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The winged sphinx of Boeotian Thebes terrorized men by
demanding an answer to a riddle taught to her by the Muses:
What is it that walks on four feet and two feet and three feet
and has only one voice, and when it walks on most feet it is
the weakest? The men who failed to answer this riddle were
devoured until one man, Oedipus, eventually gave the
proper answer: Man, who crawls on all fours in infancy,
walks on two feet when grown, and leans on a staff in old
age. In amazement, the sphinx killed herself and, from her
death, the story of her proverbial wisdom evolved. Although
the riddle describes a person’s life stages in general, the
sphinx is considered wise because her riddle specifically
predicted the life stage Oedipus would ultimately endure.
Upon learning that he married his mother and unknowingly
killed his father, Oedipus gouges out his eyes and blinds
himself, thereby creating the need for a staff to walk for the
rest of his life.

How did Oedipus solve a problem that had led so many to
an early grave? Is there any purpose in knowing that he
Solved—'the~p1-oblem~by~inffeltringAthuconclusion,_applyimz
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spond in some ways to the conditions of our own everyday
problems: Everyday problems are solved with incomplete in-
formation and under time constraints, and they are subject to
meaningful consequences. For example, imagine you need to
go pick up a friend from a party and you realize that a note on
which you wrote the address is missing. How would you go
about recovering the address or the note on which you wrote
the address without being late? If there is a way to unlock the
mysteries of thinking and secure clever solutions—to peer in-
side Oedipus’s mind—then we might learn to negotiate an-
swers in the face of uncertainty.

It might be possible to begin unraveling Oedipus’s solu~
tion by considering how Oedipus approached the riddle; that
is, did he approach the riddle as a reasoning task, in which a
conclusion needed to be deduced, or did he approach the rid-
dle as a problem-solving task, in which a solution needed to
be Found? Is there any purpose in distinguishing between the
processes of reasoning and problem solving in considering
how Oedipus solved the riddle? There is some purpose in dis-
tinguishing these processes, at least at the outset, because

a strategy, or experiencing an insight into its resolution?
Knowing how_Qedipus arrived at his answer might have

psychologists believe that these operations are relatively dis-

_ tinct (Galotti, 1989). Reasoning is commonly defined as the

saved the men before him from death as sphinx fodder. Most
of the problems that we face in everyday life are not as men-
acing as the one Oedipus faced that day. Nevertheless, the
conditions under which Oedipus resolved the riddle corre-
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_solving is defined as the goal-driven process of overcoming

process of drawing conclusions from-principles-and-from-ev-—
idence (Wason & Johnson-Laird, 1972). In contrast, problem

/
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obstacles that obstruct the path to a solution (Simon, 1999a+"
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Sternberg, 1999). Given these definitions, would it be more
accurate to say that Oedipus resolved the riddle by reasoning
or by problem solving? Knowing which operation he used
might help us understand which operations we should apply
to negotiate our own answers to uncertain problems.
Unfortunately, we cannot peer inside the head of the leg-
endary Oedipus, and it is not immediately obvious from these
definitions which one—the definition of reasoning or that of
problem solving—describes the set of processes-leading to
his answer. If we are to have any hope of understanding how

" Qedipus negotiated a solution to the riddle and how we might _ ___~

negotiate answers to our own everyday riddles, then we must
.examine reasoning and problem solving more closely for
clues.

GOALS OF CHAPTER

The goals of the present chapter are to cover what.is known
about reasoning and problem solving, what is currently being
done, and in what directions future conceptualizations, re-
search, and practice are likely to proceed. We hope through
the chapter to convey an understanding of how reasoning and
problem solving differ from each other and how they resem-
ble each other. In addition, we hope that we can apply what
we have learned to determine whether the sphinx’s riddle was
essentially a reasoning task or a problem-solving task, and
whether knowing which one it was helps us understand how
Oedipus solved it.

REASONING

During the last three decades, investigators of reasoning have
advanced many different theories (see Evans, Newstead, &
Byrne, 1993, for a review). The principal theories can be cat-
egorized as rule theories (e.g., Cheng & Holyoak, 1985;
Rips, 1994), semantic theories (e.g., Johnson-Laird, 1999;
Polk & Newell, 1995), and evolutionary theories (e.g.,
Cosmides, 1989). These theories advance the idea of a funda-
mental reasoning mechanism (Roberts, 1993, 2000), a hard-
wired or basic mechanism that controls most, if not all, kinds

is better described as a basic mechanism that, if unaltereq
should always lead to correct inferences.

Rule Theories

Supporters of rule theories believe that reasoning is character-
ized by the use of specific rules or commands. Competent reg-
soning is characterized by applying rules properly, by using the
appropriate rules, and by implementing the correct sequence of
rules (Galotti, 1989; Rips, 1994). Although the exact nature of

the rules might change depending on the Sf)e’é_iﬁc‘,,rule,theory B

considered, all rules are normally expressed as propositional
commands such as (antecedent or premise) — (consequent or
conclusion). If a reasoning task matches the antecedent of the
rule, then the rule is elicited and applied to the task to draw a
conclusion. Specific rule theories are considered below.

Syntactic Rule Theory

According to syntactic rule theory, people draw conclusions
using formal rules that are based on natural deduction and that
can be applied to a wide variety of situations (Braine, 1978;
Braine & O’Brien, 1991, 1998; Braine & Rumain, 1983; Rips,
1994, 1995; Rumain, Connell, & Braine, 1983). Reasoners

. are able to use these formal rules by extracting the logical

forms of premises and then applying the rules to these logical
forms to derive conclusions (Braine & O’ Brien, 1998).

For example, imagine Oedipus trying to answer the
sphinx’s riddle, which makes reference to something walking
on two legs. In trying to make sense of the riddle, Oedipus
might have remembered an old rule stating that If it walks on
two legs, then it is a person. Combining part of the riddle
with his old rule, Oedipus might have formed the following
premise set in his mind:

If it walks on two legs, then it is a person. (Oedipus’ rule A)
&)

It walks on two legs. (Part of riddle)

Therefore ?

The conclusion to the above premise set can be inferred by
applying a rule of logic, modus ponens, which eliminates the

—<laimafundamental-Teasoning iechanisnrbut; instea

of 1'easoning (Roberts, 2000). In addition, some investigators
have proposed heuristic theories of reasoning, which do not
;
claim that simple strategies govern reasoning. Sometimes
these simple strategies lead people to erroneous conclusions,
but, most of the time, they help people draw adequate con-
clusions in everyday life. According to rule theorists, seman-
tic theorists, and evolutionary theorists, however, reasoning

“HfAthen B

if, as follows:

A.

Therefore B.

Applying the modus ponens rule to premise set (1) would
have allowed Oedipus to conclude “person.”




Another feature of syntactic theory is the use of SUpposi-

tions, which involve assuming additional information for the
sake of argument. A supposition can be paired with other
premises to show that it leads to a contradiction and, there-
fore, must be false. For example, consider the following
premise set:

. 1f it walks on three legitimate legs, then it is not a person.
(Oedipus’ rule B)  (2)

b. It is a person. (Conclusion from premise set (1) above)

“¢-1t walks-on three legitimate legs. - ST (A supposition).

d. Therefore it is not a person  (Modus ponens applied to a and c)

As can be seen from premise set (2), there is a contradic-
tion between the premise Iz is a person and the conclusion de-
rived from the supposition, It is 1ot a person. According to
the rule of reductio ad absurdum, because the supposition
leads to a contradiction, the supposition must be negated. In
other words, we reject that it walks on three legitimate legs.
Because this so-called modus tollens inference is not gener-
ated as simply as is the modus ponens inference, syntactic
rule theorists propose that the modus tollens inference relies
on a series of inferential steps, instead of on the single step
associated with modus ponens. If Oedipus considered the line
of argument above, it might have led him to reject the possi-
bility that the sphinx’s riddle referred to anything with three
legitimate legs.

In an effort to validate people’s use of reasoning rules,
Braine, Reiser, and Rumain (1998) conducted two studies. In
one of their studies, 28 participants were asked to read 85 rea-
soning problems and then to evaluate the conclusion pre-
sented with each problem. Some problems were predicted to
require the use of only one rule for their evaluation (e.g.,
There is an O and a Z: There is an 07), whereas other prob-
lems were predicted to require the use of multiple rules or de-
ductive steps for their evaluation (e.g., There isan ForaC;
If there’s not an F, then there is a C7). Participants were asked
to evaluate the conclusions by stating whether the proposed
conclusion was true, false, or indeterminate. The time taken
by each participant to evaluate the conclusion was measured.
In addition, after solving each problem, participants were

asked to rate the difficulty of the problem using a 9-point
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difficulty ratings in the similar study with excellent accuracy
(correlations ranged up to .95). In addition, the difficulty
weights predicted errors and latencies well; long reaction
times and inaccurate performance indicated people’s at-
tempts to apply difficult and long rule routines, whereas short
reaction times and accurate performance indicated people’s
attempts to apply easy and short rule routines (see also Rips,
1994). Braine et al. (1998) concluded from these results that
participants do in fact reason using the steps proposed by the
syntactic theory of mental-propositional logic. Outside of

‘these results, other investigators have also found evidence

of rule use (e.g., Ford, 1995; Galotti, Baron, & Sabini, 1986,
Torrens, Thompson, & Cramer, 1999).

Supporters of syntactic theory use formal or logical
reasoning tasks in their investigations of reasoning rules.
According to syntactic theorists, errors in reasoning arise
because people apply long rule routines incorrectly or draw
unnecessary invited conclusions from the task information.
Invited, or simply plausible (but not logically certain),
conclusions can be drawn in everyday discourse but are
prohibited on formal reasoning tasks, in which information
must be interpreted in a strictly logical manner. Because the
rules in syntactic theory are used to draw logically certain
conclusions, critics of the theory maintain that these rules
appear unsuitable for reasoning in everyday situations, in
which information is ambiguous and uncertain and additional
information must be considered before any reasonable con-
clusion is likely to be drawn (see the chapter by Goldstone &
Kersten in this volume for a discussion of rule-based reason-
ing as it relates to categorization). In defense of the rule
approach, it is possible that people unknowingly interject
additional information in order to make formal rules applica-
ble. However, it is unclear how one would know what kind
of additional information to include. Dennett (1990) has de-
scribed the uncertainty of what additional information to
consider as the frame problem (see also Fodor, 1983).

The frame problem involves deciding which beliefs from
a multitude of different beliefs to consider when solving a.
task or when updating beliefs after an action has occurred
(Dennett, 1990; Fodor, 1983). The ability to consider differ-
ent beliefs can lead to insightful and creative comparisons
and solutions, but it also raises the question: How do human

scale, with | indicating a very easy problem and 9 indicating
a very difficult problem. These difficulty ratings were then

beings select fromramong-all-their beliefs-those-that- arerele- —

yant to generating a conclusion in a reasoning problem? The

used to estimate difficulty weights for the reasonirrg'rul'e'sv“"*'ff'amevPI’Ob1€1nviS-ELPEIPleXi—ng issue that has not been ad-

assumed to be involved in evaluating the problems. The esti-
mated difficulty weights were then used to predict how
another group of participants in a similar study rated a set of
new reasoning problems. Braine et al. (1998) found that the
difficulty weights could be used to predict participants’

dressed by syntactic rule theorists.

Tf it were possible to ask Oedipus how he reached the
answer to the riddle, would he be able to say how he did it?
That is, could he articulate that he used a rule of some sort to
generate his conclusion, or would this knowledge be outside
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| of his awareness? This question brings up a fundamental would not think, for example, of asking Oedipus to think aloud
| issue that arises when discussing theories of reasoning: Is the as to how he solved the riddle in an effort to confirm syntactic
~ theory making a claim about the strategies that a person in rule theory. Think-aloud reports would be inadequate evidence
particular might use in reasoning or about something more in support of the theory. Our question would be fruitless be-
basic, such as how the mind in general processes information, cause, althongh Oedipus might be able to tell us about the

that is, the mind’s cognitive architecture (Dawson, 1998; strategies he used and the information he thought about in
Johnson-Laird, 1999; Newell, 1990; Rips, 1994)? The mind’s solving the riddle, he presumably would not be able to tell us
cognitive architecture is thought to lie outside conscious about his cognitive architecture; he would not have access to it.

awareness because it embodies the most basic non-physical

] -1 1 g o 11 —— fhe 1 P o 0 1for at1 Yo . .
4,‘,1,‘,’15,?}’13?}9‘] C,’,f, goPr%}})?p ,,,;th? f F.ch}lm,‘?tﬁdl infor mation pro-  py, agmatic Reasoning Theory
cessing steps underlying cognition (Dawson, 1998; Newell; -~~~ =~ L

1990). In contrast, strategies are thought to be accessible to Another theory that invokes reasoning rules is pragmatic
conscious awareness (Evans, 2000). reasoning theory (Cheng & Holyoak, 1985, 1989; Cheng &
Some theories of reasoning seem to pertain to the nature of Nisbett, 1993). Pragmatic reasoning theorists suggest that
the mind’s cognitive architecture. For example, Rips (1994) people reason by mapping the information they are reasoning
has proposed a deduction-system hypothesis, according to about to information they already have stored in memory. In
which formal rules do not underlie only deductive reasoning, particular, these theorists suggest that this mapping is accom-
or even only reasoning in general, but also the mind’s cogni- plished by means of schemas, which consist of sets of rules
tive architecture. He argues that his theory of rules can be used related to achieving particular kinds of goals for reasoning in
as aprogramming language of general cognitive functions, for specific domains.
example, to implement a production system: a routine that Cheng and Holyoak (1985) have proposed that in domains
controls cognitive actions by determining whether the an- where permission and obligation must be negotiated, we acti-
tecedents for the cognitive actions have been satisfied (Simon, vate a permission schema to help us reason. The permission
1999b; see below for a detailed definition of production sys- schema is composed of four production rules, “each of which
tems). The problem with this claim is that production systems specifies one of the four possible antecedent situations,
have already been proposed as underlying the cognitive archi- assuming the occurrence OrI nonoccwrence of the action
tecture and as potentially used to derive syntactic rules (see and precondition” (p. 396). The four possible antecedent
Eisenstadt & Simon, 1997). Thus, it is not clear which is more situations along with their corresponding consequences are
fundamental: the syntactic rules or the production systems. shown below:
Claims have been staked according to which each derives
from the other, but both sets of claims cannot be correct. Rule 1: If the action is to be taken, then the precondition
Another concern with Rips’s (1994) deductive-system hy- must be satisfied.
pothesis is that its claim about the mind’s cognitive architec- Rule 2: If the action is not to be taken, then the precondi-
ture is based on data obtained from participants’ petformance tion need not be satisfied.
on reasoning tasks, tasks that are used to measure controlled Rule 3: If the precondition is satisfied, then the action may
behaviors. Controlled behavior, according to Newell (1990), be taken.

is not where we find evidence for the mind’s architecture, be-
cause this behavior is slow, load-dependent, and open to
awareness; it can be inhibited; and it permits self-terminating

Rule 4: If the precondition is not satisfied, then the action
must not be taken.

search processes. In contrast, immediate behavior (e.g., as re- To understand how these rules are related to reasoning, we

vealed in choice reaction tasks) “is the appropriate arena in first need to discuss how pragmatic reasoning theory grew out
———————which~to discover -the nature-of-the- cagnit—i-vefarchi,tectultef__*oites,ts;oﬁthe Wason selection task (Wason, 1966). The selec-
I (Newell, 1990, p. 236). The swiftness of immediate, auto- tion task is a hypothesis-testing task in which participants aré
i maticresponses exposes the mind’s basic mechanism, which given a conditional rule of the form If P then O and four cards,
is revealed in true form and unregulated by goal-driven adap- each of which has either a P or a nof-P on one side and-either&

tive behavior. O or a not-Q on the other side. As shown in Figure 23.1, each
Determining at what level a theory is intended to account of the cards is placed face down so that participants can €€

for reasoning is important in order to assess the evidence only one side of a given card. After participants read the con-

presented as support for the theory. If syntactic rule theory is ditional rule, they are asked to select the cards that test the truth

primarily a theory of the mind’s cognitive architecture, then we or falsity of the rule. According to propositional logic, only




f———————Munila;-capital-of-the-Philippines—Among-the -documents-you

Conditional Rule: "If there is a vowel on one side
of the card, then there is an even number on the
other side of the card."

Figure 23.1  Example of the Wason selection task.

“two cards can conclusively test the conditional rule: The P

card can potentially test the truth or falsity of the rule because
when flipped it might have a not-Q on its other side, and the
not-Q card can test the rule because when flipped it might
have a P on its other side. The actual conditional rule used in
the Wason selection task is If there is a vowel on one side of the
card, then there is an evern number on the other side of the card,
and the actual cards shown to participants have an exemplar of
either a vowel or a consonant on one side and an even number
or an odd number on the other side. As few as 10% of partici-
pants choose both the P and not-Q cards (the logically correct
cards), with many more participants choosing either the P card
by itself or both the P and O cards (Evans & Lynch, 1973;
Wason, 1966, 1983; Wason & Johnson-Laird, 1972; for a re-
view of the task see Evans, Newstead, et al., 1993).

Cheng and Holyoak (1985, 1989) have argued that people
perform poorly on the selection task because it is too abstract
and not meaningful. Their pragmatic reasoning theory grew
out of studies showing that it was possible to improve signif-
icantly participants’ performance on the selection task by
using a meaningful, concrete scenario involving permis-
sions and obligations. Permission is defined by Cheng and

Holyoak (1985) as a regulation in which, in order to under-

take a particular action, one first must fulfill a particular
precondition. An obligation is defined as a regulation in
which a situation requires the execution of a subsequent
action. In a test of pragmatic. reasoning theory, Cheng and
Holyoak (1985) presented participants with the following
permission scenario as an introduction to the selection task:

You are an immigration officer at the International Airport in
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TABLE 23.1 Percentage Correct on Selection Task (Experiment 3)

Rule Type
Given Form Permission Arbitrary Mean
If-then 67 17 42
Only-if 56 4 30
Mean 62 1t

Source: From “Pragmatic Reasoning Schemas™ by P. W. Cheng and
K. I. Holyoak (1985), Cognitive Psychology, 17, 407. Copyright 1985 by
Academic Press. Reprinted by permission.

The above introduction was. followed by depictions_of four ... . _..

cards in a fashion similar to that shown in Figure 23.1. The first
card depicted the word TRANSIT, another card depicted the
word ENTERING, a third card listed the diseases “cholera,
typhoid, hepatitis,” and a fourth card listed the diseases
“typhoid, hepatitis.” Table 23.1 shows that participants were
significantly more accurate in choosing the correct alterna-
tives, P and not-Q, for the permission task (62 %) than for the
abstract version of the task (11%). In addition, Table 23.1
indicates that the effect of the permission context generalized
across corresponding connective forms; that is, participants’
performance improved not only for permission rules contain-
ing the connective if. . . then, but also for permission rules
containing the equivalent connective only if.

According to Cheng and Holyoak (1985), the permission
schema’s production rules, ’

(1) If the action is to be taken, then the precondition mwust be
satisfied; and

(2) If the pre-condition is not satisfied, then the action must not be
taken,

guided participants’ correct selection of cards by highlighting
the cases where the action was taken (i.e., if the person is en-
tering, then the person must have been inoculated against
cholera) and where the precondition was not satisfied (i.e., if
the person has not been inoculated, then the person must not
enter). According tq the theory, reasoning errors occur when
a task’s content fails to elicit an appropriate pragmatic rea-
soning schema. The content of the task must be meaningful
and not arbitrary, however; otherwise, participants peﬁ'orn’i
as poorly on concrete as on abstract versions of the selection

must check is a sheet called Form H. One side of this form indi-
cates whether the passenger is entering the country or in transit,

task (e.g., Manktelow & Evans, 1979).
Despite its success in improving performance on the se-

and the other side of the form lists inoculations the passenger has
had in the past 6 months. You must make sure that if the form says
ENTERING on one side, then the other side includes cholera
among the list of diseases. This is to ensure that entering passen-

gers are protected against the disease. Which of the following'

forms would you have to turn over to check? (pp. 400-401)

lectiontask; pragmatic reasoning theoryhas-been-criticized—————

on a number of grounds. For instance, some investigators
have charged that pragmatic reasoning schemas are better
conceptualized as an undeveloped collection of deontic rules,
which are invoked in situations calling for deontic reasoning.
Manktelow and Over (1991) describe deontic reasoning as
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reasoning about what we are allowed to do or what we should
do instead of what is actually the case. In other words, deon-
tic reasoning involves reasoning about permissions and
obligations. Deontic reasoning is moderated by subtle con-
siderations of semantic, pragmatic, and social information
that influence a person’s assessment of the utilities of possi-
ble actions. Assessing the utilities of possible actions in-
volves thinking about whether pursuing an action will lead to
a desired goal (i.e., does the action have utility for me?) and
whether it is justifiable to pursue the action given the value of

~“the outcome. -Manktelow and Over-(1991) have suggested -

that although Cheng and Holyoak’s (1985, 1989) schemas are
deontic in character, they fail to include how people assess
utilities when reasoning about permissions. Furthermore,
they have pointed out that the very production rules that
make up the permission schema incorporate deontic terms
such as may and must that need to be decoded by a more basic
schema that deciphers deontic terms.

Other critics of pragmatic reasoning theory have also
claimed that the theory is too closely connected with a single
task to offer an account of human reasoning generally (e.g.,
Rips, 1994). Although pragmatic reasoning schemas have
been used to explain reasoning about permissions, obliga-
tions, and causes and effects, it is unclear if equivalent
schemas, whatever form they might take, can also be used to
explain other forms of reasoning, such as reasoning about
classes or spatial relationships (Liberman & Klar, 1996). The
ambiguity of how pragmatic reasoning schemas are applied
in unusual or novel situations is one reason why, for example,
it is unlikely that Oedipus reasoned according to pragmatic
reasoning theory in deriving a conclusion to the sphinx’s rid-
dle. The riddle represents an unusual problem, one for which
a schema might not even exist. In addition, even if it were
possible to map the riddle’s information onto a schema, how
would the schema be selected from the many other schemas
in the reasoner’s repertoire?

Finally, although Cheng and Holyoak (1985, 1989) have
described how the permission schema helps reasoners infer
conclusions in situations involving permissions (see para-
graph above), they do not specify how reasoners actually im-
plement the schemas. Schemas serve to represent or organize
declarative knowledge, but how does someone proceed from

the frame problem (Dennett, 1990). The frame problem in
this case involves deciding which schemas—ifrom a possibie
multitude of schemas—ito consider when solving a task.

Semantic Theories

Unlike rule theories, in which reasoning is characterized as
resulting from the application of specific rules or commands,
semantic theories characterize reasoning as resulting from
the particular interpretatiohs assigned to specific assertions,

Rules are not adopted in.semantic theories because 1e'180n1ng
is thought to depend on the meaning of assertions and noton

the syntactic form of assertions.

Mental Model Theory

According to the theory of mental models, reasoning is based
on manipulating meaningful concrete information, which is
representative of the situations around us, and is not based on
deducing conclusions by means of abstract logical forms that
are devoid of meaning (Johnson-Laird, 1999). Two mental
model theorists, Phil Johnson-Laird and Ruth Byrne (1991),
have proposed a three-step procedure for drawing necessary
inferences: First, the reasoner constructs an initial model or
representation that is analogous to the state of affairs (or in-
formation) being reasoned about (Johnson-Laird, 1983). For
example, consider that a reasoner is given a conditional rule
If there is a circle then there is a square plus an assertion
There is a circle and is asked then to draw a conclusion. The
initial model or representation he or she might construct for
the conditional would likely include the salient cases of the

conditional, namely a circle and a square, as follows: i

o

The reasoner might also recognize the possibility that the
antecedent of the conditional (i.e., If there is a circle) could
be false, but this possibility would not be normally repre-
sented explicitly in the initial model. Rather, this possibility
would be represented implicitly in another model, whose
presence is defined by an ellipsis attached to the explicit
model as follows:

having this representational scheme to knowing when and
how to apply it? Does application happen automatically, or is

on

it under our control? If it is under our control, then it seems
critical to explore the strategies that people use in deciding to
apply a schema. If it is not under our control, then what are
the processes by which ineffective schemas are disregarded
in the search for the proper schema? The latter issue of how
schemas are applied and disregarded is another example of

The second step in the procedure involves drawing a conclu-
sion from the initial model. For example, from the foregoing
initial model of the rule, If there is a circle then there is @
square, and the assertion, There is a circle, the reasoner can
conclude immediately that there is a square alongside the




circle. Third, in some cases, the reasoner constructs alterna-
tive models of the information in order to verify (or disprove)
the conclusion drawn (Johnson-Laird, 1999; Johnson-Laird
& Byrne, 1991). For example, suppose that the reasoner had
been given a different assertion, such as that There is not a
circle in addition to the rule If there is a circle then there is
a square. This time, in order to verify the conclusion to be
drawn from the conditional rule plus this new assertion, the
reasoner would need to flesh out the implicit model indicated
in the ellipsis of the initial model. For example, according (o

* a material implication interpretation of the .conditional rule, _
he or she would need to flesh out the implicit model as

follows:

~0O 0
~O -0

where ~ refers to negation.

By using the fleshed out model above, the reasoner would
be able to conclude that there is no definite conclusion to be
drawn about the presence or absence of a square given the as-
sertion There is not a circle and the rule If there is a circle
then there is a square. There is no definite conclusion that can
be drawn because in the absence of a circle (e, ~ O), 2
square may Or may not also be absent. The first two steps in
mental model theory—the construction of an initial explicit
model and the generation of a conclusion—involve primarily
comprehension processes. The third step, the search for alter-
native models or the fleshing out of the implicit model, de-
fines the process of reasoning (Evans, Newstead, et al., 1993;
Johnson-Laird & Byrne, 1991).

The theory of mental models can be further illustrated
with categorical syllogisms, which form a standard task
used in reasoning exper'iments (e.g., Johnson-Laird, 1994;
Johnson-Laird & Bara, 1984; Johnson-Laird & Byrne, 1991;
Johnson-Laird, Byrne, & Schaeken, 1992). Categorical syllo-
gisms consist of two quantified premises and a quantified
conclusion. The premises reflect an implicit relation between
a subject (S) and a predicate (P) via a middle term (M),
whereas the conclusion reflects an explicit relation between
the subject (S) and predicate (P). The set of statements below
is an example of a categorical syllogism.
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lidity of syllogisms can be proven using either proof-
theoretical methods or, more commonly, a model-theoretical
method. According to the model-theoretical method, a valid
syllogism is one whose premises cannot be true without its
conclusion also being true (Garnham & Oakhill, 1994).
The validity of syllogisms can also be defined using proof-the-
oretical methods that involve applying rules of inference in
much the same way as one would in formulating a math-
ematical proof (see Chapter4 in Garnham & Oakhill, 1994, for
a detailed description of proof-theoretical methods).

~ Mental model theory has been used successfully to ac-
count for participants? pérformémce on.categorical syllogisms.
(Evans, Handley, Harper, & J ohnson-Laird, 1999; Johnson-
Laird & Bara, 1984; T ohnson-Laird & Byrne, 1991). A num-
ber of predictions derived from the theory have been tested
and observed. For instance, one prediction suggests that par-
ticipants should be more accurate in deriving conclusions
from syllogisms that require the construction of only a single
model than from syllogisms that require the construction of
multiple models for their evaluation. An example of a single-
model categorical syllogism is shown below:

Syllogism: ~ALL S are M
ALLM are P
ALLSare P
Model: S=M=P

where = refers to an identity function.

In contrast, a multiple-model syllogism requires that
participants construct at least two models of the premises in
order to deduce a valid conclusion or determine that a valid
conclusion cannot be deduced. J ohnson-Laird and Bara
(1984) tested the prediction that participants should be more
accurate in deriving conclusions from single-model syllo-
gisms than from multiple-model syllogisms by asking 20 un-
trained volunteers to make an inference from each of 64 pairs
of categorical premises randomly presented. The 64 pairs of
premises included single-model and multiple-model prob-
Jems. An analysis of participants’ inferences revealed that
valid conclusions declined si gnificantly as the number of
models that needed to be constructed to derive a conclusion
increased (Johnson-Laird & Bara, 1984, Table 6). Although

ALL S are M

ALLM are P

numerous._studies have shown that performance on multiple-

model categorical syllogisms is inferior to performance on
single-model categorical syllogisms, Greene (1992) has

ALL S are P

Each of the premises and the conclusion in a categorical
syllogism takes on a particular form or mood such as All S are
M, Some S are M, Some S are not M, or No S are M. The va-

suggested that inferior performance o multiple=model-sylle-
gisms may have little to do with constructing multiple
models. Instead, Greene has suggested that participants may
find the conclusions from valid, multiple-model categorical
syllogisms awkward to express because they have the form
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Some A are not B, a form not frequently used in everyday
language.

According to Johnson-Laird and Byrne (1991), however,
errors in reasoning have three main sources: First, reasoning
errors can occur when people fail to verify that the conclu-
sion drawn from an initial model is valid; that is, people fail
io search alternative models. Second, reasoning errors can
occur when people prematurely end their search for alterna-
tive models because of working memory limitations. Third,

"~ reasoning eITors can occur when people construct an inaccu-

rate initial model of the task information. In this latter case, =~

the error is not so much a reasoning error as it is an encoding
error.

Recent research suggests that people may not search for
alternative models spontaneously (Evans et al., 1999). In one
study in which participants were asked to endorse conclu-
sions that followed only necessarily from sets of categori-
cal premises, Evans et al. (1999) found that participants
endorsed conclusions that followed necessarily from the
premises as frequently as conclusions that followed possibly
but strongly from the premises (means of 80 and 79%, re-

spectively). Evans et al. (1999) defined possible strong con- ‘

clusions as conclusions that are unnecessary given their
premises but that are regularly endorsed as necessary. As-
suming that participants had taken seriously the instruction to
endorse only necessary conclusions, Evans et al. (1999) had
expected participants to endorse the necessary conclusions
more frequently than the possible strong conclusions. Unlike
necessary conclusions, possible strong conclusions should be
rejected after alternative models of the premises are consid-
ered. Participants, however, endorsed necessary and possi-
ble strong conclusions equally often. Evans et al. (1999)
explained the equivalent endorsement rates by suggesting
that participants were not searching for alternative models of
the premises but, instead, were using an initial model of the
premises to evaluate both necessary and possible strong con-
clusions. Evans et al. (1999) suggested that if participants
were constructing a single model of the premises, then possi-
ble strong conclusions should be endorsed as frequently as
necessary conclusions because, in both cases, an initial
model of the premises would support the conclusion. Partici-

T pants; howev er;-did-not-frequently-endorse- conclusions. that

followed possibly but weakly from the categorical premises
_(mean_of_19%),_that_is._conclusions_that are unnecessary

Evans, 1993, study indicated that participants were highly
motivated to search for alternative models of unbelievable
conclusions from categorical syllogisms), people do not nec-
essarily employ such a search in all circumstances.
Although mental model theory has been used successfully
to account for a number of different results (for a review
see Schaeken, DeVooght, Vandierendonck, & d’Ydewalle,
2000), it has been criticized for not detailing clearly how the
process of model construction is achieved (O’Brien, 1993),
For instance, it might be useful if the process of model

~construction-was mapped onto a series of stages ofinforma- *

tion processing, such as the stages—encoding, combination,
comparison, and response—outlined in Guyote and Sternberg
(1981; Sternberg, 1983). In addition, the theory is unclear as
to whether models serve primarily as strategies or whether
models should be considered more basic components of the
mind’s cognitive architecture.

Oedipus might have employed mental models to solve
the sphinx’s riddle. For example, Oedipus could have con-
structed the following models of the riddle:

X=abbbbd
X=abb
X=abbb
X=7

where X represents the same something or someone over time,
a represents voice, and b represents feet.

In the models above, X is the unknown entity whose iden-
tity needs to be deduced. Each line of the display above
reflects a different model or state of time. For example, X=
a,b bbb is the first model of the unknown entity at infancy
when it has one voice and four feet (crawls on all fours). An
examination of the models above, however, does not suggest
what conclusion can be deduced. The answer to the riddle is
far from clear. The models might be supplemented with addi-
tional information, but what other information might be in-
corporated? Failing to deduce a conclusion from the models
above, Oedipus could have decided to construct additional
models of the information presented in the riddle. But how
would Oedipus go about selecting the additional information
needed to construct additional models? This is the same prob-

lem that was encountered in our discussion of syntactic rule
theory: When one is reasoning. about uncertain problems,

given their premises and that are rarely endorsed as neces-
sary. In this case, according to Evans et al. (1999), an initial
model of the premises would not likely support the conclu-
sion. Evans et al. concluded from this study that although
previous research has shown that people can search for alter-
native models in some circumstances (e.g., the Newstead and

additional information is a prerequisite to solving-the-prob-
lems, but how this additional information is selected from the
massive supply of information stored in memory is left
unspecified. It is not an easy problem, but it is one that makes
the theory of mental models as difficult to use as syntactic
rule theory in explaining Oedipus’s response, even though




" people, on averdage, constr

the theories are general ones that, in principle, can be applied
to any task, regardless of content.

Verbal Comprehension Theory

This theory is similar to the theory of mental models in the
initial inference steps a reasoner is expected to follow in in-
terpreting a reasoning task (i.e., constructing an initial model
of the premises and attempting to deduce a conclusion from
the initial model). Unlike the theory of mental models,

" however, verbal comprehension theory does not propose that
people search for alternative models of task information. 77

Polk and Newell (1995), the originators of verbal compre-
hension theory, have proposed that people draw conclusions
automatically from information as part of their everyday
efforts at communication. In deductive reasoning tasks, how-
ever, when a conclusion is not immediately obvious, Polk
and Newell have suggested that people attempt to interpret
the task information differently until they are able to draw the
proper conclusion. Interpretation and reinterpretation define
reasoning, according to verbal comprehension theory, and
not the search for alternative models, as in mental model the-
ory. In spite of this alleged dissimilarity between verbal com-
prehension theory and mental model theory, it is not entirely
clear how the iterative interpretation process differs from the
search for models.

Polk and Newell (1995) have suggested that people com-
mit errors on deductive tasks because “linguistic processes
cannot be adapted to a deductive reasoning task instanta-
neously” (p. 534). That is, reasoning errors occur because
people’s comprehension processes are adapted to everyday
situations and tasks and not to deductive tasks that require
specific and formal interpretations.

Polk and Newell (1995) have presented a computational
model of categorical syllogistic reasoning based on verbal
comprehension theory that accounts for some standard find-
ings in the psychological literature. The computational
model, VR, produces regularities commonly and robustly ob-
served in human studies of syllogistic reasbning. For exam-
ple, whereas people, on average, answer correctly 53% of
categorical syllogism problems, VR generates correct an-
swers to an average of 59% of such problems. Also, whereas

the atmosphere or surface similarities of the premises on 77%
~0f~catege1:ieal~syllogismvproblemS,_Vj&g,e_nerates similar con-
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explain how Oedipus might have solved the sphinx’s riddle,
unless we can find out what additional information Oedipus
ased to solve the riddle. If we assume that Oedipus supplied
additional information, then how did Oedipus select the addi-
tional information? This is the same question we asked when
considering syntactic rule theory and mental model theory.
The sphinx’s riddle, as with so many of the problems people
face in everyday situations, requires the consideration of in-
formation beyond that presented in the problem statement.
Any theory that fails to outline how this search for additional

information occurs is hampered in its applicability to every-

day I'C‘LIS'OH‘.lngT T e n

Verbal comprehension theory has additional limitations.
One criticism of the theory is that it fails to incorporate findings
that show the use of nonverbal methods of reasoning, such as
spatial representations, to solve categorical and linear syllo-
gisms (Evans, 1989: Evans, Newstead, et al.,, 1993; Ford,
1995 Galotti, 1989; Sternberg, 1980a, 1980b, 1981). For ex-
ample, Ford (1995) found that some individuals used primarily
verbal methods to solve categorical syllogisms, whereas other
individuals used primarily spatial methods to solve categorical
syllogisms. Individuals employing spatial methods constructed
a variant of Euler circles to evaluate conclusions derived from
categorical syllogisms. Moreover, in studies of linear syllo-
gisms (i.e., logical tasks about relations between entities),
researchers reported that participants created visual, mental
arrays of both the items and the relations in the linear syllo-
gisms in the process of evaluating conclusions (for a review
see Evans, Newstead, et al., 1993). Verbal comprehension
theory is also ambiguous as to whether verbal comprehension
operates at the level of strategies or at the level of cognitive
architecture. Polk and Newell (1995) described verbal reason-
ing as a strategy that involves the linguistic processes of enco-
ding and reencoding, but some linguistic processes are more
automatic than controlled (see Evans, 2000). If verbal reason-
ing is to be viewed as a strategy. then future treatments of the
theory might need to identify the specific linguistic processes
that are controlled by the reasoner and how this control is
achieved.

Evolutionary Theories

act-valid -conclusions- that-mateh———Accordin g to_evolutionary theories, domain-specific reason-

ing mechanisms have evolved to help human beings meet
specific environmental needs (Cosmides & Tooby, 1996).

clusions on 93% of the problems.

Verbal comprehension theory can only be used to account
for reasoning on tasks that supply the reasoner with all the in-
formation he or she will need to reach a conclusion (Polk &
Newell, 1995). For this reason, this theory cannot be used to

Social Contract Theory

Unlike most of the previous theories discussed that ad-
vance domain-general methods of reasoning, social contract
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Your job is to enforce the following law

If you take the benefit, then you must pay the cost.

The cards below have information about four people. Each card represents one person.
One side of the card tells whether a person accepted the benefit, and the other side of the
card tells whether that person paid the cost. Indicate only those card(s) that you definitely
need to turn over to see if any of these people are breaking the law.

Benefit Benefit NOT Cost Paid .
- Accepted : .. Accepted v Cost N_OT Paid
P not-P Q not-Q

Figure 23.2 The cost-benefit structure of a social-contract version of the Wason selection task (adapted from

Cosmides, 1989).

theory advances domain-specific algorithms for reasoning
(Cosmides, 1989). These Darwinian algorithms are hypothe-
sized to focus attention, organize perception and memory,
and invoke specialized procedural knowledge for the purpose
of making inferences, judgments, and choices that are appro-
priate for a given domain. According to Cosmides (1989),
one domain that has cultivated a specialized reasoning algo-
rithm involves sitnations in which individuals must exchange
services or objects contingent on a contract. 1t is hypothe-
sized that when individuals reason in a social-exchange do-
main, a social-contract algorithm is invoked.

The social-contract algorithm is an ‘example of a
Darwinian algorithm that allegedly developed out of an
evolutionary necessity for “adaptive cooperation between
two or more individuals for mutual benefit” (Cosmides,
1989, p. 193). The algorithm is induced in situations that
reflect a cost-benefit theme and involve potential cheaters—
individuals who might take a benefit without paying a cost.
The algorithm includes a look-for-cheaters procedure that
focuses attention on anyone who has not paid a cost but
might have faken a benefit.

Social contract theory was initially proposed as a rival to
Cheng and Holyoak’s (1985) pragmatic reasoning theory. The
two theories are very similar, leading some investigators to
view social contract theory as simply amore specific version of

-pragmaticreasoningtheory:av ersion.that focuses on contracts

that this is the reason for participants’ improved performance
on thematic versions of the task. Figure 23.2 illustrates a
social-contract representation of the Wason selection task.

Many of the same weaknesses identified in pragmatic rea-
soning theory can also be identified in social contract theory.
First, social contract theory lacks generality because it was
developed primarily to explain performance on thematic ver-
sions of the selection task. Second, the status of the social-
contract algorithm is unclear. On the one hand, the algorithm
is described as a strategy that is induced in cost-benefit con-
texts, but it is unclear whether participants select this strategy
or whether the strategy is induced automatically. If it is in-
duced automatically, then its status as a strategy is question-
able because strategies are normally under an individual’s
control (Evans, 2000). If it is not induced automatically, then
one needs to inquire how it is selected from among all avail-
able algorithms. On the other hand, the algorithm’s proposed
evolutionary origin would suggest that it might be a funda-
mental mechanism used to represent specific kinds of contex-
tual information. In other words, if an algorithm has evolved
over time to facilitate reasoning in particular contexts (.-,
social-exchange situations), then one would expect most, if
not all, human beings to have the algorithm as part of their
cognitive architecture. One would not expect such a basic al-
gorithm to have the status of a strategy.

|
|

specifically instead of obligations and permissions generally
(Pollard, 1990). Cosmides’s (1989) social contract theory has

Cheating Detection Theory

been used to account for participants’ poor performance on ab-
stract versions of the selection task. According to the theory,
reasoning errors occur whenever the context of a reasoning
task fails to induce the social-contract algorithm. Cosmides
has claimed that the social-contract algorithm is induced in
concrete, thematic versions of the ‘Wason selection task and

Cheating detection theory \Glg’erenzer*&Hugr}992»)—i—s~simi-
Jar to social contract theory. However, unlike social contract
theory, it explores how a reasoner’s perspective influences
reasoning performance. Gigerenzer and Hug (1992) have
maintained the view that individuals possess a reasoning
algorithm for handling social contracts. However, unlike
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Cosmides (1989), they have proposed that the algorithm
yields different responses, depending on the perspective of
the reasoner; that is, the algorithm leads participants to
generate different responses depending on whether the
participant is the recipient of the benefit or the bearer of the
cost. For instance, in the following conditional permission
rule originally used by Manktelow and Over (1991) in a
thematic version of the selection task (see also Manktelow,
Fairley, Kilpatrick, & Over, 2000), the perspective of the
reasoner determines who and what defines cheating and,

_therefore, what constitutes potentially violating evidence:

If you tidy your room, then you may go out to play.

This rule, which was uttered by a mother to her son, was
presented to participants along with four cards. Each card had
a record on one side of whether the boy had tidied his room
and, on the other, whether the boy had gone out to play, as
follows: room tidied (P), room not tidied (noz-P), went out to
play (Q), or did not go out to play (not-Q). Participants were
then asked to detect possible violations of the rule either from
the mother’s perspective or from the son’s perspective. Par-
ticipants who were asked to assume the son’s perspective se-
lected the room tidied (P) and did not go out to play (not-Q)
cards most frequently as instances of possible violations of
the rule. These instances correspond to the correct solution
sanctioned by standard logic. Participants who were asked to
assume the mother’s perspective, however, selected the room
not tidied (not-P) and went out to play (Q) cards most fre-
quently as instances of possible violations—the mirror image
of the standard correct solution. From these responses, it
seems that participants are sensitive to perspective in reason-
ing tasks (e.g., Gigerenzer & Hug, 1992; Light, Girotto, &
Legrenzi, 1990).

As is the case with social contract theory, cheating detec-
tion theory grew out of an attempt to understand performance
on thematic versions of the selection task. As with social con-
tract theory, facilitated performance on the selection task is
believed to be contingent on the task’s context. If the context
of the task induces the cheating-detection algorithm, then
performance is facilitated, but if the context of the task fails
to induce the algorithm, then performance suffers. Thus,

same weaknesses as social contract theory; in particular, its

scope is-too-narrow-to-account for reasoning in general.

Heuristic Theories

A heuristic is a rule of thumb that often but not always leads
to a correct answer (Fischhoff, 1999; Simon, 1999a). Some
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researchers (e.g., Chater & Oaksford, 1999) have proposed
that heuristics are used instead of syntactic rules or mental
models to reason in everyday situations. Because everyday
inferences are often uncertain and can be easily overturned
with knowledge of additional information (i.e., everyday in-
ferences are defeasible in this sense), some investigators have
proposed that heuristics are well adapted for reasoning in
everyday situations (e.g., Holland, Holyoak, Nisbett, &
Thagard, 1986). Chater and Oaksford (1999) have illustrated
the uncertainty of everyday inferences with the following
. example: Knowing Tweety is a bird and Birds fly makes it.

" possible to infer that Tweety can fly, but this conclusion’is an- ~

certain or can be overturned upon learning that Tweety is an
ostrich. According to Chater and Oaksford (1999), defeasible
inferences are problematic for syntactic rule theory and men-
tal model theory because these theories offer mechanisms for
how inferences are generated but not for how inferences are
overturned, if at all. Consequently, other approaches need to
be considered to explain how individuals draw defeasible
inferences under everyday conditions.

Judgment Under Uncertainty

Tversky and Kahneman (1974, 1986) outlined several heuris-
tics for making judgments under uncertainty. For example,
one of the heuristics they discovered is displayed when peo-
ple are asked to answer questions such as What is the proba-
bility that John is an engineer? According to Tversky and
Kahneman (1974), many people answer such a question by
evaluating the degree to which John resembles or is repre-
sentative of the constellation of traits associated with being
an engineer. If participants consider that John shares many of
the traits associated with being an engineer, then the proba-
bility that he is an engineer is judged to be high. Evaluating
the degree to which A is representative of B in order to an-
swer questions about the probability that A originated with or
belongs to B might often lead to correct answers, but it can
also lead to systematic errors. In order to improve the likeli-
hood of generating accurate answers, Tversky and Kahneman
(1974) suggested that participants consider the base rate of B
(e.g., the probability of being an engineer in the general
population) before determining the probability that A belongs

——cheatiig detection theory can becriticized for-having-the———to-B: -

Another heuristic that is used to make judgments under
uncertainty can be observed when people are asked to assess

the probability of an event, for example, the probability that it
will rain tomorrow. In this case, many people might assess the
probability that it will rain by the ease with which they gener-
ate or. make available thoughts of last week’s rainy days. This
heuristic can lead to errors if people cannot generate any
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instances of rain or if people employ a biased search, in which
they ignore all of last week’s sunny days and focus only on
the rainy days in assessing the probability of rain tomorrow
(see the chapter by Nickerson & Pew for a fuller discussion of
heuristics). Tversky and Kahneman (1974, 1986) considered
that people’s reliance on heuristics undermined the view of
people as rational and intuilive statisticians. Other investiga-
tors disagree.

Fast and Frugal Heuristics !

aroup (1999) have suggested that people employ fast and fru-
gal heuristics that take a minimum amount of time, knowl-
edge, and computation to implement, and yield outcomes that
are as accurate as outcomes derived from normative statistical
strategies. Gigerenzer et al. (1999) have proposed that people
use these simple heuristics to generate inferences in everyday
environments. One such heuristic exploits the efficiency of
recognition to draw inferences about unknown aspects of the
environment. In a description of the recognition heuristic,
Gigerenzer et al. stated that in tasks in which one must choose
between two alternatives and only one is recognized, the rec-
ognized alternative is chosen. As this statement suggests, the
recognition heuristic can be applied only when one alternative
is less recognizable than the other alternative.

In a series of experiments, Gigerenzer et al. (1999) showed
that people use the recognition heuristic when reasoning about
everyday topics. For example, in one experiment, 21 partici-
pants were shown pairs of American cities plus additional in-
formation about each of the cities and asked to choose the
larger city of each pair. The results showed that participants’
choices of large cities tended to match those cities they had se-
lected in a previous study as being more recognizable. The
recognition heuristic can often lead to accurate inferences be-
cause objects or places that score very high (or very low) on a
particular criterion are normally made salient in our environ-
ment; their atypical characteristics make them stand out.

The recognition heuristic also yields accurate inferences in
business situations such as those that involve stock market
transactions. In one study, 480 participants were grouped into
one of four categories of stock market expertise—Amnerican

Gigerenzer, Todd, and their colleagues from the ABC research

knowledge of laypeople turned out to be only slightly less
profitable than the recognition knowledge of experts. For in-
stance, the investment portfolio of German stocks based on
the recognition of the German experts gained 57% during the
study; however, German stocks based on the recognition of
the German laypeople gained 47% during the same period—
only 10% less than the gains macde by means of expert advice!
The investment portfolios of U.S. stocks based on the recog-
nition of American laypeople and experts did not make such
dramatic gains (13 vs. 16%, respectively). However, in all
age returns that were 3 times as high as the returns from
portfolios consisting of unrecognized stocks. These findings
indicate that when one is investing, a simple heuristic might
be a worthwhile strategy.

- cases, portfolios consisting of recognized stocks yielded aver-

Probability Heuristic Model

Another heuristic approach to reasoning is Chater and
Oaksford’s (1999) probability heuristic model (PH model)
of syllogistic reasoning (see also Oaksford & Chater, 1994).
According to Chater and Oaksford, simple heuristics can
account for many of the findings in syllogistic reasoning
studies without the need to posit complicated search
processes. In the PH model, quantified statements such as
All birds are small or Most apples are red are ordered based
on their informational value. Using convex regions of a
similarity space to model informativeness, Chater and
Oaksford showed mathematically that different quantified
statements vary in how much space they occupy in the sim-
ilarity space. Categories such as all and most in quantified
statements occupy a small proportion of the similarity space
and overlap greatly, and are thus considered more informa-
tive than those quantified statements whose categories
occupy a larger proportion of the similarity space and do
not overlap greatly (see their Appendix A, p. 242). In other
words, quantified statements considered to be high in infor-
mational value are those “that surprise us the most if they
turn out to be true” (Chater & Qaksford, 1999, p. 197)
because we perceive them as unlikely. In Chater and
Oaksford’s (1999) computational analysis, quantifiers are
ordered as follows:

laypeople, American experts, German laypeople, and German
experts—and asked to complete a company recognition task
of-American—and—German—companies—(Gigerenzer—et—als

All > Most > Few > Some . .. ate > No ... are >>

1999). Participants then monitored the progress of two in-
vestment portfolios, one consisting of companies they recog-
nized highly in the United States and the other consisting of
companies they recognized highly in Germany. Participants
analyzed the performance of the investment portfolios for a
period of 6 months. Results showed that the recognition

where > stands for more informative than.

Thus, statements containing the quantifier all, such as All
people are tall, are considered more informative than state-
ments containing the quantifier most, such as Most people are
tall.

Seome-+-are-not—



One informational strategy based on this ordering 1is
the min-heuristic, which involves choosing a conclusion to
a premise set that has the same quantifier as that of the least in-
formative premise (the min-premise). Thus, if the first premise
contains the quantifier all and the second premise contains the
quantifier some, the min-heuristic would suggest selecting
some as the quantifier for the conclusion as follows:

AllY are X
Some Z are Y (min-premise)

oo SomeXareZ

Chater and Oaksford (1999) showed that the min-heuristic
could be used to predict the conclusions participants gener-
ated to valid categorical syllogisms with almost perfect accu-
racy. The min-heuristic predicted correctly conclusions of the
form All A are B, No A are B, and Some A are B but failed
slightly to predict conclusions of the form Some A are not B
(see their Appendix C, p. 247). The min-heuristic also ac-
counted for the conclusions participants generated incor-
rectly to invalid syllogisms.

Chater and Oaksford’s (1999) PH model fares well against
other accounts of syllogistic reasoning. For example, when
the PH model was used to model Rips’s (1994) syllogistic
reasoning results, it obtained as good a fit as Rips’s model but
with fewer parameters. Moreover, Chater and Oaksford
showed that the PH model predicts the differences in diffi-
culty between single-model syllogisms and multiple-model
syllogisms described in mental model theory. According to
the PH model, participants might be more inclined to solve
single-model syllogisms correctly because they lead to more
informative conclusions than those arising from multiple-
model syllogisms.

Although the heuristics described in Chater and
QOaksford’s (1999) PH model account for many of partici-
pants’ responses to categorical syllogisms, the application of
their model to other reasoning tasks is unclear. It is unclear
how their heuristics can be extended to everyday reasoning
tasks in which people must generate conclusions from in-
complete and often imprecise information. In addition, these
heuristics need to be embedded in a wider theory of human
reasoning.

proach to reasoning maintain that heuristics are adaptive re-

Factors that Mediate Reasoning Performance
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of the efficiency of rules of thumb in reasoning, it does not
explain how people reason when fast and simple heuristics
are eschewed. For example, what are the strategies that rea-
soners invoke when they have decided they want to expend
the time and effort to search for the best alternative? It is hard
to imagine that heuristics characterize all human reasoning,
because factors such as context, instructions, effort, and in-
terest might cue more elaborate reasoning processes.

Context

Context can facilitate or hinder reasoning performance. For
example, if the context of a reasoning task is completely
meaningless to a reasoner, then it is uhlikely that the reasoner
will be able to use previous experiences or background
knowledge to generate a correct solution to the task. It might
be possible for a reasoner to generate a logical conclusion to
a nonsensical syllogism if the reasoner is familiar with logi-
cal necessity but not if he or she is unfamiliar with logical ne-
cessity. If a task fails to elicit any background knowledge,
logical or otherwise, it is difficult to imagine how someone
might establish a sensible starting point in his or her reason-
ing. For instance, some critics of the abstract version of the
Wason selection task have argued that participants perform
poorly on the task because the task’s abstract context fails to
induce a domain-specific reasoning algorithm (e.g., Cheng &
Holyoak, 1985, 1989; Cosmides, 1989).

That participants’ reasoning performance improves on
thematic (or concrete) versions of the selection task, how-
ever, does not demonstrate participants’ understanding of
logic. Recall that depending on the perspective the reasoner
assumes, a reasoner will choose the not-P and Q cards as eas-
ily as the P and not-Q cards in the selection task (see the sec-
tion titled “Cheating Detection Theory”; Gigerenzer & Hug,
1992; Manktelow & Over, 1991; Manktelow et al., 2000).
The facility with which reasoners can change their card
choices depending on the perspective they assume suggests
that logical principles are not guiding their performance, but,
rather, the specific details of the situation. It appears that con-
textual factors, outside of logic, have a significant influence

Theorists who promote the fast and frugal heufistic ap- — UPON participants*reasoning:

sponses—to—an—unecertain—environment—(Anderson,—1983;
Chater & Oaksford, 1999; Gigerenzer et al., 1999). In other
words, heuristics should not be viewed as irrational responses
(even when they do not generate standard logical responses)
but as reflections of the way in which human behavior has
come to be adaptive to its environment (see also Sternberg &
Ben Zeev, 2001). Although the heuristic approach reminds us

Instructions

The instructions participants receive prior to a reasoning task
have been shown to influence their performance. For in-
stance, instructing participants about the importance of
searching for alternative models has been shown to improve
their performance on categorical syllogisms (Newstead &
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Evans, 1993). Additionally, in thematic versions of the selec-
tion task, Pollard and Evans (1987) found that instructing
participants to enforce a rule led to better performance than
did instructing them to fest a rule.

Rule enforcement is what Cheng and Holyoak (1985) and
Cosmides (1989) asked participants to do in their studies of
thematic versions of the selection task. Cheng and Holyoak
asked participants to enforce the rule—If the form says
ENTERING on one side, then the other side includes cholera

~among the list of diseases—by selecting those cards that rep-

resented possible violations of ‘the rule. In contrast, tradi-

tional instructions to the selection task have involved asking
participants to select cards that will rest the truth or falsity of
the conditional rule. Liberman and Klar (1996) have claimed
that asking participants to enforce a rule, by searching for vi-
olating instances, is not the same as asking participants to test
a rule, by searching for falsifying instances; the latter task is
more difficult than the former task because participants must
reason about a rule instead of from a rule.

Reasoning about a rule is considered to be a more difficult
task than reasoning from a rule. Reasoning about a rule
requires the metacognitive awareness underlying the hypo-
thetico-deductive method of hypothesis testing; that is,
participants reasoning about a rule must test the epistemic
status or reliability of the rule (Liberman & XKlar, 1996).
In contrast, participants reasoning from a rule do not test
the reliability of the rule but, instead, assume the veracity
of the rule and then check for violating instances. Critics of
thematic versions of the selection task have argued that
enforcer instructions induce participants to think of coun-
terexamples to the rule without understanding the logical
structure of the task (Wason, 1983).

The existence of perspective effects provides some evi-
dence that enforcer instructions change the demands of the
selection task from that of logical rule festing to that of simple
rule following. The perspective of the participant is a contex-
tual variable that leaves the logical structure of the task
unchanged. Thus, if participants are aware of the task’s
underlying logical structure, then their perspective of the task
should not influence their choice of cards—the P and not-Q
remain the correct card choices regardless of perspective.

However, tecall thatasking participants-to-assume different-

perspectives in a thematic version of the selection task influ-
—enced-theirchoice of cards. Sometimes participants chose the

variables than by logic. The improved performance obtained
with the use of enforcer instructions has led some investiga-
tors to doubt that these results should be compared with
results obtained using traditional instructions (e.g., Griggs,
1983; Liberman & Klar, 1996; Manktelow & Over, 1991;
Noveck & O’Brien, 1996; Rips, 1994; Wason, 1983).
Although enforcer instructions might alter the purpose of
the abstract selection task, the results obtained with these
instructions are significant. That participants manifest a sem-
blance of logical reasoning with enforcer instructions seems

to point to the Speciﬁcity of competent reasoning. This-speci- -

ficity does not refer to the specific brain modules that, accord-
ing to some researchers, have evolved to help people reason in
particular domains (e.g., Cosmides, 1989; Cosmides &
Tooby, 1996). Rather, this specificity might be more indica-
tive of the specific background knowledge needed to reason
competently (e.g., Chi, Glaser, & Farr, 1988). One reason that
enforcer instructions might facilitate reasoning on thematic
versions of the selection task is that they cue very specific
knowledge about rule enforcement. Most people learn exten-
sively about rule enforcement from an early age. Enforcer
instructions might induce the use of specific knowledge about
rule enforcement. In short, enforcer instructions might facili-
tate reasoning performance by permitting participants to
use their background knowledge.

Relevance

1t is reasonable to assume that individuals will be motivated
to solve tasks that are relevant to their lives. The sphinx’s rid-
dle must have had immediate relevance for the men who tried
to answer it; indeed, the riddle provoked a situation that
constituted a life-or-death affair. Sperber, Cara, and Girotto
(1995) have proposed that people gauge the relevance of a
task to themselves by determining its cognitive effect (i.e.,the
benefits of the task) and its processing effort (i.e., the costs of
performing the task). According to Sperber et al., a relevant
task is one that requires minimal processing effort or whose
solution is beneficial, or both. For instance, a task that re-
quires significant processing effort might be considered rele-
vant if its benefits are great (e.g., going to college).

_Assessments of task relevance are related to an individ-

ual’s knowledge, however. For example, being knowledge-
able about a task might reduce the reasoner’s perception of

P and not-Q cards as violating instances of the conditional
rule, and sometimes they chose the not-P and Q cards as vio-
lating instances of the conditional rule (see the section titled
“Cheating Detection Theory”; Gigerenzer & Hug, 1992). The
ease with which participants altered their card choices sug-
gests that their reasoning was influenced more by contextual

the processing efforts required to solve it. Conversely; a task
that promises great rewards might inspire the reasoner to
become knowledgeable about the task’s contextual domain.
According to Cosmides (1989), for example, the promise of
benefits (and the fear of loss) inspired a social-contract algo-
rithm to evolve to help human beings negotiate goods in
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social-exchange situations. Sperber et al. (1995) have
claimed that tasks in any conceptual domain can achieve
relevance. '

Reasoners who can solve tasks within a contextual domain
with little processing effort and who view these tasks as ben-
eficial are likely to be those who have some domain-specific
knowledge about the tasks. Because a person’s domain-
specific knowledge seems to be closely linked to how task
relevance is assessed and, therefore, to the person’s motiva-
tion for solving the task, domain-specific knowledge appears
fundamental to performance on reasoning tasks. If knowl-

-~ -“edge is- fundamental - to-reasoning, then -how -did- Oedipus

solve the sphinx’s riddle? He had little domain-specific
knowledge about the riddle. Perhaps Oedipus did not resolve
the riddle by reasoning after all. Perhaps he resolved it by
problem solving.

PROBLEM SOLVING

Problem solving is defined as the goal-driven process of
overcoming obstacles that obstruct the path to a solution
(Simon, 1999a; Sternberg, 1999). Problem solving and rea-
soning are alike in many ways. For example, in both problem
solving and reasoning, the individual is creating new knowl-
edge, albeit in the form of a solution needed to reach a goal or
in the form of a conclusion derived from evidence, respec-
tively. Problem solving and reasoning seem to differ, how-
ever, in the processes by which this new knowledge is
created. In problem solving, individuals use strategies to
overcome obstacles in pursuit of a solution (Newell &
Simon, 1972). In reasoning, however, the role of strategies is
not as clear. It was mentioned earlier that reasoning theories,
such as syntactic rule theory, pragmatic reasoning theory, and
mental model theory, do not explicitly specify if syntactic

¢ rules, pragmatic reasoning schemas, and mental models,

respectively, should be viewed as strategies or, more funda-
mentally, as forms of representing knowledge. Representa-
tion refers to the way in which knowledge or information is
formalized in the mind, whereas strategy refers to the meth-
ods by which this knowledge or information is manipulated
to reach a goal. Although individuals may be consciously

aware of the strategies they choose to solve problems, indi-
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too much work on the part of the reasoner. Although some
reasoning tasks do require goal-oriented conclusions that
are not easily deduced—or directly deduced at all—from the
premises, it might be more accurate to describe such reason-
ing tasks as more akin to problem-solving tasks (Galotti,
1989; Evans, Over, & Manktelow, 1993). For instance,
reasoning tasks leading to inductive inferences—inferences
that go beyond the information given in the task—might be
considered more akin to problem-solving tasks. Strategies,
however, are clearly important in problem solving because
the goal in problem solving is to reach a solution, which is

~not always-derived deductively or even solely from the prob--

lem information.

Knowledge Representation and Strategies in
Problem Solving

Production Systemns

The distinction between representation and strategy is made
explicit in the problem-solving literature. For example, some
investigators propose that knowledge is represented in terms
of production systems (Dawson, 1998; Simon, 1999b;
Sternberg, 1999). In a production system, instructions (called
productions) for behavior take the following form:

IF<<conditions> , THEN<<actions>.

The form above indicates that if certain conditions are met or
satisfied, then certain actions can be carried out (Simon,
1999b). The conditions of a production involve propositions
that “state properties of, or relations among, the components
of the system being modeled” (Simon, 1999b, p. 676). A pro-
duction system is normally implemented following a match
between the conditions of the production and elements stored
in working memory. The production is implemented when
the conditions specified in the production’s IF clause are sat-
isfied or met by the elements of working memory. Following
the satisfaction of the production system’s IF clause with the
elements of working memory, an action is initiated (as speci-
fied in the production system). The action may take the form
of a motor action or a mental action such as the elimination or
creation of working memory elements (Simoxn, 1999b).

viduals are believed to be unaware of how they represent
knowledge, which is considered to be part of the mind’s cog-

The elements of working memory may satisfy the condi-
tions of numerous productions at any given time. One way in

nitive architecture.

It is possible that strategies are unimportant in reasoning
because the objective in reasoning is not to reach a goal so
much as it is to infer what follows from evidence; the conclu-

-sion is meant perhaps to fall out of the set of premises without

which all the productions that are executable at a given mo-
ment can be restrained from overwhelming the problem
solver is through the presence of goals. A goal can be defined

simply as a symbol or representation that must be present’

both in the conditions of the production and in working
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memory before that production is activated. In other words, a
goal provides a more stringent condition that must be met
by an element in working memory before the production is
activated (Simon, 1999b). In the following example of a
production system, the goal is to determine if a particular
sense of the word knows is to be applied (taken from Lehman,
Lewis, & Newell, 1998, p. 156):

IF comprehending knows, and
there’s a preceding word, and
that word can receive the subject role, and
" the word refers to a person, and
the word is third person singular,
THEN use sense 1 of knows.

The antecedent or the condition of the production consists
of a statement of the goal (i.e., comprehending knows), along
with additional conditions that need to be met before the
consequent or action is applied (i.e., use sense 1 of knows).
Although the above production system might look like a strat-
egy, itis not because knowledge has not been manipulated.

Parallel Distributed Processing (PDP) Systems

Other theories of knowledge representation exist outside of
production systems. For example, some investigators pro-

" pose that knowledge is represented in the form of a parallel

distributed processing (PDP) system (Bechtel & Abraham-
sen, 1991; Dawson, 1998; Dawson, Medler, & Berkeley,
1997). A PDP system involves a network of inter-connected,
processing units that learn to classify patterns by attending to
their specific features. A PDP system is made up of simple
processing units that communicate information about pat-
terns by means of weighted connections. The weighted con-
nections inform the recipient processing unit whether a to-be-
classified pattern includes a feature that the recipient
processing unit needs to attend to and use in classifying the
pattern. According to PDP theory, knowledge is represented
in the layout of connections that develops as the system
learns to classify a set of patterns. In Figure 23.3, a PDP rep-
resentation of the Wason (1966) selection task is shown. This
representation illustrates a network that has learned to select

the P and Q in response to the selection task (Leighton &

Output Unit Layer
—

Not- Not-

"o
£

Hidden Unit Layer
—p

Input Unit Layer
—_—

If P then Q P Not-P Q

Not-Q

Figure 23.3 Tilustration of a PDP network, including layer of input units,
hidden units, and output units (adapted from Leighton & Dawson, 2001).

generate the P response required a minimum of three hidden
units.

Strategies can be extracted from a PDP system. The
process by which strategies are identified in a PDP system is
laborious, however, and requires the investigator to examine
the specific procedures used by the system to classify a set of
patterns (Dawson, 1998).

Algorithms

The representation of knowledge provides the language in
which cognitive processes in models of cognitive systems
can be described. An algorithm is one cognitive process for
accomplishing an explicit outcome. More specifically, an al-
gorithm is made up of a finite set of operations that is
straightforward and unambiguous and, when applied to a set
of objects (e.g., playing cards, chess pieces, computer parts),
leads to a specified outcome (Dietrich, 1999). The initial state
of the set of objects constitutes the input to the algorithm, and
the final state of the objects constitutes the output of the algo-
rithm. The initial state of objects is transformed into a final
state by implementing the operations of the algorithm that
correspond to state transitions. Algorithms can be described
more specifically when the context of the algorithm is defined
because an algorithm’s clarity and simplicity are relative to
the context in which it is being applied (Dietrich, 1999). An

"Dawson, 2001). The conditional rule and set of four cards are

coded as /s and Os and are presented to the network’s input

unitlayer-The-networkresponds-to-thetask-byturning-onone
of the four units in its output unit layer, which correspond to
the set of four cards coded in the input unit layer. The layer of
hidden units indicates the number of cuts or divisions in the
pattern space required to solve the task correctly (i.e., gener-
ate the correct responses to the task). Training the network to

example of an algorithm might be the instructions included

‘with a new desktop computer (at least, such instructions are

supposed tobealgorithms)If one follows the imstructions for
installing all the parts of the computer, the outcome is certain:
a working computer. Algorithms are sometimes unavailable
for accomplishing certain outcomes; under these circum-
stances, heuristics can be implemented to approximate the
desired outcome.
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Heuristics and Simon studied extensively in a computer simulation

program (i.e., General Problem Solver [GPS]) that modeled
human problem solving. Means-end analysis is similar to
the difference-reduction method, with the exception that if
an operator cannot be directly applied to reduce a difference
between the initial state and goal state, then, instead of
the strategy’s being discarded, a sub-goal is set up to make the

A problem-solving heuristic is a rule of thumb for approxi-
mating a desired outcome. As with reasoning heuristics,
problem-solving heuristics sometimes produce desired out-
comes and sometimes not. Heuristics are imperfect strategies
(Fischhoff, 1999). Examples of heuristics are considered
| below in the context of Newell and Simon’s model of prob-

] operator applicable (Simon, 1999a).
lem solving. Analogy is another heuristic. Under this heuristic, the prob-
Jem solver uses the structure of the solution to an analogous
A 7The0}:1‘55°f Proble{n Solvmg problem to guide his or her solution to a current problem. The
E Newell and Simon’s Model of Prl;b;;zrﬁ S orlvirnl g T T T main focus in research on analogy is'in hiow people interpret -
'\ or understand one situation in terms of another; that is, how
' Even after 25 years, Newell and Simon’s (1972) model of it is that one situation is mapped onto another for problem-
problem solving remains influential today. Newell and solving purposes (Gentner, 1999). Two main subprocesses
Simon’s model of problem solving was generated from are proposed to mediate the use of analogy. According to
computer simulations and from participants’ think-aloud Gentner’s structure-mapping theory (1983), an unfamiliar sit-
i responses as they worked through problems. According to wation can be understood in terms of another familiar situation
‘l the model, the problem solver perceives both the initial state, by aligning the representational structures of the two situa-
the state at which he or she originally is, and the goal state, the tions and projecting inferences from the familiar case to the
\ state that the problem solver would like to achieve. Both unfamiliar case. The alignment must be structurally consis-
i of these states occupy positions within a problem space, the tent such that there is a one-to-one correspondence between
‘ universe of all possible actions that can be applied to the prob- the mapped elements in the familiar and unfamiliar situations.
| lem, given any constraints that apply to the solution of the Inferences are then projected from the familiar to the unfamil-
§ problem (Simon, 1999a; Sternberg, 1999). iar situation so as to obtain structural completion (Gentner,
In the ongoing process of problem solving, a person de- 1983, 1999). Following this alignment, the analogy and its
‘ composes a problem into a series of intermediate steps with inferences are evaluated by assessing (a) the structural sound-
l: the purpose of bringing the initial state of the problem closer ness of the alignment between the two situations; (b) the fac-
’ to the goal state. At each intermediate step prior to the goal tual validity of the inferences, because the use of analogy does
state, the subgoal is to achieve the next intermediate step that not guarantee deductive validity; and (c) whether the infer-
will bring the problem solver closer to the goal state. Each ences meet the requirements of the goal that prompted the use
step toward the goal state involves applying an operation or of the analogy in the first place (Gentner, 1999).
rule that will change one state into another state. The set of Recent research suggests that use of analogy in real-world
operations is organized into a program, including sublevel contexts is based on structural or deep underlying similari-
programs. The program can be a heuristic or an algorithm, ties, instead of surface or superficial similarities, between the
depending on its specific nature. In short, according to Newell unfamiliar situation and the familiar situation (Dunbar, 1995,
and Simon’s (1972) model, problem solving is a search 1997). For example, Dunbar (1997) found that over 50% of
through a series of states within a problem space; the solution analogies that scientists generated at weekly meetings in a
to a problem lies in finding the correct sequence of actions for molecular biology lab were based on deep, structural features
moving from one (initial) state to another (goal) state (Newell between problems, rather than on surface features between
& Simon, 1972; Simon, 1999a; Sternberg, 1999). - problems. In previous studies, however, investigators (e.g.,
A variety of heuristics can be used for changing one state Gentner, Rattermann, & Forbus, 1993) have found that par-
Tito another. For example, the differeiice-rediction method —ticipants-in Jaboratory-experiments-sometimes.rely on super-
involves reducing the difference between the initial state and ficial features when using analogy. According to Blanchette
goa1~staterb-ywapply—iﬂg—opelfatolt&thatwincrease;the,sulzfac,e and. Dunbar (2000; see also Dunbar, 1995, 1997), partici-
similarity of both states. If an operator cannot be directly pants’ reliance on superficial features when using analogy
applied to reduce the difference between the initial state and might be due to the kind of paradigm used to study analogy.
goal state, then the heuristic is discarded. Another method that For example, Blanchette and Dunbar indicated that previous
is similar to the difference-reduction method is Newell and studies have used a reception paradigm to study analogy use.
Simon’s (1972) means-ends analysis, a heuristic Newell Under the reception paradigim, participants are provided with
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both a target (less familiar) and a source (familiar) analog and
then asked to indicate the relationships between both rather
than being asked to generate their own source analogs. In a
series of studies aimed at evaluating participants’ analogies,
Blanchette and Dunbar found that when participants were
given a target problem and asked to generate their own
source analog, most of the analogies (67%) generated by par-
ticipants did not exhibit superficial similarities with the target
but, instead, exhibited deeper similarities with the target.
The proportion of these deep analogies increased to 81%

__when participants worked individually. These results suggest

that participants, like scientists, can generate analogies based
on deep, structural features when laboratory conditions are
more akin to real-world contexts, that is, when participants
are free to generate their own source analogs.

Error is always a possibility when heuristics are used.
Not only might a chosen heuristic be inappropriate for
the problem under consideration, but a heuristic might be
inappropriately used, resulting in unsuccessful problem solv-
ing. Heuristics such as the difference-reduction method,
means-end analysis, analogy, and others (e.g., see Anderson,
1990, for further descriptions of the generate and test method,
working forward method, and working backward method)
are only general rules of thumb that work most of the time but
not necessarily all of the time (Fischhoff, 1999; Holyoak,
1990; Simon, 1999a). They represent gemeral problem-
solving methods that can be applied with relative success to
a wide range of problems across domains.

According to Newell and Simon (1972), the use of heuris-
tics embodies problem solving because of the cognitive
limitations or bounded rationality that characterizes human
behavior (see also Sternberg & Ben Zeev, 2001). Simon
(1991) described bounded rationality as involving two cen-
tral components: the limitations of the human mind and the
structure of the environment in which the mind must operate.
The first of these components suggests that the human mind
is subject to limitations, and, due to these limitations, models
of human problem solving, decision making, and reasoning
should be constructed around how the mind actually per-
forms instead of on how the mind should perform from an
engineering point of view. Foolproof strategies do not exist
in everyday cognition because the ill-defined structure of our

Shepard, 1990). Heuristics, however, are only one of the
kinds of tools that facilitate problem solving. Investigators
have also found that insight is an important variable that aids
some forms of problem solving (Davidson & Sternberg,
1984; Metcalfe & Wiebe, 1987; Sternberg & Davidson,
1995).

Problem Solving by Means of Insight

Insightful problem solving can be defined as problem solving
 that is significantly assisted by the awareness of a key piece

of information—information that is not 'neéessari]'y obvious

from the problem presented (Sternberg, 1999). It is believed
that insight plays a role in the solution of ill-defined prob-
lems. Tll-defined problems are problems whose solution paths
are elusive; the goal is not immediately certain. Because the
solution path is elusive, ill-defined problems are challenging
to represent within a problem space. Ill-defined problems are
often termed insight problems because they require the prob-
lem solver to perceive the problem in a new way, a way that
illuminates the goal state and the path that leads to a solution.
Insight into a solution can manifest itself after the problem
solver has put the problem aside for hours and then comes
back to it. The new perspective one gains on a problem when
coming back to it after having put it aside is known as an in-
cubation effect (Dominowski & Jenrick, 1973; Smith &
Blankenship, 1989).

Metcalfe and Wiebe (1987; see also Metcalfe, 1986, 1998)
have shown that insightful problem solving seems to differ
from ordinary (noninsightful) problem solving. For example,
these investigators have shown that participants who are
highly accurate in estimating their problem-solving success
with ordinary problems are not as accurate in estimating their
success with insight prdblems. The processes that might be
responsible for these differences are not yet detailed, making
this account more representative of a performance-based
account than a process-based account of problem solving (for
a fuller discussion of insight, see Sternberg & Davidson,
1995). '

In a more process-oriented theory of insight, however,
Davidson and Sternberg (1984) have offered a three process
view of insight. These investigators have proposed that in-

environment makes it unlikely that people can identify
perfect heuristics for solving imperfect, uncertain problems.

of the environment shapes the heuristics that will be most
successfully applied in problem solving endeavors. If the en-
vironment is i1l defined (in the sense that it reflects numerous
uncertain tasks), then general heuristics that work most of the
time and do not overburden the cognitive system will be
favored (see also Brunswick, 1943; Gigerenzer et al., 1999;

sightful problem solving manifests itself in three different-—————

forms: (a) Selective encoding insights involve attending to

————Phe-second-of-these-components-suggests-that-the-structure———a-part-of-the-problem-that-is-relevant to-solvin ¢ the_problem,

(b) selective comparison insights involve novel comparisons
of information presented in the problem with information
stored in long-term memory, and (c) selective combination
insights involve new ways of integrating and synthesizing
new and old information. Insight gained in any one of these
three forms can facilitate insightful problem solving.
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Figure 23.4 Example of matchstick problem (adapted from Knoblich,
Ohlsson, Haider, & Rhenius, 1999).

In addition, Knoblich, Ohlsson, Haider, and Rhenius
(1999) have characterized insightful problem solving as over-
of what to do next. These investigators have proposed that im-
passes are overcome by changing the problem representation
by means of two hypothetical processes or mechanisms. The
first mechanism involves relaxing the constraints imposed
upon the solution, and the second mechanism involves de-
composing the problem into perceptual chunks. In a series of
four studies aimed at examining insightful problem solving,
Knoblich et al. (1999) asked participants to solve insight prob-
lems called “match-stick arithmetic” problems. As shown in
Figure 23.4, match-stick arithmetic problems involve false
arithmetic statements written with Roman numerals (e.g., I, I1,
IV), arithmetic operations (e.g., —, +), and equal signs con-
structed out of matchsticks. The goal in matchstick problems
is to move asingle stick in such a way that the initial false arith-
metic statement is transformed into a true statement. A move
can be made on a numerical value or an operator and can con-
sist of grasping a stick and moving it, rotating it, or sliding it.

According to Knoblich et al. (1999), matchstick problems
can be solved by relaxing the constraints on how numerical
values are represented, how operators are represented, and
how arithmetic functions are supposed to be formed—for
example, form of X = f(Y, Z). In particular, the numerical
value constraint in arithmetic suggests that a numerical value
on one side of an equation cannot be changed unless an
equivalent change is made to the numerical value on the other
side of the equation, such as when the same quantity is added
to or subtracted from both sides of an equation. Relaxing the
constraint on how numerical values are represented would
involve accepting the possibility that a numerical value on
one side of an equation can be changed without changing the
other side of the equation as well (e.g., if 1 is subtracted from

coming impasses, states of mind in which the thinker is unsure
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Knoblich et al. (1999) suggest that decomposing elements
of matchstick problems into perceptual chunks can also help
to solve the problems. Perceptual decomposition involves,
for instance, recognizing that the Roman numeral IV can be
decomposed into the elements 7 and V, and that the resulting
elements can be moved independently of each other to gener-
ate a true matchstick arithmetic equation. Roman numerals
cannot, however, be decomposed into elements that are not
used in constructing the numerals. For instance, the Roman
numeral IV could not be decomposed into [III because four

vertical lines were not used to construct the numeral IV.. _
In an effort to examine how constraint relaxation and

chunking mediated insightful problem solving, Knoblich et al.
(1999) asked participants to solve matchstick problems of
varying difficulty. After an initial training phase, participants
were presented with two blocks of six matchstick problems
on a computer screen and given 5 minutes to respond to each
problem. Each block of problems contained instances of easy
matchstick problems (i.e., Type A) and difficult matchstick
problems (i.e., Type C and D). Results from their four studies
revealed, as expected, that participants were more successful
at solving problems that required the relaxation of lower
order constraints (e.g., relaxing constraints on numerical
value representation) than problems that required the relax-
ation of higher order constraints (e.g., relaxing constraints on
arithmetic function representation). For example, after an av-
erage of 5 minutes, almost all participants solved problems
requiring the relaxation of low-order constraints (Type A),
whereas fewer than half of all participants solved problems
requiring the relaxation of high-order constraints (Type O).In
addition, participants were more successful at solving prob-
lems that required the decomposition of loose chunks (e.g.,
decomposing 7V into [ and V) than problems that required the
decomposition of tight chunks (e.g., decomposing V into \
and /). After an average of 5 minutes, almost all participants
solved problems requiring the decomposition of loose chunks
(Type A), whereas only 75% of participants solved problems
requiring the decomposition of tight chunks (Type D). Over-
coming impasses in solving insight problems exemplifies a
general need to override mental sets or fixed ways of thinking
about problems generated from past experience with similar
problems. The encumbrance of mental sets highlights the ex-

" one side of the equation, this same operation need not be per-

formed on the other side of the equation). Note that numeri-

cal-value-constraints-do-not-include-constraints-on-how-the——-

numerical quantities are perceived. For example, the numeri-
cal value constraint does not include constraints on whether
the number 4 is perceived as IV or as [IIl or some other
representation. According to Knoblich et al. (1999), how
numbers are perceived in the context of the matchstick task is
better explained by considering the process of chunking.

isterice of factors such-as how-the-problem-is-interpreted- that-— —-—-

can influence problem-solving success.
. Itisvery-likely that Oedipus solved the sphinx’s riddle by

experiencing an insight into its solution. The riddle can cer-
tainly be labeled an ill-defined problem—one whose solution
required the awareness of a key piece of information. What
are the processes by which Oedipus gained the insight neces-
sary to solve the riddle? This is an important question, but
one whose answer remains a mystery. On the one hand, that
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any belief or thought can, in principle, be brought to bear on
problem-solving endeavors permits the possibility of creative
or insightful problem solving. On the other hand, because any
belief or thought can be brought to bear on problem-solving
endeavors, understanding how individuals select specific

beliefs and thoughts as they solve problems remains a chal-’

lenge—a challenge that we earlier identified as the frame
problem (Fodor, 1983).

~ Factors that Mediate Problem Solving

A mental set involves thinking about a problem, its context,
and its possible solution from a single perspective (Luchins,
1942; Sternberg, 1999). Such a limited perspective can hin-
der problem solving if a successful solution can be achieved
only by viewing the problem from a novel angle. Setting the
problem aside momentarily can foster insight or a new per-
spective (see earlier discussion of incubation effect) and help
break the mental set. For example, misreading a word in an
essay or misreading a variable in a mathematical proof can
lead to a mental set and block understanding. In these cases,
putting the material aside even for an hour and then coming
back to it can break the mental set.

Past experience can be beneficial to problem solving, but
it can also foster mental sets by biasing the way in which the
problem solver ventures to reach a solution. In particular, ex-

pertise in the domain of the problem can actually disrupt

problem solving, especially if the problem calls for a creative
solution (Wiley, 1998). Although experts are generally able
to solve problems in their domains more effectively than
novices because their well-structured, easily activated
knowledge permits an efficient search of the problem space,
sometimes this knowledge can be disadvantageous. For ex-
ample, Wiley (1998) has suggested that a large amount of
domain knowledge can bias problem-solving efforts by con-
fining the search space and therefore excluding the portion of
the space in which the solution resides. That is, expertise can
actually constrain creative problem solving by foreclosing
the problem space prematurely (see also Bedard & Chi, 1992;
Frensch & Sternberg, 1989).

solution path, but it is not a very efficient s;trategy. In contrast,
a working forward strategy is more efficient because it in-
volves delimiting the set of possible solution paths and then
choosing from this set the one that generates the better solu-
tion to the problem. Knowing which strategy to use in solv-
ing a given problem, however, is dependent on the problem
solver’s level of expertise in the problem domain.

Not all strategies are used equally often by all problem
solvers. Strategy selection depends on the problem domain
and on the level of expertise of the problem solver within that

“domain (Chi et al., 1988). Expertise plays a pivotal role in- -

strategy selection because greater domain knowledge in the
domain of the problem influences the way in which the prob-
lem is interpreted, how the solution is envisioned, and hence
the strategy that is ultimately selected to solve the problem.
Bedard and Chi (1992), in a review of studies of expert prob-
lem solving, concluded that, in general, experts are better
problem solvers than are novices because (a) they know more
about their domain than do novices; (b) their knowledge is
better organized in ways that make that knowledge more ac-
cessible, functional, and efficient; (c) they perform better
than novices in domain-related tasks on the basis of their
greater knowledge and better organization; and (d) their skills
are domain specific. In short, experts select strategies and
solve problems more efficiently than do novices.

EXPERT PROBLEM SOLVING AND REASONING

The influential role of knowledge in successful problem solv-
ing has led investigators to examine closely the attributes of
expert problem solvers (e.g., Charness & Schultetus, 1999;
Ericsson, 1996; Ericsson & Charness, 1994; Ericsson &
Smith, 1991; Sternberg, 1999). In contrast to the popular
opinion that superior performance within a contextual domain
originates solely from innate ability, research on expertise
suggests that exceptional performance develops largely, al-
though not exclusively, from intense preparation (Bricsson &
Charness, 1994; see also the chapter by Johnson in this vol-
ume). Studies of expertise are intriguing because they sug-
gest that human cognitive abilities are flexible and can adapt
to meet increasingly higher expectanons Although research

Strategy Selection and Knowledge

on expertise is integrated into the literature on problem | SOIV-"TTT
_.ing (e.g., Chase & Simon, 1973; Chi et al, 1988; de Gloot

Selecting the right strategy in response to a problem can de-
termine whether a problem’s solution will be found and, if so,
whether it will be found expeditiously. For example, the gen-
erate and test heuristic (Newell & Simon, 1972), which in-
volves arbitrarily generating solution paths until the correct
path is found, may ultimately Jead one down the correct

19657 Gobet; 1997; Holding; 1992);-it-is-inter esting-thatre=———

search on expertise has not been integrated into the literature
on reasoning. As we will examine shortly, the absence of this
integration may be a shortcoming in the field of reasoning.
Expertise is defined by Charness and Schultetus (1999) as
“consistently superior performance on a set of representative
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tasks for the domain that can be administered to any subject”
(p. 58). Studies of expertise suggest that expert performance is
a reliable phenomenon that can be measured using standard
tasks or conditions for competition in laboratory settings (for
a teview, see Ericsson, 1996). Identified experts within a
domain seem to share a cluster of features about their training
and performance. First, peak performance results after many
years of intense preparation and practice within the domain:
10,000 hours, for example, are normally required to reach top-
level performance within a domain (Charness & Schultetus,
1999). Second, experts do not simply spend more leisure time

“in their respective domain in comparison to others but, rather,-

spend more hours engaging in deliberate practice (Ericsson &
Charness, 1994). Deliberate practice normally involves soli-
tary study with the purpose of improving performance.

Expertise is associated with the ability to recognize
important problem features quickly (Allard & Starkes, 1991;
Chase & Simon, 1973; de Groot, 1965; Gobet, 1997, Gobet
& Simon, 1996). For example, Gobet and Simon (1996)
found that champion chess players could recall more than
nine chess positions that had been presented to the players
briefly and without breaks between presentations (see also
the chapter by Butcher & Kintsch in this volume, in which
experts’ memory skills are discussed). Likewise, Allard and
Starkes (1991) found that elite athletes were able to abstract
and recall more information about game situations after a
brief exposure than nonelite athletes. In sum, experts recog-
nize meaningful relations or patterns in their domains of ex-
pertise (Gobet, 1997). Distilling such patterns allows experts
to form complex representations of the problem situation,
representations that integrate task information with back-
ground knowledge to select and evaluate actions and to
consider alternative actions (Ericsson, 1996; Ericsson &
Kintsch, 1995).

The Neglect of Expertise in Reasoning Theories

Although studies of expertise have been integrated into the
problem-solving literature, these studies have not been inte-
grated into the reasoning literature. For example, in tests of
syntactic rule theory and mental model theor'y, participants
who have training in logic or are considered expert reasoners
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The systematic exclusion of expert reasoners from reason-
ing studies has likely obscured the rich variety of reasoning
strategies available to individuals of different knowledge lev-
els. Studying only how novices reason on a specific task
makes it impossible to assess the full set of strategies avail-
able to reasoners with different knowledge levels: The full
spectrum of responses is restricted. We know from research
in expert problem solving that it is not uncommon for novices
to resemble each other in their problem solving endeavors
within a specific domain (e.g., Priest & Lindsay, 1992). How-
ever, that novices employ a single strategy on task X does not

" suggest that individuals with expertise on_task X will use

the same strategy or that novices will not use an alternate
strategy on task Y. When both a restricted sample of partici-
pants (e.g., novices) and a restricted sample of tasks (e.g.,
categorical syllogisms) are used in reasoning studies, partici-
pants’ strategies and responses might appear much more alike
and consistent than they really are.

The neglect of expertise in reasoning studies might be a
source of some ambiguity in theories of reasoning. Recall that
at the beginning of the chapter we suggested that some ambi-
guity beset reasoning theories such as syntactic rule theory
and mental model theory as to how syntactic rules and mental
models should be conceptualized: that is, whether syntactic
rules and mental models should be viewed as reasoning strate-
gies or, more fundamentally, as mechanisms that comprise the
cognitive architecture of the mind. Both syntactic rule theory
and mental model theory propose that syntactic rules and men-
tal models, respectively, comprise a fundamental mechanism
in reasoning. In both theories, either rules or models are pro-
posed to underlie reasoning, but not both. However, Stenning
and Yule (1997) have indicated that rule-based and model-
based theories are essentially similar in their underlying logic
but differ only as algorithms (cf. Falmagne & Gonsalves,
1995: Roberts, 1993; for a contrasting view see Over & Evans,
1999). Thus, rules and models are not mutually exclusive. We
propose that some of the confusion regarding the cognitive
status of syntactic rules and mental models—whether rules
and models represent strategies or a fundamental reasoning
mechanism—might be due to the nature of the participants
and the tasks included in reasoning studies. When participants
with no training in logic are tested on a restricted set of logical

on categorical and conditional syllogisms are excluded from
participating. It is not entirely clear why participants with

participants’ performance than there might be if participants

training in logic are excluded from participating in reasoning
studies, but one reason seems to involve the belief that par-
ticipants’ training will bias the study’s resuits. Participants
without any training in logic (i.e., novices in logic) are usu-
ally included in studies of reasoning.

with varying levels of fraining were included: Theconsistency
in participants’ performance might, mistakenly, lead syntactic
rule supporters (or mental model supporters) to view rules (or
models) as comprising a fixed or hard-wired mechanism in
reasoning instead of a simple strategy.
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Thematic Reasoning Tasks as Expert Tasks

Although participants with training in logic have been ex-
cluded from participating in reasoning studies, the influence
of everyday expertise has not altogether been excluded. Para-
doxically, the power of expertise in reasoning can be illus-
trated by examining performance on thematic reasoning
tasks. Although the tasks in reasoning studies generally fail to
reflect a substantive content domain, it is possible to view
thematic reasoning tasks (e.g., thematic versions of the selec-
tion task) as reflecting a nominal, everyday content domain.

" When they are viewed thus, it is possible to consider thematic
reasoning tasks as tests of everyday expertise—tests of every-
day knowledge that most people possess in order to function
successfully in everyday life. If we view thematic tasks as
tests of everyday expertise, then it is not surprising that
participants generally perform quite well on these tagks.
Individuals might perform substantially better on thematic
reasoning tasks than on abstract reasoning tasks because the-
matic tasks might cue their “expert” background knowledge,
knowledge that is useful to their functioning in everyday life
(e.g., Cosmides, 1989; Cummins, 1995). For example, most
adults could easily be labeled experts at deontic reasoning—
reasoning that involves knowing how to enforce a rule, catch
rule violators, or understand what permissions and obliga-
tions entail.

Viewing competent performance on thematic reasoning
tasks as evidence of everyday expertise is consistent with
Cosmides’s (1989) social contract theory and Gigerenzer and
Hug’s (1992) cheating detection theory. In fact, these theories
might be better termed theories of everyday expertise without
the need to incorporate post-hoc evolutionary claims. Social
contract theory and cheating detection theory advance
the idea that human beings are experts in domains that are
essential to their survival (e.g., social exchange). These in-
vestigators claim that some domains are so fundamental to
our survival that specific Darwinian algorithms have evolved
to help us reason in those domains. In other words, in do-
mains in which human beings must be knowledgeable in
order to adapt and survive, expert algorithms have developed
to gnarantee successful reasoning. In short, it is possible that
the facilitated performance observed on thematic versions

—————of the-selection-task-might serve-as-aclue that knowledge is—to generate thie answer. In - partictilar;, becatise a riddle cam

power in reasoning as it is in problem solving and as early

range of knowledge, it will be possible to identify the strate-

gies employed in reasoning and to determine whether myriad
strategies characterize the reasoning of different groups of
participants or whether a single strategy is employed by all
participants on a specific task. It is premature at this stage to
state that people reason primarily with mental models or
mental rules or according to any other theory, given that a
sizable group of participants (e.g., experts in logic) is ex-
cluded from reasoning studies of abstract categorical syllo-
gisms and conditional syllogisms. If experts are included in

..Teasoning studies, new.evidence might.illuminate the nature

of reasoning. For example, new evidence for the use of rules
in reasoning might be found by studying experts.

If neither rules nor models at present describe a funda-
mental reasoning mechanism or, alternatively, the representa-
tional mechanism in reasoning, then in what other form might
reasoning be formalized? Borrowing from the literature
on expertise, patterns might exemplify the representational
mechanism in reasoning. The notion of patterns as a possible
representational mechanism is not a new idea. For instance,
Bechte] and Abrahamsen (1991) have suggested this idea, and
numerous studies employing a connectionist methodology
support the idea of patterns underlying reasoning. Patterns
underlie reasoning in the sense that the pattern of connectiv-
ity in a PDP network produces reliable responses to reasoning
problems. Although it is beyond the scope of this chapter to
review the role of patterns in reasoning, the interested reader
is referred to studies in which connectionist methodology
is used to model reasoning performance (e.g., Langston &
Trabasso, 1999; Park & Robertson, 1997, Stenning &
Oaksford, 1993; Stenning & Oberlander, 1995).

SUMMARY AND CONCLUSION

We will never know how the legendary Oedipus solved the
sphinx’s riddle, but from our discussion thus far it is possible
to speculate. First, it is unlikely that Oedipus either reasoned
or problem solved exclusively in his search for a solution.
He probably used a combination of methods. Having said
this, however, we must add that it is likely that Oedipus used
more problem solving techniques than reasoning techniques

be characterized as an ill-defined problem, it is likely that

work on expert systems has made cleat in the field of artifi- __ Qedipus-experienced-an-insight into-its-solution-Of course, it

cial intelligence (see Feigenbaum, 1989).

Because it appears that knowledge is power in reasoning,
more studies need to explore how individuals with different
knowledge levels perform on reasoning tasks that reflect a
substantive content domain. In studying individuals with a

ety

is always possible that he used some kind of strategy.

It seems trite to say that investigators of reasoning and
problem solving have a great deal to learn from each other. It
is true, however, and it is especially relevant as we attempt to
further our understanding of how knowledge influences—for




better or for worse—our reasoning on everyday tasks. Re-
search on expertise offers an optimistic view that thinking,
problem solving, reasoning, and other activities are not con-
trolled solely by innate abilities. Deliberate practice and
training can improve our performance. Expertise, the idea
that performance evolves with practice, should be incorpo-
rated into theories of reasoning so as to delineate fully how
individuals reason at different times with different levels of
knowledge. One risk of excluding expert reasoners, as has
been the case in studies of logical reasoning, is that partici-

_ pants’ performance on reasoning tasks might appear to be
overly consistent. The apparent consistency in participants’

performance might be illusory and misleading, leading to the
ambiguity and entanglement of reasoning strategies with a
fundamental reasoning mechanism. Because the responses of
untrained logical reasoners appear consistent, investigators
might mistakenly attribute these responses to a fundamental
reasoning mechanism, when in fact they might only represent
the application of strategies. Stenning and Yule (1997) have
suggested that rules and models should be viewed as algo-
rithms and not as anything more fundamental than that. Fail-
ing to test participants who reflect a range of knowledge
levels on reasoning tasks constrains the likelihood of captur-
ing and examining the full range of strategies and solutions
generated to reasoning tasks. Ultimately, our understanding
is also constrained.

The literature on expertise, furthermore, leads us to con-
clude that pattern recognition might serve as a representa-
tional mechanism in reasoning. Connectionist studies of
reasoning exemplify a pattern-recognition approach, but the
challenge is to interpret precisely how connectionist architec-
tures solve reasoning problems (Dawson, 1998). Only by
interpreting connectionist models can we validate that their
algorithms for solving problems are psychologically plausi-
ble (Berkeley, Dawson, Medler, Schopflocher, & Hornsby,
1995; Dawson, 1998; Oaksford & Chater, 1993).

The future challenge for investigators of reasoning, more
so than for investigators of problem solving, is to (a) clarify
how strategies differ from representational mechanisms in
reasoning and (b) further our understanding of how knowl-
edge mediates reasoning. If the goal of experimental labora-
tory studies of reasoning and problem solving is to gain a

better understanding of how people teason and problemsolveDumais, D--S- Lindsay; & M- Chi- (Eds)

in everyday contexts, then background knowledge must be a
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