1	Language I October 23, 2008
2	
3	 Why is Language Important? Represents unique form of abstraction in human species Language influences perception and memory Relevant to the form and manner of information storage Relevance to thinking and problem-solving is unquestioned Chief means of human communication
4	 Semantics: (study of meaning) denotation vs. connotation Syntax: (study of rules that govern combination of morphemes in phrases and sentences; interdependency) prescriptive vs. descriptive grammar "baddy, what did you bring that book that I don't want to be read to out of up for"?
5	 Linguistic Relativity Whorf (1956) Language determines or influences thinking Miller and McNeill (1969) Strong hypothesis Language determines thinking Weak hypothesis Language influences perception Weakest hypothesis Language influences memory
6	 Evidence Regional/cultural differences in language Hanuxoo have 92 different names for various types of rice Could be that language evolution enables fine distinctions among types of rice Could be that different environmental conditions influence the things people think about Colour categorisation Heider (1972) – color categories are universal – Dani (2 colors) v. American errors similar Failures to replicate (Roberson, Davies, and Davidoff, 2000)
7	Influence of language (English vs. Berinmo) on choice of similar pairs of stimuli by English and Berinmo participants.

Data from Roberson et al. (2000).

⁸ Evaluation

• Harley (2001, p. 87)

- "There is now a considerable amount of evidence suggesting that linguistic factors can affect cognitive processes. Even colour perception and memory . . . show some influence of language."

• The evidence supports the weak and the weakest versions

9 Language Comprehension

¹⁰ Speech Perception

- Input rapid (≈10 phonemes/sec)
- "Non-invariance" speech sounds affected by sounds which proceed and follow; also different voices
- · Segmentation problem how to separate sounds in a continuous flow
- Use of prosody
- Definite left-hemisphere advantage

11

¹² Auditory Word Recognition: Basic Processes

- Bottom-up: processing of individual phonemic features
- Top-down: conceptual processing
 - phonemic restoration effect:
 - probably affects response bias, not sensitivity
 - "the *eel was on the axle" hear "wheel"
 - "the *eel was on the shoe" hear "heel"
 - "the *eel was on the orange" hear "peel"

13 Hories of Auditory Word Recognition I

- Motor Theory of Speech Perception (Liberman et al., 1967)
 - during listening, listeners mimic articulatory movements of speaker and depend on this for recognition
 - Supported by PET studies showing ↑motor activation during speech perception
 - noninvariance is a problem, as is infant data
- Cohort Theory (Marslen-Wilson & Tyler, 1980)
 - activation of word cohort as speech signal arrives
 - some activated words eliminated on basis of context; continues until "recognition point" is achieved
 - assumes that lexical, syntactic, and semantic information interact to analyze speech signal; context effects are probably late
 e.g., "The police indicated that excessive SP--- was a factor in the fatal accident."

14 🔲 Auditory Word Recognition: Theories II

TRACE Model (McClelland, 1991)

- three units of levels: features, phonemes, words
- between-level connections excitatory
- within-levels inhibitory
- excitation in the network produces pattern, or "trace" of activation
- recognized word is that which is highest among candidate words
- 15
- 16 Auditory Word Recognition: Theories III

Cognitive Neuropsychological Models

- derive from studies of how word recognition fails after brain injury

 make use of "box models" of cognitive processing popular in mainstream cognitive psychology basic structural features:
domain-specific systems lexicons
17
18 Stages in Lexical Processing (Single Word Recognition)
- Spectrographic (LAFS)
 Motor theory Phonemic theories
 <u>Activation</u> of specific lexical entries Selection of appropriate lexical entry from set of activated candidates
• <u>Access</u> to the full information from the lexical entry
19
20
²¹ Reading (Visual Word Comprehension)
 Similar processes likely, but entry into the system is a visual (graphemic), not an acoustic (phonemic) representation
Transformation from grapemes to phonemes is critical
Two routes to reading Grapheme-phoneme conversion
 Lexical (whole word) reading
²² How Reading is Studied
Eye movement recordings
Reading about RSVP (rapid serial visual presentation)
Subject-controlled presentation
Word-identification techniques lexical decision
– naming
²³ Eye-Movement Research
 Emphasizes a "word-recognition" vs. "meaning construction" approach to reading Asymmetric perceptual span (3-4 letters to the left of fixation and 15 letters to the right) Dereforced percent allow for skingen words
 Fixations may be affected by context and meaning predictable words receive less fixation
 "garden path" sentences: "The young man turned his back on the rock concert stage and looked across the resort lake. Tomorrow was the annual one-day fishing contest and fishermen would invade the place. Some of the best bass guitarists would come to this spot"
 derivation of meaning occurs early (parafoveally? instantaneously?)
24
²⁵ Visual Word Identification
Rapid (200ms) Automatic (e.g., Stroop effect)
Automatic (c.g., Stroop creet)

	 Basic effects: word-letter effect: letters identified better if in words than if alone (e.g., TAKE v K _) word-superiority effect: letters identified better when in real word (e.g., TAKE v. PAKE) These effects imply that "word environment" influences recognition
26	
27	Visual Word Identification: Models I • Serial Letter Model .
	Parallel Letter Model
28	 Aoccdrnig to a rscheearch at an Elingsh uinervtisy, it deson't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoetnt tihng is taht frist and Isat Itteer is at the rghit pclae. The rset can be a toatl mses and you can sitll raed it wouthit a porbelm. Tihs is bcuseae we do not raed ervey Iteetr by it slef but the wrod as a wlohe.
29	Visual Word Identification: Models II • Direct Word Model
	Interactive Activation Model
30	
31	
32	 Route 1 (Grapheme–Phoneme Conversion) Converting spelling (graphemes) into sound (phonemes) Marshall and Newcombe (1973) Surface dyslexia – poor reading of irregular words; strong reliance on Route 1 McCarthy and Warrington (1984) KT read 100% of nonwords accurately, and 81% of regular words, but was successful with only 41% of irregular words Over 70% of the errors that KT made with irregular words were due to regularisation Significant variability in performance, suggesting that this is not a clear dissociation
33 🔲 🖡	Route 2 (Lexicon Plus Semantic System)

- Event sequence
 - Representations of familiar words are stored in an orthographic input lexicon; activation leads to...
 - Meaning is activated by the semantic system and...
 - Sound pattern is generated in the phonological output lexicon
- Beauvois and Dérouesné (1979)
- Phonological dyslexia impaired Route 2; use Route 1; 100% real words; 10% nonwords
- · Coltheart (1996)
 - General phonological impairments, not just problems with phoneme-grapheme conversion

³⁴ Route 3 (Lexicon Only)

- Like Route 2 but the semantic system is bypassed printed words are pronounced but not understood
- Funnell (1983)
 - Phonological dyslexia with poor ability to make semantic judgments about words
- Coslett (1991)
 - Reasonably good at reading irregular words, but had no understanding of them

35 🔲 Deep Dyslexia

- Characteristics
 - Particular problems in reading unfamiliar words
 - An inability to read nonwords
 - Semantic reading errors (e.g., "ship" read as "boat")
- · Damage to the grapheme-phoneme conversion and semantic systems
- Patterson, Vargha-Khadem, and Polkey (1989)
 - Studied left hemispheric removal, producing all of these symtpomes; generated right-hemisphere hypothesis
- · Laine et al. (2000) used MEG
 - Activation mainly in the left hemisphere

³⁶ Surface Dyslexia and Phonological Dyslexia

- · Lesions to the Plaut et al. model simulated performance in surface dyslexia
- · Alzheimer's disease
 - Progressive dementia
- Deep dyslexia
 - Plaut and Shallice (1993)
 - Developed the model further
 - · Virtually all the main symptoms of deep dyslexia could be simulated

³⁷ Language Comprehension

- Parsing: analysis of syntactical (grammatical) structure of the sentence
- · Analysis of literal meaning (semantics)
- · Analysis of intended meaning (pragmatics)

³⁸ D Parsing

- Four major possibilities:
 - Syntactic analysis generally precedes (and influences) semantic analysis
 - Semantic analysis usually occurs prior to syntactic analysis
 - Syntactic and semantic analysis occur at the same time, in parallel
 - Syntax and semantics are very closely associated, and have a hand-in-glove relationship

³⁹ Grammar or Syntax

Syntax – word order and combination critical to meaning:
 "He showed her the boys pants."

- "He showed her boys the pants."
- · An infinite number of sentences is possible in any language
- · Sentences are nevertheless systematic and organised
- Chomsky (1957, 1959)
 - Rules to take account of the productivity and the regularity of language
 - A grammar should be able to generate all the permissible sentences in a given language

40 Syntactic Ambiguity

- "They are flying planes"
 - The grammatical structure is ambiguous
- · Global and local levels
- Making use of prosodic cues
 - Stress and intonation (illustrate with above example)
- Allbritton, McKoon, and Ratcliff (1996)
 - Doubts about the use of prosodic cues
- Snedeker and Trueswell (2003)
 - Listeners' interpretation of ambiguous sentences was influenced by prosodic cues even before the start of the ambiguous phrase

⁴¹ Garden-path Model

- Frazier and Rayner (1982)
 - Only one syntactical structure is initially considered for any sentence
 - Meaning is not involved in the selection of the initial syntactical structure
 - The simplest syntactical structure is chosen, making use of two general principles: minimal attachment and late closure
 - According to the principle of minimal attachment, the grammatical structure producing the fewest nodes is preferred
 - The principle of late closure is that new words encountered in a sentence are attached to the current phrase or clause if grammatically permissible

⁴² Evidence for the Garden-Path Model

"Put the apple on the towel in the box"

Based on data in Spivey et al. (2002).

43 Constraint-based Theory

- MacDonald et al. (1994) all relevant information/constraints are available various possibilities influence comprehension to the extent they are activated
 - Grammatical knowledge constrains possible sentence interpretations
 - The various forms of information associated with any given word are typically not independent of each other
 - A word may be less ambiguous in some ways than in others (e.g., ambiguous for tense but not for grammatical category)
 - The various interpretations permissible according to grammatical rules generally differ considerably in frequency and probability on the basis of past experience

⁴⁴ D Unrestricted Race Model

- Van Gompel, Pickering, and Traxler (2000) combines aspects of GP and UR models
 - All sources of information are used to identify a syntactic structure, as is assumed by constraint-based models
 - All other possible syntactic structures are ignored unless the favoured syntactic structure is disconfirmed by subsequent information
 - If the initially chosen syntactic structure has to be discarded, there is an extensive process of re-analysis before a different syntactic structure is chosen

Evidence for the Unrestricted Race Model

• Data from van Gompel et al. (2001).

