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Abstract

Emerging research underscores the potential of machine learning techniques to enhance sta-

tistical process control (SPC) methodologies. However, most existing machine learning-based

charts assume that in-control process observations are independent and identically distributed, a

condition rarely met in practice, which limits their real-world applicability. This paper suggests

a framework that integrates a sequential spatio-temporal decorrelation procedure with represen-

tative machine learning charting schemes, enabling effective monitoring of spatio-temporal data

streams. Numerical studies demonstrate that the proposed control charts significantly outper-

form traditional methods, providing superior monitoring capabilities for spatio-temporal data

with complex structures.

Keywords: Correlation; Control charts; Machine learning algorithms; Random forest; Spatio-

temporal data; Support vector machines.

1 Introduction

Machine learning methods have garnered significant attention across various research fields in recent

years (Aggarwal 2018; Breiman 2001; Carvalho et al. 2019; Hastie et al. 2001; Göb 2006). Within

the domain of statistical process control (SPC), researchers have developed control charts that
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leverage machine learning methods such as k-nearest neighbor (KNN), random forest (RF), and

support vector machine (SVM) approaches (cf. Megahed and Jones-Farmer 2015, Qiu 2024a).

These machine learning-based control charts are typically designed for monitoring univariate or

multivariate data streams. However, in applications such as environmental monitoring, disease

surveillance, and others, data streams are often spatial, meaning that process observations are

collected at multiple locations over time (Qiu 2024b). This paper aims to advance machine learning-

based control charts to effectively monitor such spatial data streams.

Sequential monitoring of a data stream can be framed as a sequential classification problem,

where the status of the underlying process must be classified as either in-control (IC) or out-of-

control (OC) at each time point. Applying supervised machine learning algorithms, such as RF,

to this problem requires a training dataset containing both IC and OC observations. However,

in typical SPC applications (e.g., online monitoring of a production line and layerwise Additive

Manufacturing), only a small IC dataset is available prior to online process monitoring. To address

this limitation, Tuv and Runger (2003) proposed the artificial contrast (AC) approach, which

generates an artificial OC dataset from a pre-specified distribution (e.g., a uniform distribution)

and combines it with IC data to derive a classification rule using the RF algorithm. Deng et al.

(2012) introduced an alternative method, the real-time contrast (RTC) approach, which uses recent

observations within a time window as OC data. These OC data are then combined with the IC

dataset to establish a classification rule. Jin and Liu (2013) proposed an ensemble learning-based

multimodal process monitoring method, which used the piecewise linear regression tree models for

baseline modeling and generate regression-adjusted monitoring statistics.

Another strategy, proposed by Sun and Tsung (2003), involves using a one-class classifica-

tion (OCC) method based on the support vector data description approach. This method identifies

the boundary of the IC dataset as the decision rule for process monitoring: a future observation is

deemed IC if it falls within the boundary, and OC otherwise. Various improvements and general-

izations of OCC-based control charts have since been developed (e.g., He et al. 2018, Sukchotrat

et al. 2010, Xie and Qiu 2023a), with additional references cited therein.

Additionally, Yeganeh et al. (2022a) integrated a radial basis function (RBF) neural network

with a multivariate exponentially weighted moving average (MEWMA) chart to enhance shift

detection in linear profile monitoring. In a related study, Yeganeh et al. (2022b) incorporated an
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ensemble of artificial neural networks (ANNs) with a nonparametric EWMA chart to improve the

online monitoring of nonparametric profile changes. Li et al. (2021a) applied transfer learning

to enhance process monitoring by leveraging data from different sources, while Li et al. (2021b)

developed a nonparametric multivariate control chart using the KNN algorithm.

Most machine learning-based control charts discussed above are designed under the assump-

tion that in-control (IC) process observations at different time points are independent, identically

distributed, and follow a normal distribution. When one or more of these assumptions are violated,

these methods become unreliable, as highlighted in the SPC literature (e.g., Capizzi and Masarotto

2008, Chakraborti et al. 2015, Qiu 2018). To address these challenges, some existing methods focus

on monitoring correlated data using parametric time series modeling (e.g., Capizzi and Masarotto

2008) or nonparametric moment estimation of covariances (e.g., Qiu et al., 2020). Some others

focus on nonparametric or distribution-free process monitoring (Capizzi 2015, Chakraborti and

Graham 2019, Qiu and Hawkins 2001). Building on these approaches and the approach of self-

starting process monitoring (Hawkins 1987), Qiu and Xie (2022) proposed a general framework,

known as Transparent Sequential Learning (TSL), for monitoring processes with correlated data.

Subsequently, Xie and Qiu (2023b, 2024) extended the TSL framework to accommodate dynamic

processes with time-varying IC distributions.

This paper focuses on the online monitoring of spatio-temporal data streams, which of-

ten exhibit complex variations, correlations, and distributions over space and time. The machine

learning-based control charts discussed earlier cannot be directly applied to such data streams, as

their underlying model assumptions are typically invalid in these scenarios. To address this lim-

itation, we propose modifications to several representative machine learning-based control charts

using the sequential spatio-temporal data standardization and decorrelation procedure introduced

by Yang and Qiu (2020). Numerical results demonstrate that the modified charts significantly out-

perform their original counterparts when monitoring spatio-temporal data across various scenarios.

It is worth noting that while the control charts discussed in this paper primarily focus on detecting

mean shifts, they are generally sensitive to other types of shifts as well. These include changes in

variance, simultaneous shifts in both mean and variance, and some more complex distributional

changes, thereby enhancing their applicability in spatio-temporal process monitoring.

The remainder of the paper is organized as follows. Section 2 outlines the proposed modifica-
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tions to existing machine learning-based control charts. Section 3 presents a numerical performance

comparison between the modified and original charts. Section 4 applies the proposed methods to a

real-world case study. Finally, Section 5 concludes the paper with key remarks and future directions.

2 Monitoring Spatio-Temporal Data Streams Using Machine Learn-

ing Approaches

In this section, we propose a data pre-processing framework for enhancing the performance of

existing machine learning-based control charts when monitoring spatio-temporal data streams. A

sequential spatio-temporal data standardization and decorrelation procedure is first described in

Section 2.1 to pre-process the observed data. Then, several representative machine learning-based

control charts are described in Section 2.2 to sequentially monitor the pre-processed data.

2.1 Sequential data standardization and decorrelation

Assume that an IC spatio-temporal dataset is available in advance and the observed data in this

dataset follow the nonparametric spatio-temporal model:

y(ti, sij) = µ(ti, sij) + ε(ti, sij), for i = 1, . . . , n, j = 1, . . . ,mi, (1)

where y(ti, sij) is the observation at time ti ∈ [0, T ] and location sij ∈ Ω, µ(ti, sij) is its mean, and

ε(ti, sij) is a zero-mean random error. In Model (1), [0, T ] denotes one whole season for applications

where seasonality is present. The spatio-temporal correlation is described by the covariance function

V (t, t′; s, s′) = Cov(y(t, s), y(t′, s′)), for any t, t′ ∈ [0, T ], s, s′ ∈ Ω.

As discussed in Yang and Qiu (2018), the mean function µ(t, s) in Model (1) can be esti-

mated using the following spatio-temporal local linear kernel smoothing procedure:

arg min
θ∈R4

n∑
i=1

mi∑
j=1

[y(ti, sij)− θµ − θt(ti − t)− θu(su,ij − su)− θv(sv,ij − sv)]2

×Kt

(
ti − t
ht

)
Ks

(
dE(sij , s)

hs

)
,

(2)
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where θ = (θµ, θt, θu, θv)
T , s = (su, sv)

T , dE(·, ·) is the Euclidean distance, ht, hs > 0 are two

bandwidths, and Kt(·) and Ks(·) are two kernel functions. As suggested in Yang and Qiu (2018),

both Kt(·) and Ks(·) are chosen to be the Epanechnikov kernel function Kt(u) = Ks(u) = 0.75(1−

u2)I(|u| ≤ 1) because of its good theoretical properties (Epanechnikov 1969), and the bandwidths

are chosen by a modified cross-validation procedure. Since the minimization problem (2) can be

regarded as a weighted least squares estimation, the estimate of µ(t, s) has the expression:

µ̂(t, s) = ζ>(X>WX)−1X>WY , (3)

where ζ = (1, 0, 0, 0)>, X is the related design matrix of the observations, W is a diagonal weight

matrix, and Y is the vector of the observed data.

By the approach discussed in Yang and Qiu (2019), the covariance function V (t, t′; s, s′) in

Model (1) can be estimated by the following kernel estimate: when (t, s) 6= (t′, s′),

V̂ (t, t′; s, s′) =

∑n
i=1

∑mi
j=1

∑n
k=1

∑mk
l=1 ε̂(ti, sij)ε̂(tk, skl)wv(i, j, k, l; t, t

′, s, s′)∑n
i=1

∑mi
j=1

∑n
k=1

∑mk
l=1wv(i, j, k, l; t, t

′, s, s′)
, (4)

where ε̂(ti, sij) = y(ti, sij)− µ̂(ti, sij) are residuals, and

wv(i, j, k, l; t, t
′, s, s′) = Kt

(
ti − t
ht

)
Ks

(
dE(sij , s)

hs

)
Kt

(
tk − t′

ht

)
Ks

(
dE(skl, s

′)

hs

)
.

When (t, s) = (t′, s′), V (t, t; s, s) is actually the variance of y(t, s), denoted as σ2(t, s). Its estimate

can be defined similarly to be

σ̂2(t, s) =

∑n
i=1

∑mi
j=1 ε̂

2(ti, sij)wσ(i, j; t, s)∑n
i=1

∑mi
j=1wσ(i, j; t, s)

, (5)

where

wσ(i, j; t, s) = Kt

(
ti − t
ht

)
Ks

(
dE(sij , s)

hs

)
.

Under some regularity conditions, Yang and Qiu (2018, 2019) confirmed that the estimates µ̂(t, s),

V̂ (t, t′; s, s′) and σ̂2(t, s) are all statistically consistent.

Next, we discuss online monitoring of spatio-temporal data streams. Assume that the

observed spatio-temporal data at times {t∗i ∈ (T,∞), i ≥ 1} and locations {s∗ij ∈ Ω, j = 1, . . . ,m∗i }
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are {y(t∗i , s
∗
ij), j = 1, . . . ,m∗i , i ≥ 1}. To sequentially monitor them, the observed data should be

properly standardized and decorrelated first, using the estimated model of (1). To this end, the

estimated regular longitudinal pattern described by the estimates µ̂(t, s), σ̂2(t, s), and V̂ (t, t′; s, s′)

should be extended periodically from [0, T ] to (T,∞) to represent the ongoing IC pattern. Then,

the sequential data standardization and decorrelation procedure is described below.

• At the first time point t∗1, the standardized observation is defined to be

ê(t∗1) = Σ̂
−1/2
1 ε̂(t∗1),

where Σ̂1 is the estimate of Σ1 = Cov(Y(t∗1),Y(t∗1)) derived from the estimated covariance

function V̂ (t, t′; s, s′), Y(t∗1) = (y(t∗1, s
∗
11), . . . , y(t∗1, s

∗
1m∗

1
))T , ε̂(t∗1) = Y(t∗1)−µ̂(t∗1), and µ̂(t∗1) =

(µ̂(t∗1, s
∗
1j), . . . , µ̂(t∗1, s

∗
1m∗

1
))T .

• At time t∗i , for i ≥ 2, let Y(t∗i ) = (y(t∗i , s
∗
i1), . . . , y(t∗i , s

∗
im∗

i
))T , Yi−1 = (YT (t∗1), . . . ,Y

T (t∗i−1))
T ,

ε̂(t∗i ) = (ε̂(t∗i , s
∗
i1), . . . , ε̂(t

∗
i , s
∗
im∗

i
))T , and ε̂i−1 = (ε̂T (t∗1), . . . , ε̂

T (t∗i−1))
T . Then, the standard-

ized and decorrelated data at t∗i is defined to be

ê(t∗i ) = Σ̂
−1/2
ii·(i−1)

(
ε̂(t∗i )− Σ̂T

i−1,iΣ̂
−1
i−1,i−1ε̂i−1

)
,

where Σ̂ii·(i−1) = Σ̂i − Σ̂T
i−1,iΣ̂

−1
i−1,i−1Σ̂i−1,i, Σ̂i is the estimate of covariance matrix of Yi,

Σ̂i−1,i is the estimate of Cov(Yi−1,Y(t∗i )), Σ̂i−1,i−1 is the estimate of Cov(Yi−1,Yi−1), and all

these variance/covariance estimates can be computed from the estimated covariance function

V̂ (t, t′; s, s′).

After this data standardization and decorrelation procedure is applied to the observed data,

we obtain the transformed observations {ê(t∗i , s∗ij), j = 1, . . . ,m∗i , i ≥ 1} which have the properties

that i) the transformed observations at each time point are asymptotically uncorrelated with each

other, ii) each of them has the asymptotic variance of 1, and iii) they are asymptotically uncorrelated

with all observations at previous observation times.

6



2.2 Spatio-temporal process monitoring using machine learning approaches

As discussed in Section 1, most existing machine learning-based control charts are designed for

monitoring processes with uncorrelated IC observations at different observation times. After data

standardization and decorrelation as discussed in the previous subsection, they can be applied to

the transformed observations {ê(t∗i , s∗ij), j = 1, . . . ,m∗i , i ≥ 1} for online process monitoring, which

is described below for five representative machine learning-based control charts.

2.2.1 Control chart based on the artificial contrasts

Tuv and Runger (2003) first introduced the concept of artificial contrast (AC) to address the

common challenge to use surpervised machine learning methods for online process monitoring that

only a small amount of IC data are available in some applications before online process monitoring.

The key idea is to generate an artificial dataset from an off-target (e.g., Uniform) distribution,

defined in the same domain as that of the IC data, and treat these artificially generated data

as OC observations. After combining the IC dataset, denoted as DIC , with the AC dataset,

denoted as DAC , a machine learning algorith (e.g., RF) can be used to derive a classification rule

for determining the process status (IC versus OC) at any time during online process monitoring.

However, such control charts have the following main limitation: the decision at each time point

during process monitoring is made based solely on the current observations, without leveraging

past process information. To overcome this limitation, Hu and Runger (2010) proposed a two-step

modified version:

i) Log-Likelihood Ratio Calculation: Let ê(t∗i ) = (ê(t∗i , s
∗
i1), . . . , ê(t

∗
i , s
∗
im∗

i
))T be the stan-

dardized and decorrelated data at the current observation time t∗i , for i ≥ 1. The RF classifier

can provide estimated probabilities p̂0(ê(t∗i )) and p̂1(ê(t∗i )) that the observation vector ê(t∗i )

belongs to the IC and OC classes, respectively. Define the log-likelihood ratio at time t∗i to

be

`i = log
[
p̂1(ê(t∗i ))

]
− log

[
p̂0(ê(t∗i ))

]
.
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ii) EWMA-Based Charting Statistic: An EWMA chart is then constructed by

Ei = λ(`i − µ`)/σ` + (1− λ)Ei−1, for i ≥ 1,

where Ei = 0, µ` and σ` are the IC mean and standard deviation of `i that can be estimated

from the IC data, and λ ∈ (0, 1] is a smoothing parameter. This chart is referred to as the

AC-STD chart hereafter, where AC denotes “artificial contrast” and STD implies that the

chart is applied to the spatio-temporally decorrelated data.

The AC-STD chart gives a signal at time t∗i if Ei > hAC , where hAC > 0 is a control limit.

To determine hAC , Hu and Runger (2010) recommended using the following 10-fold cross-validation

(CV) procedure:

• Partition DIC and DAC into 10 roughly equal subsets, respectively.

• For each specific fold, train the RF classifier using 90% of DIC and DAC , and apply the

resulting AC-STD chart with a trial control limit hAC to the remaining 10% of the data.

• Repeat this procedure for a total of C times (e.g., C = 1, 000) to obtain multiple run length

(RL) estimates.

• The average of these RL values approximates the true ARL0 for the given hAC . Search for

the hAC value using a numerical algorithm such as the bisection method until a pre-specified

ARL0 value is achieved.

In the AC-STD chart, the RF algorithm includes several key parameters that could influence

its performance. They are specified in the following way. The maximum depth of each tree is allowed

to grow until purity, meaning that every terminal node contains observations from a single class (i.e.,

either IC or OC). Additionally, the minimum node size is set to be 1. Since increasing the number of

trees would reduce variance without causing overfitting, the number is typically set to a sufficiently

large value, and the exact number should be chosen to minimize the overall misclassification error.

Hu and Runger (2010) suggested using 500-1,000. We use 500 in all numerical examples in the

paper.
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2.2.2 Control chart based on the real time contrasts

The AC dataset DAC used in the AC chart relies on an off-target distribution that may not ac-

curately represent the actual OC behavior well. To address this limitation, Deng et al. (2012)

proposed the real-time contrast (RTC) approach. In RTC, rather than relying on a static, artifi-

cially generated AC dataset, the contrasts are dynamically constructed from recent observations.

Specifically, the IC dataset DIC is first partitioned into two subsets: a randomly selected subset

DIC0 , of size N0, and the remaining IC dataset DIC1 . The subset DIC1 is reserved for determining

the control limit. At the current time point t∗i , consider observations at the most recent w ob-

servation times, {ê(t∗i−w+1), ê(t∗i−w+2), . . . , ê(t∗i )}. These observations are temporarily regarded as

OC data, forming a real-time contrast dataset DRTCi . By combining DIC0 with DRTCi , one can

continuously retrain the RF classifier as new data arrive. This real-time updating ensures that the

classifier and therefore the charting statistic adapts to evolving process conditions. In this method,

the parameters N0 and w are typically selected based on preliminary experiments. Generally, larger

values of w increase the sensitivity of the chart to smaller shifts; but, w should be substantially

smaller than N0 to ensure sufficient contrast between the IC and OC datasets. Hyperparameters

for the RF algorithm are tunned as described at the end of Section 2.2.1 for the AC-STD chart.

Among different ways to construct the charting statistic, Deng et al. (2012) proposed

using the out-of-bag (OOB) classification rate for DIC0 to define the charting statistic. Let |DIC0 |

denote the number of observations in DIC0 , and P̂OOB(ê(t̃)) denotes the OOB correct classification

probability for any ê(t̃) ∈ DIC0 that can be obtained by the RF algorithm. Then, the RTC

charting statistic at time t∗i is defined to be the following estimated OOB correct classification rate

for observations in DIC0 :

Pi =

∑
ê(t̃)∈DIC0

P̂OOB(ê(t̃))

|DIC0 |
, for i ≥ 1.

Then, the chart gives a signal at time t∗i when Pi > hRTC , where hRTC > 0 is a control limit.

This chart is called the RTC-STD chart hereafter. Deng et al. (2012) recommended the following

bootstrap procedure to determine hRTC :

• Draw a bootstrap sample with replacement from DIC1 .
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• Apply the RTC-STD chart with a trial control limit hRTC to this sampled dataset and record

the run length (RL).

• Repeat the bootstrap re-sampling process for B times (e.g., B = 1000) and obtain B RL

values. The average RL value is then used to approximate the actual ARL0 for the chosen

hRTC .

• Search for the hRTC value using a numerical algorithm such as the bisection method until a

pre-specified ARL0 value is achieved.

2.2.3 Control chart based on the support vector machine

The RTC chart described above produces a discrete-valued statistic because the OOB classifica-

tion probabilities are derived from an ensemble of decision trees (Breiman 2001, He et al. 2018).

As a continuous alternative, He et al. (2018) proposed a control chart under the framework of

distance-based SVM (DSVM). In this approach, the key idea is to use the distances between pro-

cess observations and the SVM decision boundary as the charting statistic. Specifically, remember

that DRTCi is the real-time contrast dataset defined in Subsection 2.2.2 at the current time t∗i .

For each observation ê(t̃) ∈ DRTCi , let d(ê(t̃)) denote its distance to the SVM decision boundary.

Since the distance can be positive or negative depending on which side of the boundary the given

observation lies, He et al. (2018) suggested transforming it to a positive number in (0, 1] using the

standard logistic function:

g(a) =
1

1 + exp(−a)
, for a ∈ (−∞,∞).

Then, the DSVM charting statistic at time t∗i is defined to be the average of the transformed

distances:

Mi =

∑
ê(t̃)∈DRTCi

g(d(ê(t̃)))

|DRTCi |
.

The chart gives a signal at t∗i when Mi > hDSVM where hDSVM > 0 is a control limit that can be

determined by a bootstrap procedure similar to the one described above for the RTC-STD chart.

This chart is called DSVM-STD chart hereafter.

In the DSVM algorithm, the kernel parameter and the penalty parameter should be properly
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selected. He et al. (2018) suggested choosing the kernel parameter to be 2.8 and the penalty

parameter to be 1 to achieve a robust charting performance, which is adopted in this paper.

2.2.4 Control chart based on the k-nearest neighbor

Sukchotrat et al. (2009) proposed a control chart using the KNN algorithm described below. For

the standardized and decorrelated data ê(t∗i ) at the current time t∗i , the charting statistic is defined

to be

C2
i =

1

k

k∑
j=1

‖ê(t∗i )−NNj(ê(t∗i ))‖2,

where NNj(ê(t∗i )) is the jth element in the set of k nearest neighbors of ê(t∗i ) in the IC dataset

DIC , and ‖·‖ is the Euclidean norm. The chart gives a signal at t∗i if C2
i > hKNN , where hKNN > 0

is a control limit that can be determined by a bootstrap procedure from the IC dataset. This chart

is called KNN-STD chart hereafter. In KNN-STD, the parameter k should be chosen properly.

The optimal value of k is usually selected using preliminary experiments, balancing sensitivity to

process shifts and robustness against false alarms. Generally, smaller k yields a more sensitive chart

but could increase false alarms, while larger k reduces sensitivity but enhances stability. Sukchotrat

et al. (2009) suggested using the cross-validation procedure for choosing k to minimize detection

delays for typical shift sizes encountered in practice.

2.2.5 Control chart based on artificial neural network

Yeganeh et al. (2022b) proposed an ensemble-based artificial neural network (EANN) framework

to enhance the sensitivity of a base control chart in detecting shifts in nonparametric profiles. The

core idea is to leverage an ensemble of neural networks trained on partitioned regions within the

IC domain of the base charting statistic, improving the accuracy of OC predictions. This method

operates in the way described below.

First, the IC region of the base charting statistic is defined to be the range [0, BL], where

BL denotes the control limit of the chart. For monitoring the jth profile, if the base charting

statistic value Qj satisfies Qj > BL, then the EANN immediately signals an OC condition without

further analysis. Otherwise, N ANN learners are used. For the tth learner, ANNt, the IC region

[0, BL] is divided into kt subregions. The proportion of all j profiles whose charting statistic values
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falling into each subregion and the current statistic value Qj serve as the inputs to ANNt, ensuring

comprehensive coverage of the IC profiles. Let Tj be the output obtained by an incorporator

that aggregates the outputs of all N ANN learners. Then, Tj is compared with a predetermined

threshold value ξ to determine if the current profile is OC or not. Specifically, if Tj > ξ, then a

signal is triggered and the jth profile is declared to be OC. Otherwise, the profile is IC.

To choose some important parameters of the EANN method (e.g., BL, ξ, N , and kt), the

following guidelines are recommended:

• Initially set the base control limit BL and the threshold value ξ to provisional values. In-

crementally adjust these parameters by using constant steps and repeatedly evaluating the

performance of the EANN method in terms of the IC average run length (ARL0) values.

• The ensemble size N is initially chosen to be a small number (e.g., 3), and increased incremen-

tally. The performance of the EANN method is properly evaluated at each step for detecting

a target shift. This process stops once further increases would yield negligible improvements

(e.g., less than 2% in ARL1), ensuring efficient complexity.

• For choosing kt, the formula kt = 2t + 1, for t = 1, 2, . . . , N , is recommended, providing a

balance between complexity and prediction accuracy.

The EANN chart that is applied to the spatio-temporally standardized and decorrelated

data {ê(t∗i ), i ≥ 1} is called EANN-STD chart hereafter.

3 Simulation Studies

In this section, we evaluate the numerical performance of the five modified machine learning-based

control charts, AC-STD, RTC-STD, DSVM-STD, KNN-STD, and EANN-STD that are applied

to the spatio-temporally decorrelated data {ê(t∗i ), i ≥ 1}, and their original versions, denoted as

AC, RTC, DSVM, KNN, and EANN that are applied to the original observed data {y(t∗i , s
∗
ij), j =

1, . . . ,m∗i , i ≥ 1}. Our objective is to study how data preprocessing by spatio-temporal data

standardization and decorrelation can affect the performance of the five machine learning-based

control charts under various spatio-temporal correlation structures.
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3.1 Simulation setup

We assume that the true IC mean function in Model (1) is given by:

µ(t, s) = cos(2πt) + exp
{
−
[
(sx − 0.5)2 + (sy − 0.5)2

]}
+ 1,

where t is in the time interval [0, 1] and the location s = (sx, sy)
′ is in the spatial domain Ω =

[0, 1] × [0, 1]. Figure 1 shows this mean function at t = 0, 0.2, 0.4, 0.6, 0.8, and 1. The observation

times considered are {ti = i/n, i = 1, . . . , n}, and the spatial locations {sj , j = 1, . . . ,m} remain

fixed over time and are equally spaced in Ω.

Figure 1: IC mean function µ(t, s) at selected time points.

We consider the following five cases of spatio-temporal correlation in model (1):

• Case I: The errors {ε(ti, sij)} are independent and identically distributed (i.i.d.) with the
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N(0, 1) common distribution.

• Cases II and III: Let ε(ti) = (ε(ti, s1), . . . , ε(ti, sm))T , for each i. They are generated from

the following vector AR(1)model:

ε(ti) = ρtε(ti−1) +
√

1− ρ2t η(ti),

where η(ti) = (η(ti, s1), . . . , η(ti, sm))T are independent over time ti and each is a Gaussian

spatial process with covariance:

Cov(η(ti, sj), η(ti, sl)) = exp

(
−dE(sj , sl)

ρs

)
.

The resulting spatio-temporal covariance structure of Model (1) is:

V (ti, tk; sj , sl) = ρ
|k−i|
t exp

(
−dE(sj , sl)

ρs

)
,

where ρt > 0 and ρs > 0 are the temporal and spatial correlation parameters with larger

values implying stronger correlations. In Case II we choose (ρt, ρs) = (0.25, 0.1), and in Case

III we choose (ρt, ρs) = (0.5, 0.2), representing weak and strong correlation scenarios.

• Cases IV and V: The errors {ε(ti, sij)} follow a non-separable spatio-temporal covariance

model:

Cov(η(ti, sj), η(tk, sl)) = C
(
dE(sj , sl), |ti − tk|

)
,

where

C(h, u) =
1

(a|u|+ 1)0.5
exp

(
− ch

(a|u|+ 1)0.5

)
.

In Case IV, the parameters (a, c) are chosen to be (1, 1), representing a weak correlation. In

Case V, we choose (a, c) = (0.25, 0.25), representing a stronger correlation.

In all simulations, the nominal ARL0 is fixed at 50 for all methods. Unless otherwise

specified, λ in the AC chart is chosen to be 0.2, as suggested by He et al. (2010), the window

parameter w in the RTC and DSVM charts is chosen to be 10 and the parameter N0 in RTC is

chosen to be 30, as suggested in Deng et al. (2012) and He et al. (2018), and the parameter k in
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the KNN chart is chosen to be 30, as suggested in Sukchotrat et al. (2009). The parameter N in

EANN is determined as discussed in Yeganeh et al. (2022b), and the control limits BL and ξ in

that procedure are chosen as discussed in Section 2.2.5 to reach ARL0 = 50. For all other methods,

block bootstrap procedures with boostrap sample size of B = 1, 000 are used to determine their

control limits. Any additional parameters not explicitly discussed here are set according to the

recommendations provided in Sections 2.2.1-2.2.5. In Model (1), the number of spatial locations at

each time is chosen to be m = 25 or 49, and the number of time points is fixed at n = 200.

3.2 IC performance

For each chart, its actual ARL0 values is computed as follows. First, an IC dataset is generated

from the IC model (1) and the model is estimated. Second, the chart is applied to an IC spatio-

temporal data stream and the run length (RL) value is recorded. This simulation of the online

spatio-temporal process monitoring procedure is repeated for 1,000 times to obtain 1,000 IC RL

values, which are then averaged to obtain an estimate of the conditional ARL0 value given the

IC dataset. Third, the first two steps are repeated for 100 times to obtain 100 conditional ARL0

values. The average of these 100 conditional ARL0 values is then used as the final estimate of the

actual ARL0 value of the chart. In various cases when m = 25 or 49, the computed actual ARL0

values of different charts and their standard errors are presented in Table 1.

From Table 1, the following conclusions can be made. First, in Case I when there is no

spatio-temporal correlation, the original machine learning-based charts AC, RTC, DSVM, KNN,

and EANN all have reliable IC performance since their actual ARL0 values are reasonably close to

the nominal value of 50. Their IC performance in Case II when there is a weak spatio-temporal

correlation is still reasonably good. But, in Cases III-V when the spatio-temporal correlation is quite

substantial, their IC performance is not reliable since their ARL0 values are quite far away from

the nominal value of 50, especially in Cases III and V. Second, the modified versions AC-STD,

RTC-STD, DSVM-STD, KNN-STD, and EANN-STD have reliable IC performance in all cases

considered. Therefore, the proposed data pre-processing can indeed improve the IC performance

of the related machine learning-based charts. Third, by comparing the results in Cases II and III,

it can be seen that the IC performance of all the charts is better in Case II when the correlation is

weaker. A similar conclusion can be made for the results in Cases IV and V.
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Table 1: Actual ARL0 values and their standard errors (in parentheses) in different cases when
m = 25 or 49, and the nominal ARL0 value of chart is fixed at 50.

m Methods Case I Case II Case III Case IV Case V

25 AC 47.21(3.49) 44.33(4.25) 29.01(4.30) 42.17(3.53) 30.15(3.93)
AC-STD 47.98(2.27) 47.62(3.41) 47.51(3.61) 49.27(2.72) 48.17(2.99)
RTC 51.48(2.74) 43.17(4.13) 35.31(4.62) 43.21(2.52) 31.72(2.92)
RTC-STD 49.21(2.42) 48.91(3.01) 47.67(3.68) 51.13(2.23) 47.83(2.58)
DSVM 47.09(2.98) 45.19(4.42) 31.69(4.45) 45.42(3.21) 29.83(3.44)
DSVM-STD 49.28(2.02) 48.62(2.65) 52.09(3.14) 49.20(2.96) 48.19(3.01)
KNN 52.32(3.88) 43.12(4.22) 34.57(4.41) 44.54(3.26) 32.24(3.76)
KNN-STD 48.75(1.73) 48.38(2.14) 51.92(2.65) 51.05(2.58) 52.24(2.67)
EANN 48.19(2.91) 43.74(3.74) 37.13(4.41) 42.91(3.52) 38.31(4.37)
EANN-STD 48.62(1.52) 48.01(2.59) 47.84(3.84) 48.11(3.08) 47.65(3.45)

49 AC 47.41(3.72) 45.32(4.45) 26.64(4.92) 44.12(3.83) 32.15(4.23)
AC-STD 49.89(2.75) 48.53(3.66) 48.15(3.91) 48.55(2.88) 47.98(3.04)
RTC 51.23(3.74) 46.92(4.43) 31.53(4.64) 42.25(3.82) 35.41(4.52)
RTC-STD 49.76(2.52) 49.64(3.23) 48.25(3.71) 49.65(2.44) 47.68(2.63)
DSVM 52.63(2.99) 44.01(4.57) 32.64(4.71) 45.26(4.54) 37.32(4.64)
DSVM-STD 49.51(2.23) 48.42(2.98) 48.15(3.31) 48.98(3.07) 52.27(3.13)
KNN 54.24(3.61) 45.53(4.22) 29.58(4.52) 47.12(3.56) 29.57(4.56)
KNN-STD 49.31(2.75) 51.86(2.80) 47.72(2.92) 48.99(2.78) 47.69(3.01)
EANN 48.79(2.09) 43.94(2.86) 38.18(3.95) 43.11(3.67) 38.98(3.14)
EANN-STD 48.94(1.89) 48.47(2.81) 48.06(3.89) 48.49(3.14) 47.88(3.67)

3.3 OC performance

In this part, we examine the OC performance of the related charts in various cases considered

before. In each case, a shift is introduced at the start of the online process monitoring and its size

keeps the same across both time and space. We consider OC scenarios when the shift size changes

among 0.2, 0.4, 0.6, 0.8, and 1.0. Unless otherwise stated, all other simulation settings are the same

as before. To ensure a fair comparison, the control limits of all charts have been properly tuned so

that their actual ARL0 values equal the nominal value of 50.

Figures 2 and 3 present the computed actual ARL1 values when m = 25 and 49, respectively,

under different scenarios considered. From the figures, we can make the following conclusions. First,

in Case I when there is no spatio-temporal data correlation, the five original machine learning-

based charts AC, RTC, DSVM, KNN, and EANN perform slightly better than their modified

counterparts AC-STD, RTC-STD, DSVM-STD, KNN-STD, and EANN-STD. One explanation of

this phenomenon was given in You and Qiu (2019) that the related data decorrelation procedure
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used in the modified charts would partially mask the shift in the observed data. Second, in Cases

II-V when spatio-temporal correlation is present, the modified charts are unanimous better than

their original counterparts, implying that the data standardization and decorrelation procedure

used in the former charts can effectively enhance their sensitivity to the shift under various data

correlation conditions.
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Figure 2: Actual ARL1 values of the machine learning-based charts AC, RTC, DSVM, KNN, and
EANN (dotted lines) and their modified counterparts (solid lines) in different cases when m = 25,
the nominal ARL0 is 50, and the shift size changes among 0.2, 0.4, 0.6, 0.8, and 1.0.

4 An Application

The COVID-19 pandemic highlighted the critical importance of effective surveillance for infec-

tious diseases. Monitoring the influenza-like illness (ILI) is not only valuable for early detection of
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Figure 3: Actual ARL1 values of the machine learning-based charts AC, RTC, DSVM, KNN, and
EANN (dotted lines) and their modified counterparts (solid lines) in different cases when m = 49,
the nominal ARL0 is 50, and the shift size changes among 0.2, 0.4, 0.6, 0.8, and 1.0.

outbreaks, but also for evaluating vaccine effectiveness and understanding disease transmission dy-

namics. Insights from analysis of the ILI data can inform policy decisions, strengthen preparedness,

and guide interventions to mitigate the impact of such diseases.

In this section, we apply our modified machine learning-based control charts to an ILI data

that are from the Outpatient Influenza-Like Illness Surveillance Network (ILINet) maintained by the

CDC (https://www.cdc.gov/fluview/surveillance/usmap.html). ILINet aggregates weekly reports

from healthcare providers across the U.S. about the total patient visits and those meeting the ILI

definition. To contextualize the data, we note that the CDC officially reported the emergence of

COVID-19 in the U.S. in January 2020 (CDC 2020). Figure 4 shows the observed ILI incidence rates
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in Week 52 of 2018 (left panel) and Week 52 of 2019 (right panel), approximately one week before

the CDC’s COVID-19 announcement. A notable increase in ILI incidence rates can be observed

from 2018 to 2019, suggesting that a significant shift in disease patterns had already begun before

the end of 2019.

Figure 4: Observed ILI incidence rates in the U.S. in Week 52 of 2018 (left) and Week 52 of 2019
(right). Darker colors indicate larger values.

In our analysis, each flu season spans from Week 41 of one calendar year to Week 40 of

the following year. We focus on incidence rates of 48 contiguous U.S. states, excluding Alaska and

Hawaii. The observed data from Week 41 of 2018 to Week 40 of 2019 are used as the IC data, and

the ones from Week 41 of 2019 to Week 40 of 2020 are used for online monitoring. The distance

between two states is defined to be the Euclidean distance between their geometric centroids.

For the five charts AC-STD, RTC-STD, DSVM-STD, KNN-STD, and EANN-STD, their

control limits are determined as described in Section 3 and their nominal ARL0 values are chosen

to be 50. The resulting charts are shown in Figure 5. From the figure, it can be seen that the

charts AC-STD, RTC-STD, DSVM-STD, KNN-STD, and EANN-STD give their first signals at

early January 2020, mid-December 2019, early May 2020, late February 2020, and mid-December

2019, respectively. These detected shifts generally align with the period during which the CDC

reported the emergence and spread of COVID-19 within the U.S. Although the exact signal timing

differs by the charting method, reflecting variations in sensitivity and the underlying assumptions

of different methods, the signals from AC-STD, RTC-STD and EANN-STD, in particular, closely

precede or coincide with the early stage of the COVID-19 outbreak.
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Figure 5: Control charts AC-STD, RTC-STD, DSVM-STD, KNN-STD, and EANN-STD when
their nominal ARL0 values are chosen to be 50. The dashed horizontal lines in all plots indicate
the control limits, and the solid horizontal line in the last plot denotes the threshold value of the
incorporator in the EANN procedure.

5 Concluding Remarks

Machine learning-based control charts are designed primarily for cases with independent and iden-

tically distributed IC process observations. When these methods are applied to spatio-temporal

data with complex data structure, our results show that such charts could become unreliable and

ineffective. In this paper, we suggest pre-processing the observed spatio-temporal data properly,

before the machine learning-based control charts are used for monitoring spatial data streams. Nu-

merical studies presented in the previous sections show that such a modification can substantially

improve the performance of the related control charts.

Nonetheless, certain limitations remain with the modified machine learning-based control

charts. For instance, the computational burden becomes substantial when the number of spatial

locations is large (e.g., m > 100), due to the intensive computation when estimating the covariance

function and implementing the spatio-temporal decorrelation procedure. To partially address this

issue, Qiu and Xie (2022) assumed that the serial correlation in the observed data was short-
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ranged in the sense that the serial correlation could be ignored when two observation times were at

least bmax apart, where bmax denoted the range of serial correlation. In practice, this assumption

is often reasonable, and the computation involved in the data standardization and decorrelation

procedure described in Section 2.1 could be substantially reduced under the short-range serial

correlation assumption. Another important issue is related to post-signal diagnoses. Once a signal

is triggered by a chart when monitoring a spatio-temporal process, post-signal diagnostic tools are

needed to identify anomalous regions and the onset time of the detected shift. Additionally, an

autonomous machine learning control system could greatly improve the adaptiveness of SPC by

using an appropriate decorrelation procedure and a machine learning control chart, catering to

different spatio-temporal distributions and operating characteristic requirements. Future research

is needed to address all these issues.
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