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_ Issues related to concepts and categorization are nearly ubig-
witous in psychology because of people’s natural tendency to
perceive a thing as something. We have a powerful impulse to
in’terpret our world. This act of interpretation, an act of “seeing
something as X" rather than simply seeing it (Wittgenstein,
1953), is fundamentally an act of categorization.

The attraction of research on concepts is that an extremely
wide variety of cognitive acts can be understood as catego-
rizations. Identifying the person sitting across from you at the
breakfast table involves categorizing something as (for exam-
ple) your spouse. Diagnosing the cause of someone’s illness
involves a disease categorization. Interpreting a painting as &
Picasso, an artifact as Mayan, a geomefry as non-Euclidean,
a fugue as baroque, a conversationalist as charming, a wine
as a Bordeaux, and a government as socialist are categoriza-
tions at various levels of abstraction. The typically unspoken
assumption of research on concepts is that these cognitive acts
have something in common. That is, there are principles that
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perhaps justified by the potential payoff of discovering
common principles governing concepts in their diverse
manifestations.

The desirability of a general account of concept learning
has led the field to focus its energy on what might be called
generic concepts. Experiments typically involve artificial
categories that are (it is hoped) unfamiliar to the subject.
Formal models of concept learning and use are constructed
to be able to handle any kind of concept irrespective.of its
content. Although there are exceptions t0 this general trend
(Malt, 1994; Ross & Murphy, 1999), much of the main-
stream empirical and theoretical work on concept learning is
concerned not with explaining how particular concepts are
created, but with how concepts in general are represented
and processed.

One manifestation of this approach is that the members of
a concept are often given an abstract symbolic representation.
For example, Table 22.1 shows a typical notation used to de-

explain many or all acts of categorization. This assumption is
controversial (see Medin, Lynch, & Solomon, 2000), but is

“scribe the stimuli-seen by a-subject in- apsychological exper-
iment or presented to a formal model of concept leamning.
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Nine-objects belong to two categories, and each object is de-
fined by its value along four binary dimensions. In this nota-
tion, objects from Category A typically have values of 1 on
each of the four dimensions, whereas objects from Category
B have values of 0. The dimensions are typically unrelated to
each other, "nd assigning.yatues of 0 and 1 to a dimension is
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TABLE 22.1 A Common Category Structure, Originally Used by
Medin and Schaffer (1978)

Dimension

Category Stimulus D1 D2 D3 D4

Category A Al 1 1 1 0
A2 1 0 1 0
A3 1 0 1 1
A4 1 1 0 1
A3 0 1 1 1

Category B B1 1 1 0 0
B2 0 1 1 0

- -B3 0 0 0 1

B4 0 0 0 0

arbitrary. For example, for a color dimension, red may be as-
signed a value of 0 and blue a value 1. The exact category
structure of Table 22.1 has been used in at least 30 studies (re-
viewed by J. D. Smith & Minda, 2000), instantiated by stim-
uli as diverse as geometric forms (Nosofsky, Kruschke, &
McKinley, 1992), cartoons of faces (Medin & Schaffer,
1978), yearbook photographs (Medin, Dewey, & Murphy,
1983), and line drawings of rocket ships (Nosofsky, Palmeri, &
McKinley, 1994). These authors are not particularly inter-
ested in the category structure of Table 22.1 and are certainly
not interested in the categorization of rocket ships per se.
Instead, they choose their structures and stimuli so as to be
(a) unfamiliar (so that learning is required), (b) well con-
trolled (dimensions are approximately equally salient and
independent), (c) diagnostic with respect to theories, and
(d) potentially generalizable to natural categories that people
learn. Work on generic concepts is very valuable if it turns
out that there are domain-general principles underlying
human concepts that can be discovered. Still, there is no a
priori reason to assume that all concepts will follow the same
principles, or that we can generalize from generic concepts to
naturally occurring concepts.

WHAT ARE CONCEPTS?

Concepts, Categories, and Internal Representations

A good starting place is Edwa.rgl E. Smith’s (1989) character-

all the entities in the real world that are appropriately cate;
rized as dogs. The question of whether concepts determ
categories or vice versa is an important foundational cont
versy. If one assumes the primacy of external categories
entities, then one will tend to view concept learning as the ¢
terprise of inductively creating mental structures that pred
these categories. One extreme version of this view is the ¢
emplar model of concept learning (Estes, 1994; Medin
Schaffer, 1978; Nosofsky, 1984; see also Capaldi’s chapter
this volume), in which one’s internal representation for
concept is nothing more than the set of all of the externa]
supplied examples of the concept to which one has be
exposed. If one assumes the primacy of internal ment
concepts, then one tends to view external categories as tl
end product of applying these internal concepts to observe
entities. An extreme version of this approach is to argue th
the external world does not inherently consist of rocks, do g
and tables; these are mental concepts that organize an othe
wise unstructured external world (Lakoff, 1987).

Equivalence Classes

Another important aspect of concepts is that they are equive
lence classes. In the classical notion of an equivalence class
distinguishable stimuli come to be treated as the same thin,
once they have been placed in the same category (Sidman
1994). This kind of equivalence is too strong when it come
to human concepts because even when we place two object:
into the same category, we do not treat them as the same thing
for all purposes. Some researchers have stressed the intrinsic
variability of human concepts—variability that makes it un-

 likely that a concept has the same sense or meaning each time

it is used (Barsalou, 1987; Thelen & Smith, 1994), Still, it is
impressive the extent to which perceptually dissimilar things
can be treated equivalently, given the appropriate conceptual-
ization. To the biologist armed with a strong mammal con-
cept, even whales and dogs may be treated as equivalent in
many situations related to biochemistry, child rearing, and
thermoregulation. Even sea lions may possess equivalence
classes, as Schusterman, Reichmuth, and Kastak (2000) have
argued that these animals show free substitution between two
entities once they have been associated together———————

ization that a concept is “a mental representation of a class or

individual and deals with what is being represented and how

Equivalence classes are relatively impervious to superfi-
cial similarities. Once one has formed a concept that treats all

that-infermation-is-typically used auring the categorization™
(p. 502). It is common to distinguish between a concept and a
category. A concept refers to a mentally possessed idea or no-
tion, whereas a category refers to a set of entities that are
grouped together. The concept dog is whatever psyc@ologiq%ly

state signifies thoughts of dogs. The category dog consists of

skunks as equivalent for some purposes, irrelevant variations
among skunks can be greatly deemphasized. When subjects
are told a story in which scientists discover that an animal
that looks exactly like a raccoon actually contains the internal

organs of a skunk and has skunk parents and skunk children,

th'%j;b often categorize the animal as a skunk (Keil, 1989;




Rips, 1989). Peoplé may never be able to transcend superfi-
cial appearances- when categorizing objects (Goldstone,
1994a), nor is it clear that they would want to (Jones &
Smith, 1993). Still, one of the most powerful aspects of con-
cepts is their ability to make superficially different things
alike (Sloman, 1996). If one has the concept Things to 1e-
move from a burning house, even children and jewelry be-
come similar (Barsalou, 1983). The spoken phonemes /d/ lo/
/gl, the French word chien, the written word dog, and a pic-
ture of a dog can all trigger one’s concept of dog (Snodgrass
1984), and although they may trigger slightly different repre-
sentations, much of the core information will be the same.
Concepts are particularly useful when we need to make con-
pections between things that have different apparent forms.

WHAT DO CONCEPTS DO FOR US?

Fundamentally, concepts function as filters. We do not have
direct access to our external world. We have access to our
world only as filtered through our concepts. Concepts are use-
ful when they provide informative or diagnostic ways of
structuring this world. An excellent way of understanding the
mental world of an individual, group, scientific community, or
culture is to find out how they organize their world into con-
cepts (Lakoff, 1987; Medin & Atran, 1999; Wolff, Medin, &
Pankratz, 1999).

Components of Thought

Concepts are cognitive elements that combine to generatively
produce an infinite variety of thoughts. Just as a finite set of
building blocks can be constructed into an endless variety of
architectural structures, so can concepts act as building
blocks for an endless variety of complex thoughts. Claiming
that concepts are cognitive elements does not entail that they
are primitive elements in the sense of existing without being
learned and without being constructed from other concepts.
Some theorists have argued that concepts such as bachelor,
kill, and house are primitive in this sense (Fodor, 1975;
Fodor, Garrett, Walker, & Parkes, 1980), but a considerable

quired elements that are themselves decomposable into se-
mantic elements (McNamara & Miller, 1989).

—body of-evidence suggests that concepts-typically are_ac- .
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essay on the subject of buffalo, coarse paper, or something
like fly paper but used to catch bison? Interpretations of word
combinations are often created by finding a relation that con-
nects the two concepts. In Murphy’s (1988) concept special-
ization model, one interprets noun-noun combinations by
finding a variable that the second noun has that can be filled
by the first noun. By this account, a robin snake might be in-
terpreted as a snake that eats robins once robin is used to the
fill the eats slot in the snake concept. Wisniewski (1997,
1998; Wisniewski & Love, 1998) has argued that properties
from one concept are often transferred to another concept,
and that this is more likely to occur if the concepts are simi-
lar, with parts that can be easily aligned. By this account, a
robin snake may be interpreted as a snake with a red belly,
once the attribute red breast from the robin is transferred to
the snake.

In addition to promoting creative thought, the combinato-
rial power of concepts is required for cognitive systematicity
(Fodor & Pylyshyn, 1988). The notion of systematicity is that
a system’s ability to entertain complex thoughts is intrinsi-
cally connected to its ability to entertain the components of
those thoughts. In the field of conceptual combination, this
has appeared as the issue of whether the meaning of a combi-
nation of concepts can be deduced on the basis of the mean-
ings of its constituents. On the one hand, there are some
salient violations of this type of systematicity. When adjec-
tive and noun concepts are combined, there are sometimes
emergent interactions that cannot be predicted by the “main
effects” of the concepts themselves. For example, the concept
gray hair is more similar to white hair than to black hair,
but gray cloud is more similar to black cloud than to white
cloud (Medin & Shoben, 1988). Wooden spoons are judged .
to be fairly large (for spoons), even though this property is
not generally possessed by wooden objects or spoons in gen-
eral (Medin & Shoben, 1988). On the other hand, there have
been notable successes in predicting how well an object fits a
conjunctive description based on how well it fits the individ-
ual descriptions that comprise the conjunction (Hampton,
1987, 1997; Storms, De Boeck, Hampton, & Van Mechelen,
1999). A reasonable reconciliation of these results is that
when concepts are combined the concepts’ meahings system-
__atically determine the meaning of the cobnjunction, but emer-

gent interactions and real-world plau51b1hty also shape the
conjunction’s meaning.

Once a concept has been formed, it can enter into compo-
sitions with other concepts. Several researchers have studied
how novel combinations of concepts are produced and com-
prehended. For example, how does one interpret the term
buffalo paper when one first hears it? Is it p4pel in the_ shape

Inductive Predictions

Concepts allow us to generalize our experiences with some
objects to other objects from the same category. Expenence
with one slobbering dog may Jead one to suspect tnat'an
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unfamiliar dog may have the same proclivity. These inductive
generalizations may be wrong and can lead to unfair stereo-
types if inadequately supported by data, but if an organism is
to survive in a world that has some systematicity, it must “go
beyond the information given” (Bruner, 1973) and generalize
what it has learned. The concepts we use most often are useful
because they allow many properties to be predicted induc-
tively. To see why this is the case, we must digress slightly and
consider different types of concepts. Categories can be
arranged roughly in order of their grounding by similarity:
natural kinds (dog and oak tree), man-made artifacts (ham-
met, airplane, and chair), ad hoc categories (things to take
out of a burning house, and things that could be stood on to
reach a lightbulb), and abstract schemas or metaphors (e.g.,
events in which a kind action is repaid with crueity,
metaphorical prisons, and problems that are solved by
breaking a large force into parts that converge on a tar-
get). For the latter categories, members need not have very
much in common at all. An unrewarding job and a relationship
that cannot be ended may both be metaphorical prisons, but
the situations may share little other than this.

Unlike ad hoc and metaphor-based categories, most nat-
ural kinds and many attifacts are characterized by members
that share many features. In a series of studies, Rosch (Rosch,
1975; Rosch & Mervis, 1975; see also the chapters in this
volume by Palmer and by Treiman, Clifton, Meyer, & ‘Wurm)
has shown that the members of natural kind and artifact
“basic-level” categories such as chair, trout, bus, apple, saw,
and guitar are characterized by high within-category overall
“similarity. Subjects listed features for basic-level categories,
as well as for broader superordinate (e.g., furniture) and nar-
rower subordinate (e.g., kitchen chair) categories. An index
of within-category similarity was obtained by tallying the
number of features listed by subjects that were common to
items in the same category. Ttems within a basic-level cate-
gory tend to have several features in common, far more than
items within a superordinate category and almost as many
as items that share a subordinate categorization. Rosch
(Rosch & Mervis, 1975; Rosch, Mei'vis, Gray, Johnson, &
Boyes-Braem, 1976) argues that categories are defined by
family resemblance; category members need not all share a

These natural categories also permit many inductive infer-
ences. If we know something belongs to the category dog,
then we know that it probably has four legs and two eyes, eats
dog food, is someone’s pet, pants, barks, is bigger than a
breadbox, and so on. Generally, natural-kind objects, particy-
larly those at Rosch’s basic level, permit many inferences.
Basic-level categories allow many inductions because
their members share similarities across many dimensions or
features. Ad hoc categories and highly metaphorical cate-
gories permit fewer inductive inferences, but in certain situa-
tions the inferences they allow are so important that thé
categories are created on a “by-need” basis. One interesting
possibility is that all concepts are created to fulfill an induc-
tive need, and that standard taxonomic categories such as
bird and hammer simply become automatically triggered
because they have been used oftem, whereas ad hoc cate-
gories are created only when specifically needed (Barsalou,
1982, 1991). In any case, evaluating the inductive potential
of a concept goes a long way toward understanding why we
have the concepts that we do. The single concept peaches,
llamas, telephone answering machines, or Ringo Starr is
an unlikely concept because belonging in this concept pre-
dicts very little. Several researchers have been formally de-
veloping the notion that the concepts we possess are those
that maximize inductive potential (Anderson, 1991; Heit,
2000; Oaksford & Chater, 1998).

Communication

Communication between people is enormously facilitated if
the people can count upon sharing a set of common concepts.
By uttering a simple sentence such as “Ed is a football player,”
one can transmit a wealth of information to a colleague, deal-
ing with the probabili_tiés of Ed’s being strong, having violent
tendencies, being a college physics or physical education
major, and having a history of steroid use. Markman and
Makin (1998) have argued that a major force in shaping our
concepts is the need to communicate efficiently. They find that
a person’s concepts become more consistent and systematic
over time in order to establish reference unambiguously for
another individual with whom they need to communicate

definitional feature, but they fend to have several features in
common. Furthermore, she argues that people’s basic-level

(see also Garrod & Doherty, 1994):

—~categories-preserve-the-intrinsic-correlational-structure-of-the

world. All feature combinations are not equally likely. For
example, in the animal kingdom, flying is correlated with lay-
ing eggs and possessing a beak. There are “clumps” of fea-
tures that tend to occur together. Some categories (e.g.,
ad hoc categoties) do ot conform to these clumps, but many
of our most natural-seeming categories do.

Cognitive Economy -

We can discriminate far more stimuli than those for which we
have concepts. For example, estimates suggest that we can
perceptually discriminate at least 10,000 colors from each
other, but we have far fewer-color. concepts than this.
Dramatic savings in storage retjuh*erilerits can be achieved by

-




encoding concepts rather than entire raw (unprocessed) in-
puts. A classic study by Posner and Keele (1967) found that
subjects code letters such as A by a raw, physical code, but
that this code rapidly (within 2 s) gives way to a more ab-
stract conceptual code that A and a share. Huttenlocher,
Hedges, and Vevea (2000) develop a formal model in which
judgments about a stimulus are based on both its category
membership and its individuating information. As predicted
by the model, when subjects are asked to reproduce a stimu-
lus, their reproductions reflect a compromise between the
stimulus itself and the category to which it belongs. When a
delay is introduced between seeing the stimulus and repro-
ducing it, the contribution of category-level information rela-
tive to individual-level information increases (Crawford,
Huttenlocher, & Engebretson, 2000). Together with studies
showing that, over time, people tend to preserve the gist of a
category rather than the exact members that constitute it
(e.g., Posner & Keele, 1970), these results suggest that
through the preservation of category-level information rather
than individual-level information, efficient long-term repre-
sentations can be maintained. .

From an information-theory perspective, storing a cate-
gory in memory rather than a complete description of an
. individual is efficient becanse fewer bits of information are
required to specify the category. For example, Figure 22.1

two dimensions. Rather than preserving the complete de-
scription of each of the 19 objects, one can create a reason-
ably faithful representation of the distribution of objects by
storing only the positions of the four triangles in Figure 22.1.
This kind of information reduction is particularly significant
i because computational algorithms exist that can automati-
' cally form these categories when supplied with the objects
(Kohonen, 1995). For example, the competitive learning al-
gorithm (Rumelhart & Zipser, 1985) begins with random po-
sitions for the triangles, and whexn an object is presented, the
triangle that is closest to the object moves its position even

depicts a set of objects (shown by circles) described along
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closer to the object. The other triangles move less quickly, or
do not move at all, leaving them free to specialize for other
classes of objects. In addition to showing a way in which ef-
ficient category representations can be created, this algorithm
has been put forth as a model of how a person creates cate-
gories even when there is no teacher, parent, or label that tells
the person what, or how many, categories there are.

The above argument suggests that concepts can be used to
conserve memory. An equally important economizing advan-
tage of concepts is to reduce the need for learning (Bruner,

" Goodnow, & Austin,; 1956). An unfamiliar object that has not

been placed in a category attracts attention because the
observer must figure out how to think of it. Conversely, if an
object can be identified as belonging to a preestablished cate-
gory, then less cognitive processing is typically necessary.
One can simply treat the object as another instance of some-
thing that is known, updating one’s knowledge slightly, if at
all. The difference between events that require altering one’s
concepts and those that do not was described by Piaget
(1952) in terms of accommodation (adjusting concepts on the
basis of 2 new event) and assimilation (applying already
known concepts to an event). This distinction has also been
incorporated into computational models of concept learning
that determine whether an input can be assimilated into a pre-
viously learned concept. If it cannot, then reconceptualiza-
tion is triggered (Grossberg, 1982). When a category instance
is consistent with a simple category description, then an indi-
vidual is less likely to store a detailed description of it than if
it is an exceptional item (Palmeri & Nosofsky, 1995), consis-
tent with the notion that people simply use an existing cate-
gory description when it suffices.

HOW ARE CONCEPTS REPRESENTED?

Much of the research on concepts and categorization re-

volves around the issue of how concepts are mentally repre-
sented. As with all discussion of representations, the standard
caveat must be issued—imental representations cannot be de-
termined or used without processes that operate on these
representations (Anderson, 1978). Rather than discussing
the representation of a concept such as cat, we should discuss

a representation-process pair that allows for the use of this
concept. Empmcal results interpreted as favoring a par ticular

Figure 22.1 Alternative proposals have suggested that categories are rep-
resented by the individual exemplars in the categories (the circles), the pro-
“totyizes.of the categories (the triangles), or the category boundaries (the lines
dividing the categories).

1epresentat10n format snould‘dlrﬁo'st always be-interpreted-as———-
supporting a particular representation given particular
processes that use the representation. As a simple example,
when trying to decide whether a shadowy figure briefly
glimpsed-was a cat or fox, one needs to know more than how

one’s cat and 0% Oncepts are represented. One needs to
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know how the information in these representations is inte-
grated to make the final categorization. Does one wait for the
amount of confirmatory evidence for one of the animals to
rise above a certain threshold (Busemeyer & Townsend,
1993)? Does one compare the evidence for the two animals
and choose the more likely (Luce, 1959)? Is the information
in the candidate animal concepts accessed sirnultaneously or
successively? Probabilistically or deterministically? These
are all questions about the processes that use conceptual rep-
resentations. One reaction to the insufficiency of representa-
tions alone to account for concept use has been to dispense
with all reference to independent representations, and instead
to frame theories in terms of dynamic processes alone
(Thelen & Smith, 1994; van Gelder, 1998). However, some
researchers feel that this is a case of throwing out the baby
with the bath water, and insist that representations must still
be posited to account for enduring, organized, and rule-
governed thought (Markman & Dietrich, 2000).

Rules

There is considerable intuitive appeal to the notion that con-
cepts are represented by something like dictionary entries. By
arule-based account of concept representation, to possess the
concept cat is to know the dictionary entry for it. A person’s
cat concept may differ from Webster’s Dictionary entry: “a
carnivorous mammal (Felis catus) long domesticated and
kept as a pet and for catching rats and mice.” Still, this ac-
count claims that a concept is represented by some rule that
allows one to determine whether an entity belongs within the
category (see also the chapter by Leighton & Sternberg in
this volume).

The most influential rule-based approach to concepts may
be Bruner, Goodnow, and Austin’s (1956) hypothesis-testing
approach. Their theorizing was, in part, a reaction against be-
haviorist approaches (Hull, 1920) in which concept learning
involved the relatively passive acquisition of an association
between a stimulus (an object to be categorized) and a re-
sponse (such as a verbal response, key press, or labeling).
Instead, Bruner et al. argued that concept learning typically
involves active hypothesis formation and testing. In a typical

different shapes, colors, quantities, and borders. The sub-
jects’ task was to discover the rule for categorizing the flash

rules. For example, a conjunctive rule such as white and
square is more easily learned than a conditional rule such ag
if white, then square, which is in turn more easily learned
than a biconditional rule such as white if and only if square.

A parallel development to these laboratory studies of arti-
ficial categories was Katz and Fodor’s (1963) semantic
marker theory of compositional semantics within linguistics,
In this theory, a word’s semantic representation consists of
a list of atomic semantic markers such as +Male, +Adult,
+Physical, and —Married for the word bachelor. These

" ‘markers serve as the components of a rule that specifies when

a word is appropriately used. Each of the semantic markers
for a word is assumed to be necessary for something to be-
long to the word category, and the markers are assumed to be
jointly sufficient to make the categorization.

The assumptions of these rule-based models have been
vigorously challenged for several decades now (see the chap-
ter by Treiman et al. in this volume). Douglas Medin and
Edward E. Smith (Medin & Smith, 1984; E. E. Smith &
Medin, 1981) dubbed this rule-based approach “the classical
view,” and characterized it as holding that all instances of a
concept share common properties that are necessary and suf-
ficient conditions for defining the concept. At least three crit-
icisms have been levied against this classical view.

First, it has proven to be very difficult to specify the defin-

. ing rules for most concepts. Wittgenstein (1953) raised this
point with his famous example of the concept game. He ar-
gued that none of the candidate definitions of this concept,
such as activity engaged in for fun, activity with certain rules,
or competitive activity with winners and losers, is adequate
to identify Frisbee, professional baseball, and roulette as
games, while simuitaneously excluding wars, debates, televi-
sion viewing, and leisure walking from the game category.
Even a seemingly well-defined concept such as bachelor
seems to involve more than its simple definition of unmarried
male. The counterexample of a 5-year-old child (who does
not really seem to be a bachelor) may be solved by adding an
adult precondition to the unmarried male condition, but an in-
definite number of other preconditions is required to exclude
a man in a long-term but unmarried relationship, the Pope,
and a 80-year-old widower with four children (Lakoff, 1987).

___ experiment, their subjects were_shown_flash cards_that had —— Wittgenstein-argued-thatinstead-of-equating-knowing-acon=——

cept with knowing a definition, it is better to think of the
members of a category as being related by family reseni-

cards by selecting cards to be tested and by receiving feed-
back from the experimenter indicating whether the selected
card fit the categorizing rule. The researchers documented
different strategies for selecting cards, and a considerable

body of subsequent work (e.g., Bourne, 1970) showed large

differences in how easily acquired are different categorization

blance. A set of objects related by family resemblance need
not have any particular feature in common, but will have sev- -
eral features that are characteristic or typical of the set.
Second, the category membership for some objects is
unclear. People may disagree on whether a starfish is a ﬁsh, a.
"amel is a vehicle, a hammer is a weapon, or a stroke is 2
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disease. By itself, this is not too problematic for a rule-based
approach. People may use rules to categorize objects, but dif-
ferent people may have different rules. However, it turns out
that people not only disagree with each other about whether
a bat is mammal—they also disagree with themselves!
McCloskey and Glucksberg (1978) showed that subjects give
surprisingly inconsistent category membership judgments
when asked the same questions at different times. Either there
is variability in how to apply a categorization rule to an ob-
ject, people spontaneously change their categorization rules,

or (as many researchers believe) people simply do not repre- -

sent objects in terms of clear-cut rules. .

Third, even when a person shows consistency in placing
objects in a category, he or she might not treat all the objects
as equally good members of that category. By a rule-based
account, one might argue that all objects that match a cate-
gory rule would be considered equally good members of the
category (but see Bourne, 1982). However, when subjects are
asked to rate the typicality of animals such as a robin and an
eagle for the category bird, or a chair and a hammock for the
category furniture, they reliably give different typicality rat-
ings for different objects. Rosch and Mervis (1975) were able
to predict typicality ratings with respectable accuracy by
asking subjects to list properties of category members, and
measuring how many properties possessed by a category
member were shared by other category members. The magni-
tude of this so-called “family resemblance measure” is posi-
tively correlated with typicality ratings. '

Despite these strong challenges to the classical view, the
rule-based approach is by no means moribund. In fact, in part
due to the perceived lack of constraints in neural network
models that learn concepts by gradually building up associa-
tions, the rule-based approach experienced a rekindling of in-
terest in the 1990s after its low point in the 1970s and 1980s
(Marcus, 1998). Nosofsky and Palmeri (1998; Nosofsky
et al., 1994; Palmeri & Nosofsky, 1995) have proposed a
quantitative model of human concept learning that learns to
classify objects by forming simple logical rules and remem-
bering occasional exceptions to those rules. This work is

~ reminiscent of earlier computational models of human learn-

ing that created rules such as if white and square, then Cat-
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“Performance on rule-governed items is as accurate with
abstract as with concrete material”; “performance on rule-
governed items is as accurate with unfamiliar as with famil-
iar material”; and “performance on a rule-governed item or
problem deteriorates as a function of the number of rules that
are required for solving the problem.” Based on the full set of
criteria, they argue that rule-based reasoning does occur, and
‘that it may be a mode of reasoning distinct from association-
based or similarity-based reasoning. Similarly, Pinker (1991)
argued for distinct rule-based and association-based modes
for determining linguistic - categories: Neurophysiological
support for this distinction comes from studies showing
that rule-based and similarity-based categorization involve
anatomically separate brain regions (Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Ashby & Waldron, 2000; E. E.
Smith, Patalano, & Jonides, 1998).

In developing a similar distinction between similarity-
based and rule-based categorization, Sloman (1996) intro-
duced the notion that the two systems can simultaneously
generate different solutions to a reasoning problem. For ex-
ample, Rips (1989; see also Rips & Collins, 1993) asked sub-
jects to imagine a 3 in. (7.62 cm) round object, and then
asked whether the object is more similar to a quarter or a
pizza, and whether the object is more likely to be a pizza or a

© quarter. There is a tendency for the object to be judged as

more similar to a quarter, but as more likely to be a pizza. The
rule that quarters must not be greater than 1 in. plays a larger
role in the categorization decision than in the similarity judg-
ment, causing the two judgments to dissociate. By Sloman’s
analysis, the tension we feel about the categorization of the
3-in. object stems from the two different systems’ indicating
incompatible categorizations. Sloman argues that the rule-
based system can suppress the similarity-based system but
cannot completely suspend it. When Rips’s experiment is re-
peated with a richer description of the object to be catego-
rized, categorization again tracks similarity, and people tend
to choose the quarter for both the categorization and similar-
ity choices (E. E. Smith & Sloman, 1994).

Prototypes

Just as the active hypothesis-testing approach of the classical

Kline, & Beasley, 1979; Medin, Wattenmaker, & Michalski,
1987). The models have a bias to create simple rules, and are

able to predict entire distributions of subjects’ categorization

responses rather than simply average responses.

In defending a role for rule-based reasoning in human
cognition, E. E. Smith, Langston, and Nisbett (1992) pro-
posed eight criteria for determining whether people use ab-
stract rules in reasoning. These criteria inéiﬁ&é*"tﬁ@‘fﬁllowing:

view was a reaction against the passive stimulus—response
association approach, so the prototype model was developed
-as*a-Teaction-against-what-was-seen-as-the-overly-analytie;
rule-based classical view. Central to Eleanor Rosch’s devel-
opment of prototype theory is the notion that concepts are or-
ganized around family resemblances rather than features that
are individually necessary and jointly sufficient for catego-
rization (Mervis & Rosch, 1981; Rosch, 1975; Roschz&i~
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Mervis, 1975; see also the chapters in this volume by
Capaldi, by Palmer, and by Treiman et al.). The prototype for
a category consists of the most commmon attribute values as-
sociated with the members of the category, and can be empir-
ically derived by the previously described method of asking
subjects to generate a list of attributes for several members of
a category. Once prototypes for a set of concepts have been
determined, categorizations can be predicted by determining
how similar an object is to éach of the prototypes. The likeli-
hood of placing an object into a category increases as it
becomes more similar to the category’é prototype and less
similar to other category prototypes (Rosch & Mervis, 1975).

This prototype model can naturally deal with the three
problems.that confronted the classical view. It is no problem
if defining rules for a category are difficult or impossible to
devise. If concepts are organized around prototypes, then
only characteristic (not necessary or sufficient) features are
expected. Unclear category boundaries are expected if ob-
jects are presented that are approximately equally similar to
prototypes from more than one concept. Objects that clearly
belong to a category may still vary in their typicality because
they may be more similar to the category’s prototype than to
any other category’s prototype, but they still may differ in
how similar they are to the prototype. Prototype models do
not require “fuzzy” boundaries around concepts (Hampton,
1993), but prototype similarities are based on commonalities
across many attributes and are consequently graded, and lead
naturally to categories with graded membership.

. A considerable body of data has been amassed that sug-
gests that prototypes have cognitively important functions.
The similarity of an item to its category prototype (in terms
of featural overlap) predicts the results from several converg-
ing tasks. Somewhat obviously, it is correlated with the aver-
age rating the item receives when subjects are asked to rate
how good an example the item is of its category (Rosch,
1975). It is correlated with subjects’ speed in verifying state-
ments of the form “An [item] is a [category name]” (E. E.
Smith, Shoben, & Rips, 1974). It is correlated with subjects’
frequency and speed of listing the item when asked to supply
members of a category (Mervis & Rosch, 1981). It is corre-
lated with the probability of inductively extending a property

Taken in total, these results indicate that different members of
the-same-category-differ in how typical they are of the cate-

_category bird by representi

shared among category members. An alternative conception
views a prototype as the central tendency of continuously
varying attributes. If the four observed members of a lizard
category had tail lengths of 3, 3, 3, and 7 in., the former pro-
totype model would store a value of 3 (the modal value) as
the prototype’s tail length, whereas the central tendency
model would store a value of 4 (the average value). The cen-
tral tendency approach has proven useful in modeling
categories composed of artificial stimuli that vary on contin-
uous dimensions. For example, Posner and Keele’s (1968)
classic dot-pattern stimuli consisted of niné dots positioiied
randomly or in familiar configurations on a 30 X 30 invisible
grid. Each prototype was a particular configuration of dots,
but during categorization training, subjects never saw the
prototypes themselves. Instead, they saw distortions of the
prototypes obtained by shifting each dot randomly by a small
amount. Categorization training involved subjects’ seeing dot
patterns, guessing their category assignment, and receiving
feedback indicating whether their guesses were correct or
not. During a transfer stage, Posner and Keele found that sub-
jects were better able to categorize the never-before-seen
category prototypes than they were to categorize new distor-
tions of those prototypes. In addition, subjects’ accuracy in
categorizing distortions of category prototypes was strongly
correlated with the proximity of those distortions to the
never-before-seen prototypes. The authors interpreted these
results as suggesting that prototypes are extracted from dis-
tortions, and used as a basis for determining categorizations
(see also Homa, Sterling, & Trepel, 1981).

Exemplars

Exemplar models deny that prototypes are explicitly ex-
tracted from individual cases, stored in memory, and used to
categorize new objects. Instead, in exemplar models, a con-
ceptual representation consists of only those actual, individ-
ual cases that one has observed. The prototjpe representation
for the category bird consists of the most typical bird, or an
assemblage of the most common attribute values across all
birds, or the central tendency of all attribute values for ob-
served birds. By contrast, an exemplar model tepresents the
ng all of the instances (exemplars)

that belong to this category (Brooks, 1978; Estes, 1986,

1994; Hintzman, 1986; Kruschke, 1992; Lamberts, 1998,

gory, and that these differences have a strong cognitive im-
pact. Many natural categories seem to be organized not
around definitive boundaries, but by graded typicality to the
category’s prototype.

~ The prototype model deseribed previously generates cate-
gory prototypes by finding the most common attribute values

2000; Logan, 1988; Medin & Schaffer, 19787 Nosofsky;
1984, 1986; see also the chapter by Capaldi in this volume).

Although the prime motivation for these models has been
to provide good fits to results from human expériments, com-
puter scientists have pursued similar models with the aim t0

- exploit the power of storing individiial@posures to stimuli in

-




a relatively raw, unabstracted form. Exemplar, instance-
based (Aha, 1992), view-based (Tarr & Gauthier, 1998),
case-based (Schank, 1982), nearest neighbor' (Ripley, 1996),
configural cue (Gluck & Bower, 1990), and vector quantiza-
tion (Kohonen, 1995) models all share the fundamental
insight that novel patterns can be identified, recognized, or
categorized by giving the novel patterns the same response
that was learned for similar, previously presented patterns.
By creating representations for presented patterns, not only is
it possible to respond to repetitions of these patterns; itis also

possible to give responses o novel-patterns that are likely to

be correct by sampling responses to old patterns, weighted by
their similarity to the novel patterns. Consistent with these
models, psychological evidence suggests that people show
good transfer to new stimuli in perceptual tasks only to the
extent that the new stimuli superficially resemble previously
learned stimuli (Kolers & Roediger, 1984; Palmeri, 1997).
The frequent inability of human generalization to tran-
scend superficial similarities might be considered evidence
for either human stupidity or laziness. To the contrary, if a
strong theory about which stimulus features promote valid
inductions is lacking, the stratégy of least commitment is to
preserve the entire stimulus in its full richness of detail
(Brooks, 1978). That is, by storing entire instances and
basing generalizations on all of the features of these in-
stances, one can be confident that one’s generalizations are
not systematically biased. It has been shown that in many sit-
uations, categorizing new instances by their similarity to old
instances maximizes the likelihood of categorizing the new
instances correctly (Ashby & Maddox, 1993; McKinley &
Nosofsky, 1995; Ripley, 1996). Furthermore, if information
later becomes available that specifies which properties are
useful for generalizing appropriately, then preserving entire
instances will allow these properties to be recovered. Such
properties might be lost and unrecoverable if people were
less “lazy” in their generalizations from instances. )
Given these considerations, it is understandable that peo-
ple often use all of the attributes of an object even when a
task demands the use of specific attributes. Doctors’ diag-
noses of skin disorders are facilitated when they are similar to

previously presented cases, even when the similarity is based _

on attributes that are known to be irrelevant for the diagnosis

(Brooks, Norman, & Allen, 1991). Even when subjects know

a simple, clear-cut rule for a perceptual classification, perfor-

fance s better-on frequently presented*items-than-rare-items

responses to stimuli are frequently based on their overall sim-
ilarity to previously exposed stimuli. :
The exemplar approach assumes that a category is repre-

 sented By-the category exemplars that have been encoun-

(Allen & Brooks, 1991). Consistent with exemplar models, .

How are Concepts Represented? 607

tered, and that categorization decisions are based on the
similarity of the object to be categorized to all of the exem-
plars of each relevant category. As such, as an item becomes
more similar to the exemplars of Category A (or less similar
to the exemplars of other categories), then the probability that
it will be placed in Category A increases. Categorization
judgments may shift if an item is approximately equally close
to two sets of exemplars, because probabilistic decision rules
are typically used. Items will vary in their typicality to a cat-
egory as long as they vary in their similarity to the aggregate
set of exemplars. o

The exemplar approach to categorizatioh raisés a number
of questions. First, once one has decided that concepts are to
be represented in terms of sets of exemplars, the obvious ques-
tion remains: How are the exemplars to be represented? Some
exemplar models use a featural or attribute-value representa-
tion for each of the exemplars (Hintzman, 1986; Medin &
Schaffer, 1978). Another popular approach is to represent ex-
emplars as points in a multidimensional psychological space.
These points are obtained by measuring the subjective simi-
larity of every object in a set to every other object. Once an
N X N matrix of similarities between N objects has been de-~
termined by similarity ratings, perceptual confusions, sponta-
neous sortings, or other methods, a statistical technique called
multidimensional scaling (MDS) finds coordinates for the ob-
jects in a D-dimensional space that allow the N X N matrix of
similarities to be reconstructed with as little error as possible
(Nosofsky, 1992). Given that D is typically smaller than N, a
reduced representation is created in which each object is rep-
resented in terms of its values on D dimensions. Distances be-
tween objects in these quantitatively derived spaces can be
used as the input to exemplar models to determine item-to-
exemplar similarities. These MDS representations are useful
for generating quantitative exemplar models that can be fit to
human categorizations and similarity judgments, but these
still beg the question of how a stand-alone computer program
or a person would generate these MDS representations.
Presumably, there is some human process that computes ob-
ject representations and can derive object-to-object similari-
ties from them, but this process is not currently modeled by
exemplar models (for steps in this direction, see Edelman,
1999). :

models do not explicitly extract prototypes, how can they ac-
count_for results that concepts are ofganized around proto-

'7’*’A”second**questionfforfcxemplar—rmodelsfis,flf,exemplar o

types? A useful place to begin is by considering Posner and
Keele’s (1968) result that the never-before-seen prototype is
categorized better than new distortions based on the proto-
type. Exemplar models have been able to model this result
because a categorization of an object is based on its summed
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similarity to all previously stored exemplars (Medin &
Schaffer, 1978; Nosofsky, 1986). The prototype of a category
will, on average, be more similar to the training distortions
than are new distortions because the prototype was used to
generate all of the training distortions. Without our positing
the explicit extraction of the prototype, the cumulative effect
of many exemplars in an exemplar model can create an emer-
gent, epiphenomenal advantage for the prototype.

Given the exemplar model’s account of prototype catego-
rization, one might ask whether predictions from exemplar
and’ prototype models differ, In fact, they typically do, in
large part because categorizations in exemplar models are not
simply based on summed similarity to category exemplars,
but to similarities weighted by the proximity of an exemplar
to the item to be categorized. In particular, exemplar models
have mechanisms to bias categorization decisions so that
they are more influenced by exemplars that are similar to
items to be categorized. In Medin and Schaffer’s (1978) con-
text model, this is achieved through computing the similarity
between objects by multiplying rather than adding their sim-
ilarities on each of their features. In Hintzman’s (1986)
Minerva model, this is achieved by raising object-to-object
similarities to a power of 3 before summing them together.
In Nosofsky’s Generalized Context Model (1986), this is
achieved by basing object-to-object similarities on an expo-
nential function of the objects’ distance in an MDS space.
With these quantitative biases for close exemplars, the exem-
plar model does a better job of predicting categorization ac-
curacy for Posner and Keele’s experiment than the prototype
model because it can also predict that familiar distortions will
be categorized more accurately than novel distortions that are
equally far removed from the prototype (Shin & Nosofsky,
1992).

A third question for exemplar models is, In what way are
concept representations economical if every experienced
exemplar is stored? It is certainly implausible with large real-
world categories to suppose that every instance ever experi-
enced is stored in a separate trace. However, more realistic
exemplar models may either store only part of the information
associated with an exemplar (Lassaline & Logan, 1993), or
only some of the exemplars (Aha, 1992; Palmeri & Nosofsky,

the two, resulting in an exemplar representation that is a blend
of two instances.

Cétegory Boundaries

Another notion is that a concept representation describes the
boundary around a category. The prototype model would rep-
resent the four categories of Figure 22.1 in terms of the trian.
gles. The exemplar model represents the categories by the
circles. The category boundary model would represent the
categories by the four dividing lines between the categories,
This view has been most closely associated with the work of
Ashby and his colleagues (Ashby, 1992; Ashby et al., 1998;
Ashby & Gott, 1988; Ashby & Maddox, 1993; Ashby &
Townsend, 1986; Maddox & Ashby, 1993). 1t is particularly
interesting to contrast the prototype and category boundary
approaches, because their representational assumptions are
- almost perfectly complementary. The prototype model repre-
Sents a category in terms of its most typical member—the ob-
ject in the center of the distribution of items included in the
category. The category boundary model represents categories
by their periphery, not their center.

An interesting phenomenon to consider with respect to
whether centers or peripheries of comncepts are representation-
ally privileged is categorical perception. According to this
phenomenon, people are better able to distinguish between
physically different stimuli when the stimuli come from
different categories than when they come from the same
category (see Harnad, 1987, for several reviews of re-
search; see also the chapters in this volume by Fowler and
by Treiman et al.). The effect has been best documented for
speech phoneme categories. For example, Liberman, Harris,
Hoffman, and Griffith (1957) generated a continuum of
equally spaced consonant-vowel syllables going from /be/ to
/de/. Observers listened to three sounds—A followed by B
followed by X—and indicated whether X was identical o A
or B. Subjects performed the task more accurately when syl-
lables A and B belonged to different phonemic categories
than when they were variants of the same phoneme, even
when physical differences were equated..

Categorical perception effects have been observed for vi-

77, —1995).-One particularly interestin g way of conserving space
that has received empirical support (Barsalou, Huttenlocher,
& Lamberts, 1998) is to combine separate events_that.all.con-
stitute a single individual into a single representation. Rather
than passively registering every event as distinct, people seem
naturally to consolidate events that refer to the same individ-
ual. If an observer fails to register the difference between a

IXILAE

two similar-looking chihuahuas), then he or she may combine

., éw exemplar and a previously encountered exemplar (e.g.,

sual categories (Calder, Young, Perrett, Etcoff, & Rowland,
1996) and for arbitrarily = created laboratory categories
(Goldstone;—1994b)—Categorical ~perception could ererge
from either prototype or boundary representations. An item to
be categorized might be compared to the prototypes of two
candidate categories. Increased sensitivity at the category
boundary would exist because people represent items in
* etmsiof the prototypes to which they are closest. Items that

fall on different sides of a boundary would have very different




representations because they would be closest to different
prototypes (Liberman et al., 1957). Alternatively, the bound-
ary itself might be represented as a reference point, and as
pairs of items move closer to the boundary, it becomes easier
to discriminate between them because of their proximity to
this reference point (Pastore, 1987).

Computational models have been developed that operate
on both principles. Following the prototype approach,
Harnad, Hanson, and Lubin (1995) describe a neural network
in which the representamon of an item is “pulled” toward the
prototype of the category to which it belongs. Following the
boundaries approach, Goldstone, Steyvers, Spencer-Smith,
and Kersten (2000) describe a neural network that learns to
strongly represent critical boundaries between categories by
shifting perceptual detectors to these regions. Empirically,
the results are mixed. Consistent with prototypes’ being rep-
resented, some researchers have found particularly good dis-
criminability close to a familiar prototype (Acker, Pastore, &
Hall, 1995; McFadden & Callaway, 1999). Consistent with
boundaries’ being represented, other researchers have found
that the sensitivity peaks associated with categorical percep-
tion heavily depend on the saliency of perceptual cues at the
boundary (Kuhl & Miller, 1975). Rather than being arbitrar-
ily fixed, a category boundary is most likely to occur at a
location where a distinctive: perceptual cue, such as the dif-
ference between an aspirated and unaspirated speech sound,
is present. A possible reconciliation is that information about
either the center or periphery of a category can be repre-
sented, and that boundary information is more likely to be
represented when two highly similar categories must be fre-
quently discriminated and there is a salient reference point
for the boundary. '

Different versions of the category boundary approach, il-
lustrated in Figure 22.2, have been based on different ways of
partitioning categories (Ashby & Maddox, 1998). With inde-
pendent decision boundaries, catégory boundaries must be
perpendicular to a dimensional axis, forming rules such as
Category A items are larger than 3 cm, irrespective of their
color. This kind of boundary is appropriate when the dimen-
sions that make up a stimulus are difficult to integrate (Ashby

A response is given if and only if an object is closer to the
Category A prototype than the Category B prototype. The de-
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Independent decisions Minimal distance

Optimal boundaries General quadratic

Figure 22.2 The notion that categories are represented by their boundaries
can be constrained in several ways. Boundaries can be constrained to be

. perpendicular to a dimensional axis, to be equally close to prototypes for

neighboring categories, to produce optimal categorization performance, or

(loosely constrained) to be a quadratic function.

optimal boundary will be a straight line. If the categories dif-
fer in variability, then the optimal boundary will be described
by a quadratic equation (Ashby & Maddox, 1993, 1998). A
general quadratic boundary is any boundary that can be de-
scribed by a quadratic equation.

One difficulty with representing a concept by a boundary
is that the location of the boundary between two categories
depends on several contextual factors. For example, Repp
and Liberman (1987) argue that categories of speech sounds
are influenced by order effects, adaptation, and the surround-
ing speech context. The same sound that is halfway between
[pa] and [ba] will be categorized as /pa/ if preceded by sev-
eral repetitions of a prototypical [ba] sound, but categorized
as /ba/ if preceded by several [pa] sounds. For a category
boundary representation to accommodate this, two category
boundaries would need to hypothesized—a relatively perma-
nent category boundary between /ba/ and /pa/, and a second
boundary that shifts depending upon the immediate context.
The relatively permanent boundary is needed because the

& Gott, 1988). With minimal distance boundaries, -a Category — —contextualized-boundary-must be based on some earlier in=——

formation. In many cases, it is more parsimonious to hypoth-
esize representations for_the category members_themselves

cision boundary is formed by finding the line that connects
the two categories’ prototypes, and creating a boundary that
bisects and is orthogonal to this line. The optimal boundary is
the boundary that maximizes the likelihood of correctly cate-
gorizing an object. If' the two categories have the same
patterns of variability on their dimensions, and people use in-
formation about variance to form thelr boundanes then the

and to view category boundaries as side effects of the com-
petition between neighboring categories. Context effects are
then explained simply by changes to the strengths associated
with different categories. By this account, there may be no
reified boundary around one’s cat concept that. causally, af-u
fects categorizations. When asked about a particular obJect

we can decide whether it is a cat, but this is done by comparing
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