 Visual Cognition September 11, 2008
 ² Overview of Visual Cognition Visual system: mission critical Multivariate inputs, unitary experience Multiple types of vision means many types of units in a distributed visual network Segregating vs. parsing Visual experience reveals nature of underlying representations Theory >> data
 Who's Coming to Dinner? Gestalt Psychology (interested in basic dimensions of perceptual organization) Cognitive Psychology (interested primarily in effects of cognitive operations on visual experience) Cognitive Neuropsychology (interested in effects of selective lesions of visual cortex on visual behavior) Electrophysiology (interested in single- and multiple-unit activity of cells in visual cortex) Cognitive science (interested in developing overall theories of visual experience and object recognition)
 Sensation and Perception Sensation: Conscious outcome of sense organs and projection regions. ("I detect something", not necessarily conscious, and not necessarily meaningful) Perception: means by which information acquired from the environment via the sense organs is transformed (organized) into conscious experiences of objects, events, sounds, tastes, etc. ("I know, recognize, appreciate what I am sensing, and it means something to me")
 5 D Three Stages of Visual Processing Reception: absorption of physical energy by receptors Transduction: translation of physical energy into electrochemical activity of the nervous system Coding: how information is encoded and represented; relationship between aspects of the physical stimulus and resultant nervous system activity (e.g., rate, temporal patterning of neuronal activity) Population coding Sparse coding
 Basic Perceptual Phenomena You Already Know About Size and Shape Constancies: reflect mechanisms whereby perception of a distal object stays the same despite proximal changes in the perception – implies storage of a "structural representation" Depth Cues: monocular or binocular sources of information that convey information about relative distance of objects from viewer – involve cues about the structure, movement, and proximity of objects
7
8
 9 Milner & Goodale: Perception-Action Model Alternative to the Mishkin-Ungerleider model Dorsal: "How do I interact with that object"? Ventral: "What is that object"?

	 Evidence: distinctions between object recognition and visual control of action; Balint's syndrome; optic ataxia
10	 Perceptual Organization Two complementary issues: Organizing coherent objects and events out of segregated sensory/perceptual inputs ("binding") "Parsing" the perceptual world; understanding which inputs belong together and which come from separate objects http://www.michaelbach.de/ot/mot_feet_lin/index.html
11	 Perceptual Organization Gestalt Psychology Law of Prägnanz: perceptual system organizes to the simplest and most stable shape possible from the array other laws describe how disparate perceptual elements are grouped although their "laws" are probably incorrect, the elementary concept of perceptual grouping is critical Inferring processes from performance
12	
13	 Figure—Ground Segregation A type of perceptual organization in which edges are assigned to regions for purposes of shape discrimination
14	
15	 Is PO learned or hard-wired? Schematic depiction of two types of displays: (a) homogeneous displays and (b) heterogeneous displays. From Spelke et al. (1993) with permission from Elsevier.
16	
17 🔲	
18	
19	 Gestalt Theory in the 21st Century Basic perceptual principles have survived Contentions that such processes are necessarily very "early" in perception have not Proximity computation occurs after depth perception Segmentation is not just "bottom-up" (Vecera &Farah, 1997)
20	Illusions are fun But their real value is that they reveal shed light on what is stored about object structure
21	
22 🔲	

 – LGN cells show ↑ activity to some wavelengths and ↓ activity to others Synthesis: Two-stage theory (Trichromatic at the level of neurons; O-P at the level of fibers and pathways)
37
 Multiple Visual Areas (Zeki) V1 and V2: responsive to color and form V3 and V3A: form and motion V4: color V5: motion
 ³⁹ Color perception/cognition can be selectively impaired Achromatopsia: selective impairment of inferior visual cortex (V4?) Color anomia: a general visual-verbal disconnection (seen with other visual-verbal disturbances) Specific color aphasia: specific inability to name colors
 40 D Theories of Perception "Indirect" perception: perception is the result of interactive processes from without and from within – use of internal representations based on "top-down" and "bottom-up" processing "Direct" perception (Gibson): information from the visual world is sufficient to permit perception without the involvement of internal representations - focus in "bottom-up" processing, without the need to posit internal representations
 41 Direct" View (Gibson) "Optic array" contains all necessary visual information Layout of objects in space given by texture gradients, optic flow patterns, and affordances (implied meaning of objects) Perception involves "picking up" information through "resonance" Has had historical impact in restoring interest in the perceptual environment Has been criticized as being underspecified, and neglects role of knowledge in stimulus exploration
⁴² Data in Favor of "Indirect" View
 Context effects in perception: what is seen depends upon surround Effects of emotion (e.g., weapon focus)
• Visual illusions: idea is that general knowledge about objects is applied inappropriately to the perception of two-dimensional figures (e.g., Muller-Lyer)
43
 44 Description 44 Template Theories: a miniature copy or template of each known pattern is stored in long-term memory straightforward template theory normalized template theory normalized template theory not adaptable impose large storage requirements
45

⁴⁶ E Feature Theories of Pattern Recognition

 Feature theories: pat-terns consist of a set of specific features or attributes Advantages:
- elementary features can combine to form multiple objects - Problems:
 context effects in perception recognition can take place when features are occluded
17 Drotativna Theories of Dattorn Descarition
 Prototype Theories of Pattern Recognition Individual instances are not stored; what is stored is an "exemplar" or
representative element of a category
 Recognition based on "distance" between perceived item and prototype
 Nature of computation still relatively unknown
48
49
50 🔲 Theories of Object Recognition
51 🔲 Object Recognition: Key Questions
 When does one object end and another begin? (grouping/segmentation)
Viewpoint independence (perception of objects as objects, regardless of view)
 How do we know that that two things belong together, and now do we know that dogs are dogs and not cats? (categorization)
⁵² More Key Issues
areas, how does the brain combine features to produce unitary percept?
Conscious vs. unconscious perception: perception of some object or object qualities may proceed are consciously or without offect (a general principle)
– Example: Threat
53
54
55 🔲 The Building Blocks of Object Recognition: Marr's Representations
 Primal Sketch: 2-D representation of light intensity changes, information about edges, contours, and blobs Raw: pure light intensity changes
 Full: uses information to identify shapes 2 1/2-D Sketch: depth and orientation of visible surfaces, shading, texture, motion, binocular disparity; observer-centered
3-D Sketch: three dimensional description of objects independent of view
56 🔲 Marr-Hildreth Algorithm
 Attempts to account for development of primal sketch Idea of "blurred repres-entations"
 "Zero-crossings" identify edges within a visual image Only 'reliable' zero-cross-ings are kept
Four types of tokens: edge-segments, bars, terminations, and blobs
57 🔲 Marr & Nishihara (1978)
• Development of 3-D sketch based on processing of more elementary shape primitives (basic
primitive is a cylinder with a major axis)
 Hierarchical organization of primitives

	Concavities important in segmenting partsThis is a completely computational, not empirical, model
58	
59	 Biederman's RBC Theory Objects built from primitives called "geons" (n = 36) Viewer must decide appropriate way a visual object is to be segmented into geons Two key components of decision: locating concavity deciding which edge information remains invariant across different viewing angles (invariant properties like curvature, parallelism, etc.)
60	 Biederman's Recognition-by-Components Theory Adapted from Biederman (1987)
61	 Recognition-by-Components Theory Biederman (1987): five invariant properties of edges Curvature: points on a curve Parallelism: sets of points in parallel Cotermination: edges terminating at a common point Symmetry: versus asymmetry Collinearity: points sharing a common line
62	Biederman (1987). Participants were presented with degraded line drawings of objects. Recognition was much harder to achieve when
	parts of the contour containing concavity information were omitted than when other parts of the contour were deleted. This confirms
	the assumption that information about concavities is important for object recognition. Figures adapted from Biederman (1987).
	Biederman's view is "viewpoint invariant"
63	
64	
65	 Viewpoint-dependent and Viewpoint-invariant Theories Biederman (1987) The ease of object recognition is <i>not</i> affected by the observer's viewpoint Tarr (1995), Tarr and Bülthoff (1995, 1998) Changes in viewpoint reduce the speed and/or accuracy of object recognition Milner and Goodale (1995) Dorsal pathway makes use of viewpoint-dependent information Ventral pathway makes use of viewpoint-invariant information
66	Common Elements in Object Recognition Theories Edge coding Grouping or encoding into higher-order features Matching to a stored "structural representation" Access to semantic knowledge

67 🔲 Fac	e Recognition
• Tv	vo general theories:
-	Specialized processing model
• Fa	ace recognition can be selectively impaired (prosopagnosia), or can it?
• GI	obal (configurational) vs. local (feature-based) processing
68	
69	
70	
71	
72	
73	
74 Exampl	es of "Greebles". In the top row, four different "families" are represented. For each family, two members of different
"gende	rs" are shown (e.g., Ribu is one gender and Pila is the other). The bottom row shows a new set of Greeble figures
constru	cted on the same logic but asymmetrical in structure. Images provided courtesy of Michael J. Tarr (Brown
Univers	ity, Providence, RI).
75 Speed of	of Greeble matching as a function of stage training and difference in orientation between successive Greeble stimuli. Based on
data in (Gauthier and Tarr (2002). Figure shows that, although speed increases with training, Greeble identification is still viewpoint
depende	ent
76 🔲 Face	e Recognition
• Pr	obably involves specialized processing/visual expertise
• De	edicated neural substrates aren't the only answer
• Hy	vbrid model: neural substrates dedicated to configural processing
77 🔲 Diso	rders of Object Recognition – Visual Agnosia
• Ap _	operceptive agnosia Object recognition is impaired because of deficits in perceptual processing
• As	sociative agnosia
-	Perceptual processes are essentially intact, but object recognition is impaired partly or mainly because of difficulties in accessing relevant knowledge about objects from memory
78 🔲 Riddo	ch and Humphreys (2001)
A hier	archical model of object recognition and naming, specifying
differe	ent component processes which, when impaired, can produce
variet	ies of apperceptive and associative agnosia.

79 🔲	
80	 Structural Descriptions Structural descriptions consist of propositions which "describe the nature of the components of a configuration and make explicit the spatial arrangement of these parts" (Bruce & Green, 1990) Perceptual representation systems for faces, objects, etc. Evidence for separate systems: category-specific recognition defects
81	
82	