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Abstract

We consider statistical process control (SPC) of univariate processes when observed data are

not normally distributed. Most existing SPC procedures are based on the normality assumption.

In the literature, it has been demonstrated that their performance is unreliable in cases when

they are used for monitoring non-normal processes. To overcome this limitation, we propose

two SPC control charts for applications when the process data are not normal, and compare

them with the traditional CUSUM chart and two recent distribution-free control charts. Some

empirical guidelines are provided for practitioners to choose a proper control chart for a specific

application with non-normal data.

Key Words: Distribution-free; Non-Gaussian data; Nonparametric procedures; Transformation,

Wilcoxon signed-rank test.

1 Introduction

Statistical process control (SPC) charts are widely used in industry for monitoring stability of

certain sequential processes (e.g., manufacturing processes, health care systems, internet traffic

flow, and so forth). The early stage of process monitoring, in which the process needs to be

repeatedly adjusted for stable performance, is often called the Phase I analysis, and the afterwards

online process monitoring is often called the Phase II SPC. Performance of a Phase II SPC procedure

is usually measured by the average run length (ARL), which is the average number of observations

needed for the procedure to signal a change in the measurement distribution. The ARL value of

the procedure when it is in control (IC), denoted as ARL0, is often controlled at some specific level.

Then, the procedure performs better if its out-of-control (OC) ARL, denoted as ARL1, is shorter,

when detecting a given distributional change. See, e.g., Hawkins and Olwell (1998), Montgomery

(2009), Woodall (2000), and Yeh et al. (2004) for related discussion. This paper focuses on Phase II

monitoring of univariate processes in cases when process observations are not normally distributed.
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In the literature, many Phase II SPC charts have been proposed, including different versions

of the Shewhart chart, the cumulative sum (CUSUM) chart, the exponentially weighted moving

average (EWMA) chart, and the chart based on change-point detection (cf., e.g., Hawkins and

Olwell 1998, Hawkins et al. 2003, Montgomery 2009). All these control charts are based on

the assumption that observations of a related process follow a normal distribution. In practice,

however, process observations may not follow normal distributions. In such cases, it has been well

demonstrated that results from the charts mentioned above would be unreliable (cf., Amin et al.

1995, Hackl and Ledolter 1992, Lucas and Crosier 1982). As a demonstration, Figure 1 shows the

actual IC ARL values of the conventional CUSUM chart (Page 1954) based on the assumption

that the IC response distribution is N(0, 1), in cases when the allowance constant of the chart

(see introduction in Section 2) is 0.5, the assumed IC ARL value equals 500 and the true response

distribution is the standardized version (with mean 0 and variance 1) of the chi-square (plot (a)) or

t (plot (b)) distribution with degrees of freedom (df) changing from 1 to 60 in plot (a) and from 3

to 60 in plot (b). From the plots, it can be seen that the actual IC ARL values of the conventional

CUSUM chart are much smaller than the nominal IC ARL value when the df is small, which

implies that the related process would be stopped too often by the control chart and consequently

a considerable amount of time and resource would be wasted in such cases.
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Figure 1: Actual IC ARL (i.e., ARL0) values of the conventional CUSUM chart in cases when
the nominal IC ARL value is 500, and the true response distribution is the standardized version
(with mean 0 and variance 1) of the chi-square (plot (a)) or t (plot (b)) distribution with degrees
of freedom changing from 1 to 60 in plot (a) and from 3 to 60 in plot (b).

From Figure 1, it seems necessary to develop appropriate control charts that do not require the
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normal distribution assumption in cases when the process distribution is actually non-normal. To

this end, a number of distribution-free or nonparametric control charts have been developed. See,

for instance, Amin and Widmaier (1999), Bakir(2006), Bakir and Reynolds (1979), Chakraborti

et al. (2009), and Chakraborti and Eryilmaz (2007). Chakraborti et al. (2001) gives a thorough

overview on existing research in the area of univariate distribution-free SPC. In multivariate cases,

see Qiu and Hawkins (2001, 2003) and Qiu (2008) for related discussion.

Most existing distribution-free SPC charts mentioned above are based on ordering or ranking

information of the observations obtained at the same or different time points. Some of them require

multiple observations at each time point (i.e., cases with batch or grouped data). Intuitively, it

would lose much information if we only use the ordering or ranking information in the observed

data for process monitoring. An alternative approach would first transform the non-normal data

properly so that the distribution of the transformed data is close to normal, and then a traditional

control chart is applied to the transformed data. To this end, two such control charts are proposed

in this paper. They are compared with the traditional CUSUM chart and two recent nonparametric

control charts. Some practical guidelines are provided for users to choose a proper control chart

for a specific application with non-normal data.

The rest part of the paper is organized as follows. Our proposed control charts are described

in Section 2. A numerical study to evaluate their performance in comparison with several existing

control charts is presented in Section 3. An application is discussed in Section 4 to demonstrate the

use of the proposed method in a real world setting. Some remarks conclude the article in Section

5. Certain numerical results are given in a supplementary file.

2 Proposed Control Charts

Like some existing distribution-free control charts (e.g., Chakraborti et al. 2009), we do not assume

that the IC measurement cumulative distribution function (cdf) F0 is known. Instead, we assume

that an IC dataset is available for us to estimate certain IC parameters.

Let X(n) = (X1(n), X2(n), . . . , Xm(n))′ be m repeated observations obtained at the nth time

point during Phase II process monitoring. In the literature, such data are called batch data, and

m is the batch size. When m = 1, the data are sometimes called single-observation data. The

traditional CUSUM chart is a standard tool for monitoring univariate processes in practice. Its
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charting statistics of the two-sided version are defined by

u+n,N = max
(

0, u+n−1,N +X(n)− kN

)

,

u−n,N = min
(

0, u−n−1,N +X(n) + kN

)

, for n ≥ 1,

where u+
0,N = u−

0,N = 0, kN is an allowance constant, and X(n) = 1

m

∑m
j=1

Xj(n). Then, a mean

shift in X(n) is signaled if

u+n,N > hN or u−n,N < −hN (1)

where the control limit hN > 0 is chosen to achieve a given ARL0 level under the assumption that

all observations are normally distributed. This chart is called N-CUSUM chart in this paper.

When process observations are not normally distributed, as demonstrated in Figure 1, the N-

CUSUM chart may not be appropriate to use for process monitoring. In such cases, Chou et al.

(1998) suggested an algorithm to transform a non-normal dataset to a standard normal dataset,

by using the Slifker and Shapiro’s (1980) method for distribution estimation under the Johnson’s

(1949) system of distributions. More specifically, Johnson (1949) considered three distribution

families, labels as SB, SL, and SU . For each distribution family, Johnson found a transformation

to transform the distributions in the family to the standard normal distribution. For a given

distribution F , Slifker and Shapiro (1980) developed a criterion to classify F to one of the SB, SL,

and SU families. Let

QR =
(τ4 − τ3)(τ2 − τ1)

(τ3 − τ2)2

where τj are the qjth quantile of F , for j = 1, 2, 3, 4, q1 = Φ(−3z), q2 = Φ(−z), q3 = Φ(z),

q4 = Φ(3z), z is a given number between 0.25 and 1.25, and Φ is the cdf of the standard normal

distribution. In practice, if F is unknown and we have a sample from F instead, then τj ’s in

the above expression can be replaced by the corresponding sample quantiles. Then, Slifker and

Shapiro’s criterion is as follows.

• If QR < 1, then F belongs to the family SB,

• If QR = 1, then F belongs to the family SL, and

• If QR > 1, then F belongs to the family SU .

Based on this criterion and Johnson’s method to transform distributions in SB, SL, and SU to the

standard normal distribution, Chou et al. (1998) developed a numerical algorithm to transform

any non-normal dataset to a standard normal dataset.
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At the nth time point during Phase II monitoring, let Z(n) = (Z1(n), Z2(n), . . . , Zm(n))′ be the

transformed observations by Chou et al.’s algorithm from the original observations X(n). Then,

X∗(n) = (X∗

1 (n), X
∗

2 (n), . . . , X
∗

m(n))′ with X∗

j (n) = Zj(n)sn + X(n), for j = 1, 2, . . . ,m, are the

transformed observations having the same sample mean and sample standard deviation as X(n),

where X(n) and sn denote the sample mean and sample standard deviation of X(n). So, X∗(n)

should be roughly normal if the transformation works well. We then apply the conventional N-

CUSUM chart (1) to {X∗(n), n ≥ 1}. The resulting control chart is called T-CUSUM chart,

reflecting the fact that it is applied to the transformed data.

When the IC process distribution is unknown but an IC dataset is available, another natural

idea is to find a transformation from the IC data such that the distribution of the transformed IC

data is close to normal, and then apply the N-CUSUM chart (1) to the transformed Phase II data

for process monitoring. In the literature (cf., Section 13.1.4, Cook and Weisberg 1999), a commonly

used approach for finding such a transformation is to consider the Box-Cox transformation family

BCα(x) =







(xα − 1)/α, if α 6= 0

log(x), otherwise,

where α is a parameter. The value of α can be determined by maximizing the Shapiro-Wilk

normality test statistic (cf., Shapiro and Wilk 1965) which is included in most statistical software

packages, such as SAS and R. The resulting CUSUM chart is called B-CUSUM chart.

3 Numerical Study

In this section, we present some numerical examples to evaluate the performance of the charts

T-CUSUM and B-CUSUM, in comparison with certain representative existing control charts. The

existing control charts considered here are the traditional N-CUSUM chart, and the two recent

distribution-free control charts by Chakraborti and Eryilmaz (2007) and Chakraborti et al. (2009)

described below.

The chart by Chakraborti et al. (2009) is a Shewhart-type chart, and it monitors the median of

X(n) over time and a shift is signaled if the median is out of the upper or lower bound determined

by a reference sample (i.e., the IC data) to achieve a given ARL0 level. This chart was called

PRECEDENCE chart in Chakraborti et al. (2009), where several different versions of the PRECE-

DENCE chart were presented. Here, we use the version of 2-of-2 KL, as suggested by Chakraborti
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et al. (2009) for detecting either up or down shifts. By this version of the chart, a signal of mean

shift is delivered when two consecutive medians are both on or above the upper bound or both on

or below the lower bound. The chart by Chakraborti and Eryilmaz (2007) is also a Shewhart-type

chart and it is constructed based on the statistic

ψ(n) = 2W+
n −

m(m+ 1)

2
, for n ≥ 1,

where W+
n is the Wilcoxon signed-rank statistic of X(n), defined to be the sum of the ranks of

{|Xj(n) − θ0|, j = 1, 2, . . . ,m} over all positive components of {Xj(n) − θ0, j = 1, 2, . . . ,m}, and

θ0 is the IC median of the process distribution which can be estimated from the IC data. As well

demonstrated in the literature (e.g., Hawkins and Olwell 1998), CUSUM charts are more favorable

for detecting persistent shifts, compared to Shewhart-type charts. For that reason, we construct a

CUSUM chart based on ψn as follows. Let u+
0,S = u−

0,S = 0, and

u+n,S = max
(

0, u+n−1,S + (ψ(n)− ψ0)− kS

)

,

u−n,S = min
(

0, u−n−1,S + (ψ(n)− ψ0) + kS

)

, for n ≥ 1,

where kS is an allowance constant, and ψ0 is the IC mean of ψ(n) that can be estimated from the

IC data. Then, the CUSUM chart signals a mean shift in X(n) if

u+n,S > hS or u−n,S < −hS , (2)

where the control limit hS is chosen to achieve a given ARL0 level. The chart (2) is called S-

CUSUM chart hereafter. As a side note, we do not know how to modify the PRECEDENCE chart

properly to make it a CUSUM chart at this moment. So, the original PRECEDENCE chart is

included in our numerical study. By doing so, as a by-product, we can compare CUSUM charts

with a Shewhart chart in the current problem of distribution-free SPC.

We then compare the two control charts T-CUSUM and B-CUSUM that are both based on

transformations with the charts N-CUSUM, S-CUSUM, and PRECEDENCE. In the comparison,

the IC distribution is chosen to be the standardized version with mean 0 and standard deviation 1 of

one of the following four distributions: N(0, 1), t(4), χ2(1) and χ2(4). Among these distributions,

t(4) represents symmetric distributions with heavy tails, and χ2(1) and χ2(4) represent skewed

distributions with different skewness. It is also assumed that the pre-specified ARL0 value is 500,

and the batch size of Phase II observations at each time point is m = 5 in all cases considered.
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Table 1: The actual IC ARL values and their standard errors (in parentheses) of the five control
charts when the nominal IC ARL values are fixed at 500 and the actual IC process distribution is
the standardized version of N(0, 1), t(4), χ2(1) and χ2(4).

N(0, 1) t(4) χ2(1) χ2(4)

N-CUSUM 499.7 (5.25) 396.3 (4.05) 348.7 (3.72) 443.0 (4.73)
T-CUSUM 495.4 (7.36) 341.2 (3.83) 325.6 (5.04) 347.9 (4.91)
B-CUSUM 522.5 (6.19) 500.3 (5.44) 508.9 (5.73) 523.5 (5.97)
S-CUSUM 494.7 (5.79) 515.0 (5.82) 537.0 (6.22) 517.8 (6.00)

PRECEDENCE 515.9 (5.82) 531.4 (5.90) 526.1 (5.88) 522.8 (5.96)

First, we compute the actual ARL0 values of the five control charts, based on 10,000 replicated

simulations, in cases with the four actual IC process distributions described above. In computing

the control limits of the CUSUM charts, the N-CUSUM chart is based on the assumption that

the original process observations are normally distributed, the T-CUSUM chart is based on the

assumption that the transformed data by the numerical algorithm developed by Chou et al. (1998)

are normally distributed, and the B-CUSUM, S-CUSUM, and PRECEDENCE charts are based

on 500 IC observations. For all control charts, their allowance constants are chosen to be 0.2.

The results are shown in Table 1. From the table, it can be seen that the actual ARL0 values

of the charts N-CUSUM and T-CUSUM are quite far away from 500 in cases when the actual

IC distribution is not normal. As a comparison, the B-CUSUM, S-CUSUM, and PRECEDENCE

charts seem quite robust to the IC distribution, because their actual ARL0 values are all quite close

to 500 in all cases considered.

Next, we compare the OC performance of the related control charts in cases when the IC

sample size M = 200 or 500. In order to make the comparison more meaningful, we intentionally

adjust the control limits of all charts so that their actual ARL0 values equal 500 in all cases

considered. In this study, 10 mean shifts ranging from -1.0 to 1.0 with step 0.2 are considered,

representing small, medium and large shifts. Due to the facts that different control charts have

different parameters and that the performance of different charts may not be comparable if their

parameters are pre-specified, we use the following two approaches to set up their parameters. One

is that all their parameters are chosen to be the optimal ones for detecting a given shift (e.g., the

one of size 0.6), by minimizing the OC ARL values of the charts for detecting that shift while

their ARL0 values are all fixed at 500, and the chosen parameters are used in all other cases as

well. The second approach is to compare the optimal performance of all the charts when detecting

each shift, by selecting their parameters to minimize the ARL1 values for detecting each individual
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shift, while their ARL0 values are all fixed at 500. The second approach for comparing different

control charts has been used in the literature. See, for instance, Qiu and Hawkins (2001). Results

based on 10,000 replications, when M = 200 or 500 and when the first approach described above

is used for choosing the parameters, are presented in Figures 2 and 3, respectively. To save some

space, the corresponding results when the second approach described above is used for choosing the

parameters, are given in a supplementary file. When reading the plots in these figures, readers are

reminded that the scale on the y-axis is in natual logarithm, to better demonstrate the difference

among different control charts when detecting relatively large shifts.
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Figure 2: OC ARL values of five control charts when ARL0 = 500, M = 200, m = 5, and the
actual IC process distribution is the standardized version of N(0, 1) (plot (a)), t(4) (plot (b)), χ2(1)
(plot (c)), and χ2(4) (plot (d)). Procedure parameters of the control charts are chosen to be the
ones that minimize their OC ARL values when detecting the shift of 0.6. Scale on the y-axis is in
natual logarithm.
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Figure 3: OC ARL values of five control charts when ARL0 = 500, M = 500, m = 5, and the
actual IC process distribution is the standardized version of N(0, 1) (plot (a)), t(4) (plot (b)), χ2(1)
(plot (c)), and χ2(4) (plot (d)). Procedure parameters of the control charts are chosen to be the
ones that minimize their OC ARL values when detecting the shift of 0.6. Scale on the y-axis is in
natual logarithm.

From Figure 2(a), we can see that when the actual process distribution is normal, the N-

CUSUM and B-CUSUM charts perform the best, as expected. In such a case, the T-CUSUM

and S-CUSUM charts perform slightly worse than the N-CUSUM and B-CUSUM charts, and the

PRECEDENCE chart performs the worst because it loses much information when considering

the ordering information in the data only and because it is a Shewhart chart. In the case of

Figure 2(b), the IC process distribution is t(4), which is still symmetric but has heavier tails,

compared to the normal distribution. In such cases, the N-CUSUM chart is not the best any

more. Instead, the B-CUSUM chart performs well, especially when the mean shift is relatively
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large. The S-CUSUM chart also performs well, especially when the mean shift is relatively small.

The T-CUSUM and PRECEDENCE charts perform relatively worse. In cases of Figure 2(c)-(d),

the IC process distribution is either χ2(1) or χ2(4), which is skewed to the right. In such cases,

when the skewness is small (cf., plot (d)), the B-CUSUM chart performs the best for detecting

most shifts, the N-CUSUM chart also performs well, the S-CUSUM chart performs well when the

mean shift is small, the PRECEDENCE chart performs well only when the mean shift is in the

direction of the shorter tail of the IC distribution, and the T-CUSUM chart does not perform well

in all cases. When the skewness is large (cf., plot (c)), we notice three major differences from the

results in plot (d): (i) when the shift is in the direction of the shorter tail of the IC distribution,

the PRECEDENCE chart performs extremely well, (ii) when the shift is in the direction of the

longer tail of the IC distribution, the S-CUSUM chart performs well, especially when the shift is

small to moderate, and (iii) it seems that the B-CUSUM chart is more effective for detecting the

mean shift than the N-CUSUM chart in such cases, especially when the shift is large. The results

in Figure 3 and in the supplementary file are all similar to those in Figure 2.

Based on the above IC and OC results, we may have the following conclusions about the five

control charts. (i) When the IC distribution is normal, the N-CUSUM chart is the one to use. In

such cases, the B-CUSUM and T-CUSUM also performs well in both the IC and OC situations. (ii)

When the IC distribution is non-normal, the N-CUSUM and T-CUSUM charts may not be reliable

because their actual ARL0 values could be quite different from the nominal ARL0 value. In such

cases, the B-CUSUM, S-CUSUM, and PRECEDENCE charts are reliable; but, the S-CUSUM chart

is efficient only when the mean shift is quite small, and the PRECEDENCE chart is efficient only

when the IC distribution is skewed and the mean shift is in the direction of its shorter tail. (iii)

The B-CUSUM chart has a reasonably good performance in all cases considered. Therefore, in a

given application, if we are not sure whether the IC distribution is normal, the B-CUSUM chart

might be the one to consider.

4 An Application

We illustrate the proposed method using a real-data example about daily exchange rates between

Korean Won and US currency Dollar between March 28, 1997 and December 02, 1997. During this

period of time, the daily exchange rates were quite stable early on and became unstable starting from
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early August. This can be seen from Figure 4(a) in which 162 daily exchange rates (Won/Dollar)

observed in that period are shown. As a side note, the world financial market experienced a serious

crisis in the winter of 2007, and Korean Won was seriously affected by the crisis.

Like many other Phase II SPC procedures, our proposed procedure assumes that observations at

different time points are independent of each other. However, for the exchange rate data, we found

that observations at different time points are substantially correlated. Following the suggestions

in Qiu and Hawkins (2001), we first pre-whiten the data using the following auto-regression model

that can be accomplished by the R function ar.yw():

x(i)− 919.01 = 0.86(x(i− 1)− 919.01) + 0.05(x(i− 2)− 919.01)− 0.09(x(i− 3)− 919.01) +

0.12(x(i− 4)− 919.01)− 0.06(x(i− 5)− 919.01) + 0.02(x(i− 6)− 919.01) +

0.25(x(i− 7)− 919.01)− 0.40(x(i− 8)− 919.01) + 0.16(x(i− 9)− 919.01) + ǫ(i),

for i = 10, 11, . . . , 162,

where x(i) denotes the i-th observation of the exchange rate, ǫ(i) is a white noise process with

zero mean, and the order of the model is determined by the default Akaike’s Information Criterion

(AIC) in ar.yw(). The pre-whitened data are shown in Figure 4(b).

We then try to apply the related control charts considered in the previous section to the pre-

whitened data. To this end, the first 96 residuals are used as an IC data, which correspond to the

first 105 original observations, and the remaining residuals are used for testing. In Figure 4(a)-(b),

the training and testing data are separated by a dashed vertical line. To take a closer look at the

IC data and at the first several testing observations as well, the first 121 residuals are presented

in Figure 4(c) again, in which the solid horizontal line denotes the sample mean of the IC data

and the dashed vertical line separates the IC and testing data. From plot (c), it can be seen that

there is an upward mean shift starting from the very beginning of the test data. The Shapiro test

for checking the normality of the IC data gives a p-value of 1.323 × 10−4, which implies that the

IC data are significantly non-normal. To demonstrate this, the density histogram of the IC data

is shown in Figure 4(d), along with its estimated density curve (solid) and the density curve of a

normal distribution (dashed) with the same mean and standard deviation.

Because the T-CUSUM, S-CUSUM and PRECEDENCE charts can only be used for batch

data and the current exchange rate data have a single observation at each time point, they are not

considered here. Also, the N-CUSUM chart is not appropriate here because the IC distribution has
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Figure 4: (a) Original observations of the exchange rates between Korean currency Won and US
currency Dollar between March 28, 1997 and December 02, 1997. (b) Pre-whitened values of the
original observations. (c) The first 121 pre-whitened values. (d) Density histogram, estimated
density curve (solid) of the first 96 pre-whitened values (i.e., IC data), and the density curve of a
normal distribution (dashed) with the same mean and variance as those of the IC data. In plots
(a)–(c), the dashed vertical line separates the IC and testing data. In plot (c), the solid horizontal
line denotes the sample mean of the IC data.

been demonstrated to be non-normal. Therefore, only the B-CUSUM chart is used here. When the

nominal IC ARL value is fixed at 200 and the allowance constant of the B-CUSUM chart is chosen

to be 0.2, its charting statistics are shown in Figure 5, in which the dashed horizontal lines denote

its control limits. From the figure, it can be seen that the B-CUSUM chart gives a signal of mean

shift at i = 113.

5 Concluding Remarks

We have proposed two control charts B-CUSUM and T-CUSUM in this paper for applications

in which the IC process distribution is not normal. These two charts are then compared with
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Figure 5: The B-CUSUM chart is applied to the exchange rate data. In the plot, the horizontal
dashed lines denote its control limits, and the little circles and little triangles denote its upward
and downward charting statistics, respectively.

the traditional N-CUSUM chart and two recent distribution-free control charts S-CUSUM and

PRECEDENCE in various cases. Based on the comparative study, we conclude that, when the IC

process distribution is not normal, the N-CUSUM and T-CUSUM charts are not reliable, the S-

CUSUM and PRECEDENCE charts are reliable but they are efficient for detecting the mean shift

only in certain limited situations, and the B-CUSUM chart has a reasonably good performance

in all cases considered. The comparative study presented in this paper is empirical. Much future

research is required to confirm our conclusions by mathematically more rigorous arguments. In this

paper, we focus on monitoring the process mean. In some applications, simultaneous monitoring of

the process mean and variance would be of our interest, which also requires much future research.
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