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ABSTRACT: This paper describes some of the statistical considerations in the intent-to-treat

design and analysis of clinical trials. The pivotal property of a clinical trial is the
assignment of treatments to patients at random. Randomization alone, however, is not
sufficient to provide an unbiased comparison of therapies. An additional requirement
is that the set of patients contributing to an analysis provides an unbiased assessment
of treatment effects, or that any missing data are ignorable. A sufficient condition to
provide an unbiased comparison is to obtain complete data on all randomized subjects.
This can be achieved by an intent-to-treat design wherein all patients are followed until
death or the end of the trial, or until the outcome event is reached in a time-to-event
trial, irrespective of whether the patient is still receiving or complying with the assigned
treatment.

The properties of this strategy are contrasted with those of an efficacy subset analysis
in which patients and observable patient data are excluded from the analysis on the
basis of information obtained postrandomization. I describe the potential bias that can
be introduced by such postrandomization exclusions and the pursuant effects on type
I error probabilities. Especially in a large study, the inflation in type I error probability
can be severe, 0.50 or higher, even when the null hypothesis is true.

Standard statistical methods for the analysis of censored or incomplete observations
all require the assumption of missing at random to some degree, and none of these
methods adjust for the potential bias introduced by post hoc subset selection. Nor is
such adjustment possible unless one posits a model that relates the missing observations
to other observed information for each subject—models that are inherently untestable.
Further, the subset selection bias is confounded with the subset-specific treatment effect,
and the two components are not identifiable without additional untestable assumptions.
Methods for sensitivity analysis to assess the impact of bias in the efficacy subset analysis
are described.

It is generally believed that the efficacy subset analysis has greater power than the
intent-to-treat analysis. However, even when the efficacy subset analysis is assumed to
be unbiased, or have a true type I error probability equal to the desired level o, situations
are described where the intent-to-treat analysis in fact has greater power than the efficacy
subset analysis. The intent-to-treat design, wherein all possible patients continue to be
followed, is especially powerful when an effective treatment arrests progression of
disease during its administration. Thus, a patient benefits long after the patient becomes
noncompliant or the treatment is terminated. In such cases, a landmark analysis using
the observations from the last patient evaluation is likely to prove more powerful
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INTRODUCTION

The intent-to-treat principle refers to a set of criteria for the evaluation of
the benefits and risks of a new therapy that essentially calls for the complete
inclusion of all data from all patients randomized in the final analyses. The
principle has been espoused by regulatory officials at the Food and Drug
Administration (FDA) and scientists at the National Institutes of Health (NIH)
as the most appropriate criteria for the assessment of the utility of a new therapy
[1]. This is in contrast to the common practice in many trials of conducting an
efficacy analysis after various exclusions of patients and/or patient data from
the analysis. Many of the issues contrasting these approaches arose in criticisms
by the FDA [2] and others [3] of the exclusion of patients and events in the
analyses of the Anturane Reinfarction Trial, a practice defended by the trial
group [4, 5]. Since then the issues have been reviewed and discussed by many
[6-15, among others] some of whom discuss the pitfalls of analyses which
deviate from the intent-to-treat principle [6-13]. Fisher et al. [14] present a
discussion of many of the considerations from both perspectives. Sheiner and
Rubin [15], among others, take the opposing view that an assessment of efficacy
that accounts for patient compliance is more important than an assessment of
effectiveness by an intent-to-treat analysis, and that the latter provides a biased
estimate of the former. Many authors describe alternate statistical analytic
methods that account for patient compliance [16-23]. In fact a recent issue of
Statistics in Medicine was devoted to the analysis of compliance (volume 17,
number 3, 1998).

The distinction between an efficacy versus an intent-to-treat analysis philoso-
phy is sharpest in pharmaceutical trials, although it arises in clinical trials in
AIDS, mental illness, and other diseases. Schwartz and Lellouch [24] refer to
these as exploratory versus pragmatic trials, whereas Sheiner and Rubin [15]
refer to these as trials of method versus use effectiveness, respectively. On one
side is the pharmacologist who wishes to assess the pharmacologic efficacy of
the regimen. In this sense, efficacy usually refers to the expected outcome
among patients who are able to tolerate the drug, meaning that no dose-limiting
side effects such as hepatotoxicity occur; who are adequately compliant, such
as taking at least 80% of the assigned medications; and to whom the agent is
effectively administered (bioavailable, etc.). Pharmacologic efficacy is usually
assessed by what is termed an efficacy analysis, or an efficacy subset analysis.
The basic strategy is to examine the experience of the patients entered into the
trial, and then to select the subset of these patients, or a subset of the observa-
tions, that meet the desired efficacy criteria for inclusion in the analysis. This
is often termed the evaluable subset. Because this analysis is based on a subset
of the patients, selected post hocbased on features observed after randomization
into the trial, the results may not apply to a more general population of patients
initially treated. More importantly, because this subset of patients was not
identified prior to randomization, such as the subset of males or females, it
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can not be claimed that the properties of randomization apply to this subset,
or that the subset provides an unbiased assessment of treatment effects. Often
itis obvious that these post hoc subset selection criteria are applied differentially
to the two groups, such as when experimental group patients are excluded
due to drug-induced hepatotoxicity, which occurs only rarely in the placebo
group. Thus, such analyses are open to various types of bias. The fact that the
criteria for such efficacy subset selection may be specified a priori in the proto-
col, or that there are no significant baseline imbalances between the subsets in
each treatment group, does not mitigate the potential for bias.

On the other side is the clinician or regulatory scientist who wishes to assess
the overall clinical effectiveness, meaning the expected outcome among all
patients for whom the treatment is initially prescribed, or for whom it may
be appropriate, irrespective of potential side effects, lack of compliance, or
incomplete administration. Although compliance is an important determinant
of ultimate effectiveness, the therapeutic question concerns the effectiveness of
the treatment in a population of “ordinary” subjects with variable degrees of
compliance. Thus, clinical effectiveness is assessed by a comparison of the
ultimate outcome between two or more populations that are initially assigned
to receive different treatments, irrespective of tolerance or compliance. This
attempts to assess the long-term effects of an initial treatment decision to adopt
one regimen versus another, thus the phrase “intent-to-treat.” In a simple
study, all patients would then receive the post-treatment evaluation and all
observations would be included in the final analysis for all patients randomized.

The principal concern with an efficacy subset analysis is that a bias in patient
subset selection will bias the treatment group comparison [1-3, 7-10]. However,
there has been no explicit exploration of the nature or magnitude of this bias
and its effects on the type I (false positive) error probability. The principal
concern with an intent-to-treat analysis, on the other hand, is that the power
to detect a beneficial treatment effect will be less than that of an efficacy subset
analysis. The objective of this paper is to assess these properties of the intent-
to-treat analysis relative to the efficacy subset analysis.

RANDOMIZATION AND THE CONTROL OF BIAS

The objective of any trial is to provide an unbiased comparison of the differ-
ences between the treatments being compared. The randomization of subjects
between the treatment groups is the paramount statistical element that allows
one to claim that a study is unbiased. However, although randomization is
considered necessary, it alone is not sufficient to provide an unbiased study.
Two other requirements are:

1. Data that are missing, if any, from randomized patients do not bias the
comparison of the treatment groups; and

2. The outcome assessments are obtained in a like and unbiased manner
for all patients.

The second requirement is addressed through the masking of treatment
assignments to the patients and clinic staff, where possible, and also to those
conducting the outcome assessments. The first requirement, however, is often
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ignored. One way to satisfy this condition is to insist that all patients random-
ized into a study are evaluated as scheduled as objectively as possible, and
that all patients are included in the final analyses even if they did not receive
the treatment at all, or if they received the wrong treatment either by a mistake
in the study or by going outside of the study, or if they had an adverse effect
which required withdrawal from the treatment, or whatever. To do so requires
that all expected outcome assessments be performed as scheduled in every
patient still alive, able and willing, regardless. This strategy has been recom-
mended by many over the years, including Peto et al. [25].

If one starts a study with 100 patients who are completely randomized
between two treatment groups, say 50 in each group, but at the end of the
study outcome assessments are obtained in only 60 of these, then those 60
patients may not in fact be an unbiased subset. Equivalently, the observations
missing for the 40 patients may not be missing completely at random (MCAR),
meaning that the presence or absence of an observation occurs purely by chance
[26]. Data that are missing at random are also called ignorable, meaning that
the mechanism leading to missing data is ignorable and introduces no bias in
the group comparison. If not MCAR or ignorable, it is possible that there may
be a difference between the characteristics of the patients who were evaluated
and their outcomes, versus those of the patients who were not evaluated and
their outcomes. This in turn could bias the estimates of treatment effects within
and between the treatment groups. The issue, therefore, is whether the mecha-
nism that led to the failure to evaluate a patient operated by chance and is
statistically independent of the response which could have been observed had
the patient been evaluated.

Nevertheless, in many studies, patients who are not evaluated, whatever
the reason, are simply ignored in the analysis. This is equivalent to invoking
the MCAR assumption that the follow-up data within a given treatment group
were observed or missing at random and that missing data do introduce a bias
in the data from that group, irrespective of the extent of missing data in other
groups. In many cases, however, it is obvious that MCAR does not apply or
is implausible. For example, termination of treatment and follow-up due to
drug hepatotoxicity is likely not MCAR, nor is termination of follow-up for
early treatment failure. To then assume or invoke the MCAR assumptions is
to claim that the side effect or treatment failure is a chance occurrence and that
the exclusion of such patients does not introduce a bias in the measurements
of the subset treated and observed.

The problem, however, is that there is no way to prove this assertion, al-
though it can often be disproved. In such situations, typically, the characteristics
of the patients who might enter into an analysis (the 60 patients in the example)
are either compared between groups, or are compared to those who were
excluded from the analysis (the 40). Tests of the latter type have been described
by Simon and Simonoff [27] and Little [28], among others, to test the assumption
of MCAR. If substantial differences are found, then clearly MCAR does not
apply and the missing observations may bias the results. However, if substantial
differences are not found on any one variable or the set simultaneously, it is
still possible that the subsets observed versus missing may differ on other
variables that were not measured. Because the hypothesis of MCAR is the null
hypothesis in this case, it can be disproved but not proven.
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Table1 Intention-to-Treat and Efficacy Subset Analyses of the Effect of Tacrine

Versus Placebo on the ADAS-C Subscale Scores

Intention-to-Treat Efficacy Subset
Dose n Difference 95% CI p< n Difference 95% CI p<
Placebo 173 110
80 mg/day 54 -1.37 —-3.5, 0.7 0.20 27 —2.33 —=5.1,0.5 0.11
120 mg/day 163 —-1.99 —-3.5, —-0.5 0.008 54 —-1.77 —-4.0,04 0.12
160 mg/day 222 —-2.18 —-3.5, —0.8 0.002 62 —5.31 —-74, =32 0.001
Trend 612 0.004 253 0.001

Note: The mean difference between each dose group and placebo is presented along with ANOVA p-values
for each dose-placebo contrast and the overall test of dosage trend.

The bottom line is that the only incontrovertibly unbiased study is one in
which all randomized patients are evaluated and included in the analysis,
assuming that other features of the study are also unbiased. This is the essence
of the intent-to-treat philosophy. Any analysis which involves post hoc exclu-
sions of information is potentially biased and potentially misleading.

The International Conference on Harmonization (ICH) also supports this
view. In the Guidance on General Considerations for Clinical Trials, it states
“The protocol should specify procedures for the follow-up of patients who
stop treatment prematurely” [29, Section 3.2.2]. Further, the ICH Guidance on
Statistical Principles for Clinical Trials [30, Section 5.2.1] states: “The intention-
to-treat principle implies that the primary analysis should include all random-
ized subjects. Compliance with this principle would necessitate complete fol-
low-up of all randomized subjects for study outcomes.” Although the ICH
goes on to state: “In practice, this ideal may be difficult to achieve, ...” it
nevertheless is clear that such a design should be the ideal. Following a descrip-
tion of possible exclusions, the ICH also states: “No analysis should be consid-
ered complete unless the potential biases arising from these specific exclusions,
or any others, are addressed.”

An additional consideration is that if the collection of data is curtailed due
to efficacy subset selection criteria, then the efficacy analysis is the only analysis
that can be performed. If, however, all patients continue to undergo follow-
up assessments irrespective of side effects, compliance, or anything else, then
one can choose to perform either a true intent-to-treat analysis or an efficacy
analysis or both. The clinical trial of tacrine in Alzheimer’s disease [31] illustrates
the advantages of this strategy. A total of 663 patients were randomly assigned
to receive either placebo, 40, 80 or 120 mg/day of tacrine for 30 weeks. Due
to side effects, all anticipated, 384 patients withdrew from treatment prior to
the week 30 evaluation, principally due to mild hepatotoxicity. However, all
patients were expected to continue follow-up and 612 patients were assessed
at week 30 and were included in the intent-to-treat analysis of the principal
outcome which was the Alzheimer’s Disease Assessment Scale-Cognitive sub-
scale (ADAS-C). An efficacy subset analysis was also conducted that only
included 253 patients who completed treatment for the full 30 weeks and were
also compliant with the drug regimen.

Table 1 presents the differences between each drug level and placebo in the
intent-to-treat analysis of all patients evaluated, regardless, and in the efficacy
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subset analyses of those patients actually treated for 30 weeks, comprising less
than half the patients randomized. Both analyses demonstrate the effectiveness
of tacrine to improve the ADAS-C scores versus placebo (a negative value is
improvement). The efficacy subset analysis, however, is highly suspect because
itis a reflection of both a possible treatment effect and a possible subset selection
bias, and the two are inextricably intertwined. Fortunately, the intent-to-treat
analyses confirm this effectiveness and also yield a significant result in the 120
mg/day group that was not observed in the efficacy subset analysis. These
analyses also are virtually free of the influence of any of the many possible
biases due to differential patient selection that may operate in the efficacy
subset analysis.

This is also an example of a drug that has some sustained benefit even after
a period of withdrawal from treatment. Further discussion of such effects is
presented later.

STATISTICAL METHODS FOR INCOMPLETE OBSERVATIONS

Perhaps one reason why missing data are tolerated, and efficacy subset
selection analyses persist, is that we now have available a variety of methods
that allow for the analysis of censored or missing data. However, the majority
of methods in common use require the assumption of censoring or missing
completely at random. These include multivariate rank tests [32], random effects
models for repeated measures [33], and analysis of longitudinal data using
generalized estimating equations (GEE) [34]. None of these methods provide
unbiased assessments of group differences when the observations are not
MCAR. This also applies to the many tools of survival analysis that require
the assumption of censoring at random for an unbiased comparison of treatment
groups. Therefore, none of these methods allow or adjust for the bias introduced
by nonrandomly censored or missing observations. Frankly, we have been
lulled into a false sense of security.

Some statisticians would take issue with this view. It could be argued that
under a less restrictive missing at random (MAR) assumption, unbiased analy-
ses could be obtained. MAR, as opposed to MCAR, states that missing observa-
tions are a function of mechanisms that are determined by other observed
patient characteristics, such as older males being more likely to have missing
observations than younger males or females [26]. In this case, if one assumes
that the model is correctly specified, then an unbiased assessment of treatment
effect can be obtained by adjusting the treatment group comparison for these
patient characteristics. However, this is again an untestable “if.”

Little [35-37] describes a family of pattern mixture models wherein, by
conditioning on the pattern of missing observations, it is assumed that the
mechanisms leading to missing data are accounted for and any bias eliminated.
This idea has been explored and extended by others [38, 39]. The assumption
of MAR also allows the imputation of the missing observations conditional on
the observed data. The most general of these approaches is the process of
multiple imputation originally developed for use in sample surveys [40]
wherein the missing observations are imputed under an assumed model about
the mechanism leading to missing data. A few complete data sets are so imputed
and the results analyzed using standard methods. The results are then averaged
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over the multiple imputations and the variance of the estimates corrected to
allow for the uncertainty in the imputations. This method has also been adapted
to the analysis of longitudinal data by many [41-43]. All of these methods
require assumptions that are inherently untestable.

Others take the view that the question of efficacy is paramount and that the
intent-to-treat analysis is inherently biased when there is less than complete
compliance. Many approaches have been suggested for conducting analyses
that are intended to estimate the effect of treatment in a hypothetical cohort
of 100% compliant patients. This philosophy is described by Sheiner and Rubin
[15] using methods developed by Rubin [16]. Many have followed this view
and developed statistical models to estimate the fully compliant efficacy, or to
adjust for the lack of compliance in a study [16-23]. When the stated assump-
tions apply, these analyses provide an unbiased estimate of what Sheiner and
Rubin [15] termed the compliance-adjusted causal effect. All of these methods,
however, are model dependent and in some instances the results are highly
sensitive to departures from the model assumptions [44]. Some methods recog-
nize that the efficacy subset of patients may be biased and attempt to adjust
for compliance and account for the subset selection bias simultaneously [45,
46]. Some methods, such as those of Rochon [17, 18], require complete follow-
up in both compliant and noncompliant patients so that subset bias is not of
concern. These analyses address entirely different questions from the intention-
to-treat analysis.

One of the most popular methods for dealing with missing observations in
an as-randomized analysis, is the Last Observation Carried Forward (LOCEF)
analysis in which the last observation obtained from a patient is substituted
for all subsequent observations that are either missing or that were obtained
after the patient was no longer considered to be “evaluable.” A variant of this
approach is the last observation or endpoint analysis that simply uses the last
value observed from each subject, regardless of the follow-up time at which it
was collected. The properties of the LOCF have been discussed by many who
are all critical [39, 43, 47-49]. This strategy assumes that the last observation
of each such patient is an unbiased representation of what the missing or
nonevaluable observation would have been had the patient been followed,
again an untestable assumption. In many cases this is clearly ridiculous, espe-
cially in a disease where there is progression or deterioration of the patients
with time. In such cases it may also be argued that the LOCF is conservative
in that it will dilute the treatment effect compared to what would have been
observed had the subjects been followed.

However, there is an additional problem when LOCF is employed to impute
missing values in a longitudinal repeated measures analysis. In this case, LOCF
is a form of constant value imputation for missing values that leads to distortion
of the covariance structure of the data, as well as the mean value. Even if the
last obtained value is an unbiased estimate of future values, there would still
be some within patient variation in the observed values that is ignored in an
LOCF analysis. The greater the proportion of missing data that is imputed by
LOCEF, the greater the reduction in the overall variation in the data set. The
problems with the LOCF analysis were summarized by Verbeke et al. [50] as:

In conclusion, the effect of an LOCF imputation is that both mean and
covariance structure are severely distorted so that no obvious simplification
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is possible. Hence, a simple, intuitively appealing interpretation of the trends
is rendered impossible. LOCF should be used with great caution.

In some instances, missing data arise due to death or some other “absorbing
state” that then precludes further observation of that subject. In the analysis
of time-to-event data, these constitute competing risk events, a problem de-
scribed in most standard texts on survival analysis, such as [51]. In the analysis
of longitudinal data, however, such events lead to truncation of follow-up and
informatively missing observations because such an event (e.g., death) conveys
information about the patient’s status. In such cases, some adjustment for
informatively missing observations is necessary and a variety of methods have
been suggested [52-56].

In short, there is no completely satisfactory statistical solution to dealing
with missing data that may not be MCAR. Further, there is no definitive way
to prove that missing data are MCAR. Thus, the best way to deal with the
problem is to have as little missing data as possible.

POTENTIAL FOR BIAS AND TYPE I ERROR

Bias and Type I Error Probabilities

The principal concern with an efficacy analysis is the potential for subset
selection bias, even when criteria for the post hoc exclusions are stated a priori
in the protocol. Such bias then leads to an inflation in the type I error probability
of the study. For a given level of bias, the type I error probability can readily
be obtained from standard expressions for the power of a statistical test [57].

For illustration, consider the power function of the test of the difference in
proportions between two groups. Let the proportions of subjects with a favor-
able outcome (or unfavorable, as the case may be) after a fixed period of
exposure be p, = x/n, in the experimental group with E(p,) = m, and p, = x./
n. in the control group with E(p.) = . Under the null hypothesis of equal
probabilities in the two groups, Hy: m, = ., the usual Z-test is asymptotically
normally distributed. For a two-sided test at type I probability level «, H, is
rejected when the observed |z| exceeds the critical value for rejection, Z; .
Under the alternative hypothesis, H;: m, # , the probability of rejection or
the power of the test, Pr(|z| > Z.,,), is greater than the type I error probability
a. Thus, if the estimates of the probabilities (the sample proportions) are biased
by selective exclusions of patients or patient data such that a difference is
expected even when the null hypothesis is true, then the probability of rejection
will increase.

The appendix presents the expression for the type I error probability of
rejection as a function of a bias introduced by an efficacy analysis subset
selection. Because we assume that the null hypothesis is true, then E(p,) = .
in the complete sample of 1, experimental patients. In this case the intent-to-
treat analysis provides an unbiased estimate of the treatment group difference
and an unbiased test such that the type I error probability is the desired level
a. However, the efficacy analysis employs only an evaluable subset of the
experimental group patients who are selected on the basis of postrandomization
information such as compliance, absence of side effects, etc. Let R, and R, be
the fractions of evaluable patients from each group that are included in the
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Table 2 Values of the Possible Bias in an Efficacy Subset Analysis that Yield a Type

I Error Probability of o = (0.1, 0.3 or 0.5) for N = (200, 400, 600, 800 and
1000) with R, = (0.9, 0.8, 0.7, 0.6 and 0.5) Fraction of Subjects Included in
the Experimental Group and All Control Group Subjects Included (R. = 1.0)

N = 200 N = 400 N = 600 N = 800 N = 1000
R, D, Bias D, Bias D, Bias D, Bias D, Bias
1.0 20.0 40.0 60.0 80.0 100.0
a=0.1
0.9 59.9 0.022 789 0.019 97.7  0.017
0.8 190 0.038 364 0.027 534 0.023 703 0.020 87.0 0.018
07 167 0.039 320 0.028 469 0.023 61.7 0.020 764  0.018
0.6 144 0.041 275 0.029 404 0.024 531 0.021 65.7  0.019
05 121 0.043 231 0.031 338 0.026 445 0.022 55.0 0.020
a=03
0.9
0.8 59.7  0.049 77.6 0.042 95.2  0.038
0.7 36.7 0.062 527 0.051 683 0.044 83.8  0.039
0.6 174 0.091 31.8 0.065 455 0.053 59.1 0.046 724 0.041
05 149 0.09% 268 0.068 384 0.056 49.7 0.049 60.9 0.044
a=05

0.7 56.8 0.071 731 0.061 89.1  0.055
06 198 0.128 349 0.091 493 0074 634 0.064 772 0.057
05 169 0136 296 0.09% 418 0.078 53.6 0.068 65.2  0.061

Note: The control group probability is m. = 0.2. The expected number of events under the null hypothesis
is D, = D. = (0.2)N. The expected number of events in the experimental group corresponding to the bias
(D,) are also shown.

efficacy analysis, and 1 — R, and 1 — R, be the fractions excluded. Assume that
the subset of R.n, subjects in the experimental group may introduce bias in the
response probability of magnitude B,, and that the subset of R, subjects in
the control group may introduce a bias of B,. Let i, and p. designate the observed
proportions with a positive response in each group, respectively, in the efficacy
subset. In the efficacy subset analysis under Hy: w, = w,, then E(f,) = 7, = m +
B, and E(p,) = %, = m. + B, so that the expected difference between groups is
E(.) — E(p.) = B, — B. = Bias. The greatest bias in the estimate of the difference
between treatments, or the treatment effect, occurs when there is a positive
bias in favor of the experimental treatment (B, > 0) and a negative bias against
the control treatment (B, < 0).

If Bias = 0 then the analysis is unbiased and the type I error probability is
the desired level a. However, if the Bias # 0, then the type I error probability
of rejection, say @&, is increased. To simplify, assume that n, = n. = N/2 and
that R, = 1.0 so that all n. patients in the control group are followed with no
efficacy criteria applied. Thus, no patients from the control group are excluded
from the analysis and E(p.) = .. Table 2 shows the resulting values of Biazs =
B, yielding & = 0.5 for increasing values of N and R, for the specific case where
. = 0.20. In the unbiased intent-to-treat analysis, the expected number of
events in the treated (and also the control) group is E(D,) = w.N/2. However,
in the efficacy subset analysis with (1 — R,)N/2 patients excluded from the
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Figure 1 The type I error probability & for a two-sided test at the nominal 0.05 level
as a function of the bias in an efficacy subset analysis including R, = (0.5,
0.6,0.7, 0.8, 0.9) fraction of experimental group subjects, and all control group
subjects (R, = 1), under the null hypothesis with w, = 7. = 0.2 for N = 200
and N = 800.

analysis, the expected number of events is E(D,) = (m, + Bias)(R.N/2). Because
E(D,) events are expected under the null hypothesis, only combinations of the
Bias and fraction excluded R, are plausible that yield E(D,) < E(D,).

For example, consider the first set of calculations for N = 200 in which case
E(D,) = 20. In the efficacy analysis, if only 10% of patients are excluded, so
that 90% (R, = 0.9) remain, then it is not possible to create a bias in the subset
selection so as to yield & = 0.1, because more than 20 expected events would
be required within the subset of 90 patients selected in the experimental group.
However, if 20% of patients in the experimental group are excluded, 80%
included, and if the post hoc selection is done in such a way that the expected
number of events in this selected subset is still about 20, E(DF) = 19.0 to be
precise, then a bias of 0.038 is introduced and the type I error probability is
inflated to 0.10. As more patients are excluded, the possible bias and type I
error probability increase. For 40% excluded (60% included), then if E(D,) =
19.8, the bias is 0.128 and the type I error probability is 0.50.

Table 2 also shows that as the N increases it is easier to bias the study so
as to achieve any given level of type I error probability. For N = 600, if the
efficacy subset contains 210 patients in the treated group (0.70*300) with a bias
of 0.071 such that on average 56.8 of the expected 60 events are included in
this subset, then the type I error probability is 0.50.

These relationships are further described in Figure 1 that shows the increas-
ing values of the realized type I error probability & as the bias increases for
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fixed values of . and R, using N = 200 and 800. These curves show that the
smaller the fraction included in the subset analysis (R,), the greater the potential
bias that can be introduced and the greater the potential increase in type I
error probability &. These effects are magnified as the total sample size increases,
and in a large study the inflation in type I error can be severe, even with a
moderately high fraction of subjects included, say R, = 0.8. Figure 1 also shows
that for a given N, the bias required to achieve a given total type I error
probability & varies little as a function of the fraction R, included in the analysis.

More generally, Table 3 presents the resulting type I error probability & as
a function of total bias where there is an equal positive and negative bias in
each group B, = —B, for various subset fractions assuming R, = R, = R. Table
3 shows that the total bias (B, — B.) = 2B, yielding a given type I error probability
a is slightly greater than that required when the bias is assumed to arise only
from the experimental group subset (Table 2). Further, the total bias is now
evenly divided between the two groups. Thus, it is possible to achieve a higher
level of & with a larger fraction of the sample included in the subset analysis.
For example, in Table 2 with N = 600, a level & = 0.5 is only possible in a 70%
sample of the experimental group with a bias of 0.071. However, in Table 3
with N = 600, a type I error level & = 0.5 is possible in a 80% sample of each
group with a total bias of 0.072, +0.036 in the experimental group and —0.036
in the control group.

Sensitivity Analysis

Ideally, it would be desirable to estimate the bias in an efficacy subset
analysis and then adjust the test of significance by subtracting the estimated
bias from the estimate of the treatment group difference. However, this is not
possible when there is missing data since the model is then parameterized by
the true difference A = m, — w.and the value of the Bias, and these parameters are
not uniquely identifiable unless additional model assumptions are employed.

Alternately, the approach suggested by Cochran [58] in the context of obser-
vational studies may be applied as a form of sensitivity analysis. Because
observational studies are not randomized, Cochran assessed the degree of bias
that would be necessary to negate an otherwise significant association. He did
so by considering the magnitude of the bias that would yield a bias-corrected
confidence limit for the difference between the means of two groups that
brackets zero. In the case of an efficacy subset analysis, also not completely
randomized, a comparable approach is to determine the minimum bias that
would lead to statistical significance at the usual 0.05 level, exactly, in a bias-
corrected test of significance.

Assume that the observed group difference consists of two components such
as fi, — . = A + Bias where A is a latent unbiased estimate of the true difference
A. If the value of Bias were known, then a bias-corrected test statistic would
be based on p, — p. — Bias = A. Thus we can solve for the minimum value of
the estimated true difference, say A,, that would provide a significant result
at level o one-sided (or /2 two-sided) as
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o = 2o Jpa - pf ) (R R )

where

RQ.p. + RQp.
REQE + RCQC '

The maximum bias that could exist where the observed result would still be
significant at level a is then obtained as Bias, = f, — f. — A,. Any value of the
bias greater than this value would then lead to nonsignificance of a bias-
corrected test statistic. It then becomes a matter of judgment as to whether a
bias of this magnitude is plausible. If the treatment effect is very large, and
the subset p-value very small, then a large bias would be needed to invalidate
the results, perhaps so large as to simply be implausible, in which case one
might be confident that a true difference exists of some magnitude.

For example, assume that 400 patients are evenly divided between the two
groups (Q. = Q. = 0.5) by randomization. Of these, 160 experimental patients
are evaluated at study end (R, = 0.8) of whom 35% respond (p. = 0.35), and
180 control patients (R. = 0.9) of whom 20% respond (p. = 0.20). The subset
analysis yields p, — p. = 0.15 with Z = 3.107 and p < 0.0019. Substituting into
the above yields A, = 0.0326 and Bias, = 0.117. Thus, the bias would have to
be greater than 0.117 for the results to be invalidated. One would then have
to consider the characteristics of the study as best one can to decide whether
this degree of bias is plausible. Unfortunately, any claim as to the possible
degree of bias will be conjecture and is untestable.

In general, the greater the subset analysis test statistic value, the smaller the
p-value, then the less sensitive are the results to the possible level of bias that
would invalidate the results. Conversely, for a study with a p-value close to
0.05, then a small level of bias could easily invalidate the results. Unfortunately,
in neither case can one be sure that the assumptions regarding the level of bias
present are true. The best recourse would be to continue to collect observations
on all subjects to the extent possible so that the treatment group difference
from the intent-to-treat analysis could be used to gauge the possible bias due
to subset selection in the efficacy analysis. For the above example, if all 400
patients were evaluated and among these the response rates were p, = 0.30
and p. = 0.20, with a difference of 0.10, then this would suggest that the bias
in the subset analysis would be on the order of (5, — p.) — (p. — p.) = 0.05, far
below the level needed to invalidate statistical significance of the efficacy
analysis.

Alternatively, one could apply the method of Matts et al. [59] that considers
the impact of losses on the possible final result had all patients been followed.
For the above example, they describe the expected result among all 400 patients
when the 60 patients are assumed to have a range of response probabilities to
describe the potential effect of losses on the final results. For analyses of incom-
plete longitudinal data using GEE, Rotnitzky and Wipij [60] describe methods to
assess the possible bias in the coefficient estimates introduced by missing data.

p= ()
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Figure 2 The absolute risk (rate per 100 patient-years) of sustained progression of
retinopathy in the conventional and intensive treatment groups of the Diabe-
tes Control and Complications Trial estimated from Poisson regression mod-
els. The additional line shows the projection for an intensively treated subject
who becomes noncompliant after 4 years of intensive therapy. Adapted from
the DCCT Research Group [62].

POWER

One justification for the efficacy analysis is the conjecture that it provides
greater power than the intent-to-treat analysis. Of course, if the type I error
probability of the efficacy analysis is increased by the introduction of a bias in
subset selection, then so also will be the “power.” Thus, if & = 0.25, say, when
the null hypothesis is true (w, = m,), then as the true difference increases from
zero, the rejection probability (power) in the efficacy analysis increases above
this value. Thus, it is only relevant to compare the power of the intent-to-treat
analysis versus the efficacy subset analysis under the assumption that the latter
has not been biased by the subset selection, even though this may be unrealistic.

In this case, the intent-to-treat analysis may in fact be more powerful when
some of the patients who are eliminated in the efficacy subset analysis actually
demonstrate some beneficial effects of treatment, as was the case in the tacrine
example presented earlier. In particular, this will apply when an effective
treatment delays or even reverses the progression of the disease while adminis-
tered. As an example, Figure 2 presents a smoothed model-based estimate of the
underlying hazard rate of progression of diabetic retinopathy for the intensive
versus conventional treatment groups in the Diabetes Control and Complica-
tions Trial (DCCT) [61, 62]. Clearly the risk of progression increases exponen-
tially in the conventional group while it is held constant in the intensive group.
Now consider the expected outcome in a patient who adhered to intensive
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treatment for 4 years and then became noncompliant. At that point the rate of
progression might begin to follow that observed in the conventional group
(the dashed line). Nevertheless, the expected level of retinopathy in such a
patient after 9 years of follow-up is still less than that of a patient treated
conventionally, so that patients who received intensive therapy for only a
fraction of their period of follow-up would still contribute to the demonstration
of effectiveness. Therefore, the issue in the comparison of the two analysis
strategies is the trade-off between additional patients contributing to the intent-
to-treat analysis versus the possibly higher expected effectiveness among the
subset of patients contributing to the efficacy subset analysis.

To assess this, consider the power of the intent-to-treat analysis versus the
efficacy subset analysis under the assumption that the efficacy subset exclusions
do not introduce any bias that would inflate the type I error probability and
power. Again assume equal sample sizes n, = n, = N/2 and efficacy subset
fractions R, and R, included in each group, respectively. Within the control
group, assume that all patients have the same probability of response 7, whether
the patient is included in the efficacy subset or not. This may not be plausible
in all circumstances, and the following developments are easily modified. Under
the alternative hypothesis assume that the efficacy subset patients have the
expected probability w, # . However, the experimental patients excluded
from the efficacy subset analysis, but included in the intent-to-treat analysis,
have expected probability w,., where w, = m,, = 7. Thus, the net probability
in the treated group in the intent-to-treat analysis is

7} = Rm, + (1 — R)m, (©)]
so that the net difference between the groups is
w; — m. = R, + (l - Rc)qTL’x - M. (4)

Lachin [57] and Lachin and Foulkes [63] considered the extreme case where
m, = . in which case wf — mw. = R, (w, — ). This provides a conservative or
“worst case” assessment of power. However, a less extreme model may be
plausible in many cases.

Using these parameters, the appendix presents the standardized deviates
that provide the power of an intent-to-treat analysis using the net probability
wf with all N patients included in the analysis versus an unbiased efficacy
analysis with probability w, but fewer patients included in the analysis. From
(3) and (4), for fixed fractions R, and R, the intent-to-treat analysis power
increases as the probability in the excluded or nonevaluable patients ., in-
creases. Figure 3 shows one typical example where we wish to detect a differ-
ence of m, = 0.20 and m, = 0.40 with N = 200. Here R, = 0.60 and R, = 1.0
such that 40% of the experimental patients but none of the control patients are
excluded from the analysis. The most powerful analysis occurs when all patients
are included and are fully compliant such that the net probabilities are m, and
.. The power of this intent-to-treat analysis is 0.876, as shown by the upper
horizontal line. The lower horizontal line presents the power of the efficacy
subset analysis which is 0.777. This is obtained using the same probabilities,
but only including the N(R, + 1)/2 patients in the efficacy subset. The third
line then presents the power of the intent-to-treat analysis in which all N
patients are included, but where the net probabilities are m and w, for increas-
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Figure 3 The power for a test of two proportions in an intent-to-treat analysis as
a function of the probability of the outcome m, among the nonevaluable
experimental group patients excluded from the efficacy subset analysis as-
suming N = 200, R, = 0.6 (40% excluded), R. = 1.0 (all included), m. = 0.2,
m, = 0.4, and a = 0.05 two-sided. The upper horizontal line is the power of
the intent-to-treat analysis for all 100 experimental patients included with =,
= 0.4. The lower horizontal line is the power of the efficacy subset analysis
for only 60 experimental patients included with w, = 0.4.

ing values of m, among the (1 — R,)N/2 “nonevaluable” patients who had
been excluded from the efficacy analysis. As ,, — m,, the power of the intent-
to-treat analysis overtakes that of the efficacy analysis. In this sample, this
occurs when m,, = 0.333.

Thus, for some value of m,, the effectiveness rate among the nonevaluable
excluded patients, the intent-to-treat analysis has power equal to that of the
efficacy analysis, and without the susceptibility to bias due to subset selection
that occurs in the efficacy subset analysis. One can determine that value of the
nonevaluable effectiveness rate w,, for which the intent-to-treat and efficacy
analyses have equivalent point for any set of values (w,, m, 1, 1. R,, R, using
a derivative-free iterative procedure, such as the secant method. Such computa-
tions show that the power of equivalence does not depend strongly on the
fraction of subjects selected for the efficacy subset. For example, for w, = 0.5,
n, = n. = 100, R, = 1.0, if R, = 0.99 (one patient excluded) and the probability
of a favorable response in that patient is 7., = 0.418, then the inclusion of that
patient in the intent-to-treat analysis provides the same level of power as
excluding that patient in the efficacy analysis. When ten patients are excluded
(R, = 0.90), then the power of the two analyses is equivalent when their probabil-
ity of response is 0.414, and likewise with a probability of 0.402 for R, = 0.7,
0.386 for R, = 0.5, and 0.361 for R, = 0.3.
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Therefore, in settings where any exposure to an effective treatment may
introduce some evidence of treatment efficacy, the intent-to-treat analysis may
in fact have power at least as good as that of the efficacy analysis, without the
risk of any bias due to subset selection. This may occur when a treatment may
have some lingering pharmacologic effect, or when treatment arrests progres-
sion of the disease for as long as taken, especially when there is an exponential
rate of disease progression when treated with the control therapy, as illustrated
in Figure 2.

In these settings, this also suggests that a landmark or final visit analysis
may be more powerful than a life-table or cumulative-incidence analysis of
events, or a repeated measures analysis of quantitative observations. These
considerations are demonstrated in the analyses of the DCCT [64]. As shown
in Figure 2, the incidence of progression of retinopathy increased exponentially
in the conventional control group and was nearly arrested in the experimental
group. The protocol specified that the primary analysis would be a log-rank
test of the difference in cumulative incidence curves. This test is optimal (most
powerful) when the hazards are proportional over time, which clearly does
not apply in this case so that the power of the test is reduced. However, since
the difference between treatments increases exponentially with time, then the
greatest manifestation of the treatment group difference is observed in the final
visit of each patient. Thus, had we known a priori that the treatment group
differences would have emerged in this manner, then the most powerful analy-
sis would have been an analysis of the final visit assessment of each patient.

Finally, the nearly complete follow-up in all patients allowed us to assess
the influence of the underlying level of hyperglycemia (blood glucose), the
hypothesized pathophysiologic mechanism, on the risk of progression of the
complications of diabetes [62]. These analyses involved relatively straightfor-
ward time-to-event models using time-dependent covariates without the need
to adjust for the mechanism that produced missing data and without the need
to consider the impact of subset selection bias.

INTENT-TO-TREAT DESIGN AND ANALYSIS

Because a true intent-to-treat analysis requires the inclusion of all patients
randomized to the extent possible, this requires an intent-to-treat design in
which all patients are followed according to the prespecified schedule with
principal, and perhaps secondary, outcome assessments regardless of compli-
ance, adverse effects, or other postrandomization observations—death and
patient refusal excepted. An analysis “as randomized” in which there is incom-
plete follow-up is not a true intent-to-treat analysis but rather only another
type of selected subset analysis. Likewise, trials where all patients are followed
to the time that a stated primary outcome event is reached and are then termi-
nated from further follow-up may provide an intent-to-treat analysis for the
primary outcome, but not for all secondary outcomes due to truncated fol-
low-up.

The foremost consideration is the distinction between withdrawal from treat-
ment and withdrawal from study. In an intent-to-treat study, withdrawal from
treatment should not lead to withdrawal from study. Patients should be with-
drawn from their randomly assigned treatment for considerations of patient
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safety only. To the extent possible, these should be prespecified in the study
protocol, but in many studies additional unanticipated adverse effects arise
that will require withdrawal of treatment. However, patients should not be
withdrawn from treatment due to lack of “success” or failure to comply unless
considerations of patient safety mandate implementation of alternate therapies.
Even in such cases, patients should continue follow-up as scheduled.

Thus, irrespective of withdrawal from treatment, all patients should continue
to be followed with all scheduled outcome evaluations until either the death
of the patient (or the organ under study) or the end of the study. In this way
a true all-inclusive, intent-to-treat analysis can be conducted. Clearly this ideal
will not be possible in practice. However, it should be the goal of all trials for
which the intent-to-treat analysis is desired.

This approach also requires that we not label patients as dropouts. We
should drop “dropouts” when describing or classifying patient outcomes. The
same applies to other derogatory designations such as “off study.” Rather
patients should be designated as “temporarily inactive,” and then only at either
patient insistence or due to external factors such as relocation or imprisonment.
Of course, every patient is free to withdraw consent to participate in the trial
at any time, which should be honored without prejudice. However, any patient
who is temporarily inactive should also be welcomed back to the trial when
possible. Many patients go through periods of change in their life or experience
circumstances that resolve with time. In such cases, the patient should be
reinstated under their original schedule of follow-up, and if indicated, their
originally randomized treatment allocation. The designation of “lost to follow-
up” would then be applied at the end of the trial to patients still inactive.

This philosophy was employed with great success in the DCCT [61]. Over
the period 1983-1989, 1441 patients with insulin-dependent diabetes mellitus
(IDDM) were randomized to either intensive or conventional treatment. All
patients completed a 2-4 month period of eligibility evaluation that included
arigorous program of patient education and informed consent [65]. All patients
consented to follow-up through 1993; however, the trial was terminated early
based on highly favorable results. The final patient evaluations were conducted
during January—April, 1993. During the average of 6.5 years of follow-up, only
32 patients were classified as temporarily inactive during the trial, and seven
of these later resumed follow-up. Of the 1330 patients alive at study end, only
eight patients failed to complete the final closeout evaluation. At some point
in the trial, 155 of the 1441 patients deviated from the originally assigned
treatment for some period of time (were noncompliant). Virtually all of these
continued to attend follow-up assessment visits and the majority later resumed
the assigned therapy. During the study, patients remained on their assigned
therapy for 97% of the patient-years of follow-up.

One key to the success of this strategy is the continued participation of
patients in the trial follow-up even though they may not be receiving or fully
complying with the originally assigned therapy. I am now participating in the
Diabetes Prevention Program [66], a three-arm randomized trial of alternate
lifestyle intervention versus conventional therapy with active metformin or
placebo to assess the relative effectiveness of each therapy to prevent the
development of overt diabetes among patients with impaired glucose tolerance.
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Metformin is an approved therapy for treatment of diabetes with known poten-
tial adverse effects that require discontinuation of treatment in about 4% of
patients, principally due to gastrointestinal effects. When I was asked to justify
continued follow-up to a patient unable to tolerate the metformin (masked
active or placebo) pills, my response was along the following lines:

When we designed the study we knew that a fraction of patients would
not be able to tolerate metformin. You were told this when you agreed
to participate in the study. However, we cannot tell beforehand which
participants will be able to take metformin, and which will not.

In order to answer the DPP study question as to whether any treatment
will prevent diabetes, every participant randomized into the study is equally
important. Thus, even though you will not be taking a metformin pill, it is
just as important for us to know if and when you develop diabetes as it is
for any other participant. That's why it is just as important to the study
that you attend your outcome assessment visits in the future as it was when
you were taking your pills.

In conclusion, the intent-to-treat analysis provides the most realistic and
unbiased answer to the more relevant question of clinical effectiveness. Also,
the analysis can be considered unbiased when all randomized patients are
included in the analysis to the extent dictated by the original design. This
requires the adoption of an intent-to-treat design from the beginning of the
trial in which all patients are followed regardless. This not only minimizes the
potential for bias in the assessment of treatment effects due to efficacy subset
selection, but it may also improve the power of the trial by including all patients
in the analysis, thus increasing the sample size, especially in the case of an
effective treatment with long-term manifestations of the treatment effect. It also
allows the exploration of the mechanism of treatment effect and the influence of
compliance on the outcome without the need to adopt untestable models for
the underlying mechanism that produces missing data due to noncompliance.

This work was supported in part by a grant from the National Cancer Institute. The author
especially thanks Raymond Bain for many helpful discussions on this topic and Sam Greenhouse
for insightful comments and his careful reading and critique of an earlier draft. The author also
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that lead to the section on Sensitivity Analysis.
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APPENDIX

Here we present the derivations of the expressions for the type I error as a

function of the bias in a subset analysis, and the power of the intent-to-treat
versus efficacy subset analysis.

THE TYPE I ERROR FUNCTION

The general equation for the power of the test for two proportions with a

total sample size N is provided by the standard normal deviate

o g

)

©)

where N = n, + n; Q, = n,/N and Q. = n./N, are the sample fractions in the
two groups; and m = Q,m, + Q... For a two-sided test one would use the
upper tail critical value of Z;_,, in (5). The actual rejection probability is then
evaluated as the cumulative normal percentile at the value Z, g, oras1 — g =
®(Z,_g) where ®(z) is the cumulative normal cdf.
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Power

In a biased subset analysis with probabilities %, and 7, then the probability
of rejection is provided by the standardized deviate

’ 7. = @ = Z]“"\/ m{l =) (%) (Rng - R}QC)‘ ©

EEse

Note that all calculations are conducted under the null hypothesis that . is
the outcome probability in both groups. Because %, — 4. = Bias, then

O

Z _ RL’QL’RCQC
. )
\/ 1 ) (frrc(l —m) + B - 2m —B)  m(l—m)+ B~ 2m — BE))
(N R?Qe RCQL‘

Thus, for any value of Bins = B, — B. one can readily obtain the type I error
probability & by solving for the corresponding standardized deviate.

Also, for any given values of N, R, and R,, the value of the bias that results
in a specified value of & can be obtained as the positive root of the resulting
quadratic expression. Simple calculations can readily be obtained for & = 0.5
for which Zz = 0, in which case the total bias (B, — B,) that yields 50% type I
error probability (& = 0.5) is provided by

®)

Using the net probability w; in the treated group as shown in (3), and
assuming that n, = n. = N/2, the power of the intent-to-treat (ITT) analysis is
provided by the standardized deviate
UNImt = | = Z,_o¥47 (1= )

V21 — ) + 2m(1 — )
where 7™ = (7} + m)/2.
In contrast, the power of the efficacy subset (Eff) analysis is provided by

— zla\/wu - w)(z) (m)
N, R.R.

Zigus = \/( % ) (m(lR: ™) ﬁC(lR_c ﬁc))

Zl—B/ITT =

©)

(10)

where ™ = (R + R)/ (R, + R).



