =

∫ u

0
W 2(s)

π1(s)π2(s)

p1π1(s) + p2π2(s)
(1−∆Λ(s))dΛ(s)

=

∫ u

0
W 2(s)

π1(s)π2(s)

p1π1(s) + p2π2(s)

1

S(s)
dF (s)

=

∫ u

0
W 2(s)

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s).

(A.4)

Equation (A.3) is valid because2

lim
t↑u

lim sup
n→∞

P

{∫ u

t
K2 Ȳ1 + Ȳ2

Ȳ1Ȳ2
dΛ > ε

}
= lim

t↑u
lim sup
n→∞

P

{∫ u

t
W 2(s)

π̂1(s)π̂2(s)

π̂(s)
dΛ > ε

}
=0.

Finally, the third regularity condition of Corollary 7.2.1 in Fleming and Harrington3

(1991) is that for any u <∞ and ε > 0,4

lim
n→∞

P

{∫ ∞
u

K2 Ȳ1 + Ȳ2

Ȳ1Ȳ2
dΛ > ε

}
= 0.

This regularity condition is valid here because5

lim
n→∞

P

{∫ ∞
u

K2 Ȳ1 + Ȳ2

Ȳ1Ȳ2
dΛ > ε

}
= lim
n→∞

P

{∫ ∞
u

W 2(s)
π̂1(s)π̂2(s)

π̂(s)
dΛ > ε

}
=0.

Therefore, by Corollary 7.2.1 in Fleming and Harrington (1991), we have6

Z(w)/σ(w)
D−→ N(0, 1), as n→∞. (A.5)

In addition, by Corollary 7.2.1 in Fleming and Harrington (1991), we also have7

σ̂2(w2)
P−→ σ2(w2) where w2 is the vector of weights used in V . So, by the Slutsky’s8

theorem, we have9

Z(w2)/σ̂(w2)
D−→ N(0, 1).

Thus, the conclusion in Theorem 1 is true.10

Appendix B. Proof of Theorem 211

First, we can always find a constant w0 > 0 such that12

σ2(w1) = σ2(w2), (A.6)
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where w1 = (W1(t1), · · · ,W1(tD))T = w01D and w2 = (W2(t1), · · · ,W2(tD))T . Define1

U∗ =
Z(w1)

σ(w1)
, V ∗ =

Z(w2)

σ(w2)
.

The asymptotic independence between U∗ and V ∗ can be obtained if we can show2

that3 (
U∗

V ∗

)
D−→ N2

([
0
0

]
, I2

)
, as n→∞. (A.7)

To prove (A.7), let us consider the following linear combination4

aU∗ + bV ∗ =
Z(aw1 + bw2)

σ(w1)
, (A.8)

where a and b are two arbitrary constants and the equation is based on Equation (A.6).5

Similar to Equation (A.5), by Corollary 7.2.1 in Fleming and Harrington (1991), we6

have7

Z(aw1 + bw2)/σ(aw1 + bw2)
D−→ N(0, 1), as n→∞. (A.9)

Thus, if we can prove8

σ2(aw1 + bw2)

σ2(w1)

Pr−−→ a2 + b2, as n→∞, (A.10)

then by the Slutsky’s theorem and the results in (A.8) and (A.9), we have9

aU + bV
D−→ N(0, a2 + b2), as n→∞.

To prove (A.10), by the results in (A.4) and (A.6), we have10

σ2(aw1 + bw2)

σ2(w1)

=
1

σ2(w1)

∫ u

0
[aW1(s) + bW2(s)]2

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s)

=
1

σ2(w1)

∫ u

0
[a2W 2

1 (s) + b2W 2
2 (s) + 2abW1(s)W2(s)]

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s)

=
1

σ2(w1)
[(a2 + b2)σ2(w1) + 2abw0

∫ u

0
W2(s)

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s)].

(A.11)

Therefore, by (A.11), if we can prove that11 ∫ u

0
W2(s)

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s)

Pr−−→ 0, as n→∞,
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then Equation (A.10) will follow. To this end, first we notice that1 ∫ u

0
W2(s)

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s)

=−
∫ u

0

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s) + ĉ

∫ u

0
(s− u)

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s),

(A.12)

where2

ĉ =

∑D
i=1

L̂1(ti)L̂2(ti)

(n1/n)L̂1(ti)+(n2/n)L̂2(ti)
∆Ŝ(ti)∑D

i=1(ti − tD) L̂1(ti)L̂2(ti)

(n1/n)L̂1(ti)+(n2/n)L̂2(ti)
∆Ŝ(ti)

.

Next, we want to show that3

ĉ
Pr−−→ kr, as n→∞, (A.13)

where4

kr =

∫ u
0

L1(s)L2(s)
p1L1(s)+p2L2(s)dF (s)∫ u

0 [s− u] L1(s)L2(s)
p1L1(s)+p2L2(s)dF (s)

.

To show (A.13), we have5

D∑
i=1

L̂1(ti)L̂2(ti)

(n1/n)L̂1(ti) + (n2/n)L̂2(ti)
∆Ŝ(ti)

=

D∑
i=1

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
∆Ŝ(s)

=

∫ tD

0

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
∆Ŝ(s)

= −
∫ tD

0

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
∆F̂ (s), (A.14)
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where F̂ (s) = 1− Ŝ(s). From (A.14), we have1 ∣∣∣∣∣
∫ tD

0

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
dF̂ (s)−

∫ u

0

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ tD

0

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s
dF̂ (s)−

∫ u

0

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
dF̂ (s)

∣∣∣∣∣+∣∣∣∣∣
∫ u

0

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
dF̂ (s)−

∫ u

0

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF̂ (s)

∣∣∣∣∣+∣∣∣∣∫ u

0

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF̂ (s)−

∫ u

0

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s)

∣∣∣∣
:=A1 +A2 +A3.

The right-hand side of the last inequality has three parts. We evaluate each of them2

separately. For A1, we have3 ∣∣∣∣∣
∫ tD

0

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
dF̂ (s)−

∫ u

0

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
dF̂ (s)

∣∣∣∣∣
=

∣∣∣∣∣
∫ tD

u

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
dF̂ (s)

∣∣∣∣∣
≤
∣∣∣∣∫ tD

u
1dF̂ (s)

∣∣∣∣
=|tD − u|

Pr−−→ 0, as n→∞.

For A2, based on the Taylor Polynomial of a function of two variables, we have4 ∣∣∣∣∣
∫ u

0

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
dF̂ (s)−

∫ u

0

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF̂ (s)

∣∣∣∣∣
=

∣∣∣∣∣
∫ u

0
[

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
− L1(s)L2(s)

p1L1(s) + p2L2(s)
]dF̂ (s)

∣∣∣∣∣
≤
∫ u

0

[
1

p2
sup
s
|L̂1(s)− L1(s)|+ 1

p1
sup
s
|L̂2(s)− L2(s)|

]
dF̂ (s)

Pr−−→ 0, as n→∞.

Finally, for A3, we have5 ∣∣∣∣∫ u

0

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF̂ (s)−

∫ u

0

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s)

∣∣∣∣
=

∣∣∣∣∫ u

0

L1(s)L2(s)

p1L1(s) + p2L2(s)
d[F̂ (s)− F (s)]

∣∣∣∣ Pr−−→ 0, as n→∞.

Therefore, we have6 ∣∣∣∣∣
∫ tD

0

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
dF̂ (s)−

∫ u

0

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s)

∣∣∣∣∣ Pr−−→ 0, as n→∞
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Similarly, we can obtain the results1

D∑
i=1

(ti−tD)
L̂1(ti)L̂2(ti)

(n1/n)L̂1(ti) + (n2/n)L̂2(ti)
∆Ŝ(ti) = −

∫ tD

0
(s−u)

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
dF̂ (s)

and2 ∣∣∣∣∣
∫ tD

0
(s− u)

L̂1(s)L̂2(s)

(n1/n)L̂1(s) + (n2/n)L̂2(s)
dF̂ (s)−

∫ u

0
(s− u)

L1(s)L2(s)

p1L1(s) + p2L2(s)
dF (s)

∣∣∣∣∣ Pr−−→ 0, as n→∞.

Then, Equation (A.13) follows. By (A.12) and (A.13), we have the result in (A.10).3

Consequently, the result in Equation (A.7) is proved. Therefore, U∗ and V ∗ are asymp-4

totically independent.5

Now, the test statistics U and V can be written as6

U = U∗
σ(w1)

σ̂(w1)
, V = V ∗

σ(w2)

σ̂(w2)
.

Since σ̂2(wj)
P−→ σ2(wj), for j = 1, 2, we have the result that U and V are asymptot-7

ically independent.8

Appendix C. Additional Simulation Results9

Some additional simulation results discussed at the end of Section 4 are given in10

Table 7 and Figure 5 here.11

Table 7. Sizes and powers of different methods for comparing two hazard curves in cases when h1(t) is non-

monotonic linear (Non-Mono), cubic polynomial (Poly), and exponential (Exp) under the censoring scheme

III.

Cases
Methods Non-Mono Poly Exp
PP 0.192 0.114 0.090
TS 0.615 0.868 0.911
KONPC 0.822 0.721 0.795
KONPL 0.824 0.732 0.802
MDIR2 0.050 0.080 0.122
MDIR4 0.859 0.798 0.879
MAXC 0.583 0.571 0.694
LR 0.053 0.083 0.120
WLR 0.962 0.938 0.966
NPSQ(2α1 = α2) 0.944 0.922 0.956
NPSQ(α1 = α2) 0.928 0.906 0.947
NPSQ(α1 = 2α2) 0.905 0.882 0.930
NPF 0.916 0.896 0.940
NPSQF 0.937 0.921 0.957
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Figure 5. The dotted line represents h0(t) = 1, the solid line denotes h1(t) = 2(t−0.15)(1−2I(t ≤ 0.15))+0.3

which is a non-monotonic linear hazard (Non-Mono), the long-dashed line denotes h1(t) = (0.5t+ 0.75)3 which
is a cubic polynomial hazard (Poly), and the dot-dashed line denotes h1(t) = exp[1.5(t − 0.5)] which is a

exponential hazard (Exp).
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