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Principle aim of this course
To understand the basics about parametric estimation and
hypothesis testing and their applications.

Briefly review probability and random variables.

Properties of statistics, in particular sufficient statistics;

Point estimators and measures for goodness-of-estimation.

Hypothesis testing and confidence intervals.

Asymptotic (large sample size) theory

2 / 110



Definition (1.1)
A set is a collection of objects, which are called elements of the set.
A set is typically denoted by capital letters A, B, C,...

Definition (1.2)
Let A and B be sets. A is said to be a subset of B if and only if
every element of A is an element if B, i.e. x ∈ A =⇒ x ∈ B. This
is denoted by A ⊆ B.
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Operations on Sets.

Union: A ∪ B = {x : x ∈ A or x ∈ B}.

Intersection: A ∩ B = {x : x ∈ A and x ∈ B}

Complementation: Ac = {x : x /∈ A} (Ā is often used, too.)

Some equations:

Commutativity: A ∪ B = B ∪ A, A ∩ B = B ∩ A.

Associativity: A ∪ (B ∪ C) = (A ∪ B) ∪ C ,
A ∩ (B ∩ C) = (A ∩ B) ∩ C .

Distributive Law: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

DeMorgan’s Law: (A ∪ B)c = Ac ∩ Bc , (A ∩ B)c = Ac ∪ Bc .
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Proof for A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
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Definition (1.3)
Two sets A and B are disjoint (or mutually exclusive) if A ∩ B = ∅.
Events A1, A2, ... are pairwise disjoint if Ai ∩ Aj = ∅ for all i ̸= j .

Definition (1.4)
A1, A2, . . . form a partition of S if they are pairwise disjoint and
∪∞

i=1Ai = S.

Definition (1.5)
The limit of a sequence of sets A1, A2, . . . (subsets of S):

Infimum: lim infn→∞ An = ∪∞
n=1 ∩∞

i=n Ai .
Supremum: lim supn→∞ An = ∩∞

n=1 ∪∞
i=n Ai .

lim infn→∞ An ⊆ lim supn→∞ An.
If lim infn→∞ An = lim supn→∞ An, then limn→∞ An exists.
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Definition (1.6)
The sequence of sets Bn is said to be decreasing (or nonincreasing)
if Bn+1 ⊆ Bn for all n.

Claim: limn→∞ An = ∩∞
n=1An
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Definition
The sequence of sets Bn is said to be increasing (or nondecreasing)
if Bn ⊆ Bn+1 for all n.

Claim: limn→∞ An = ∪∞
n=1An
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Limit of a Sequence of Sets

What are the limits of the following sequence of sets?
1 An = (0, 2 + 1/n), n = 1, 2, . . .

2 An = (0, 2 − 1/n), n = 1, 2, . . .
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Probability Model

A random experiment is an experiment whose outcome is
uncertain

Definition (1.7)
A sample space is the set, S, of all possible outcomes of a
particular experiment. An event is a subset of S.

Example 1.2 Toss a coin 3 times

S = {HHH, HHT , HTH, THH, HTT , THT , TTH, TTT}
An example of an event is A = {obtain exactly 2 heads}
= {HHT , HTH, THH} (A ⊆ S)

In probability, the set of all events of a sample space is a σ-algebra.
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Definition (1.8)
A collection of subsets of S is called a sigma algebra (or sigma
field), denoted by B, if it satisfies the following:
(a) ∅ ∈ B.
(b) If A ∈ B, then Ac ∈ B.
(c) If A1, A2, . . . ∈ B, then ∪∞

i=1Ai ∈ B (B is closed under
countable unions).

(a) and (b) implies S ∈ B.

(b) and (c) also implies ∩∞
i=1Ai ∈ B.

(c) implies B is closed under finite unions.
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Definition (1.9)
Given a sample space S and a σ-algebra B of subsets of S, a
probability model (or probability assignment, function or more
formally a probability measure) is a function P : B → R such that

(i) 0 ≤ P(A) ≤ 1 for all A ∈ B
(ii) P(S) = 1
(iii) if A1, A2, A3, . . . are pairwise disjoint events, i.e. Ai ∩ Aj = ∅

for all i ̸= j and Ai ∈ B for all i , then

P (∪∞
i=1Ai) =

∞∑
i=1

P(Ai).
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Properties of a Probability Model
1 P(∅) = 0
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Properties of a Probability Model
2 P(A ∪ B) = P(A) + P(B) whenever A ∩ B = ∅
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Properties of a Probability Model
3 P(Ac) = 1 − P(A)
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Properties of a Probability Model
4 P(A) = P(A ∩ B) + P(A ∩ Bc)
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Properties of a Probability Model
5 (Law of total probability) For any partition C1, C2, . . . of S and

any event A, we have

P(A) =
∞∑

i=1
P(A ∩ Ci).
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Properties of a Probability Model
6 If A ⊆ B, then P(A) ≤ P(B)

18 / 110



Properties of a Probability Model
7 (Boole’s inequality) For any events A1, A2, . . .,

P(∪∞
i=1Ai) ≤

∞∑
i=1

P(Ai).
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Properties of a Probability Model
8 If A1, A2, . . . are events with An ↑, then

P( lim
n→∞

An) = lim
n→∞

P(An).
(

Recall lim
n→∞

An =
∞⋃

n=1
An

)
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Properties of a Probability Model
9 If A1, A2, . . . are events with An ↓, then

P( lim
n→∞

An) = lim
n→∞

P(An).
(

Recall lim
n→∞

An =
∞⋂

n=1
An

)
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Conditional Probability and Independence

Definition (1.10)

Let A, B ⊆ S such that P(B) > 0. Then the conditional
probability of A given B is

P(A|B) = P(A ∩ B)
P(B) .

Definition (1.11)
Events A and B are independent if

P(A ∩ B) = P(A) · P(B).

Note: If A and B are independent, then so are A and Bc , Ac and B
and Ac and Bc .
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If A and B are independent, then A and Bc are
independent
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Bayes Rule

Let B1, B2, . . . , Bk be a partition of S. Then for any event A

P(A) =
k∑

i=1
P(A ∩ Bi) (by the law of total probability)

=
k∑

i=1
P(A|Bi) · P(Bi) (by Defintion 10)

Definition (1.12)
Bayes Rule: Let A and B be events. Then

P(A|B) = P(A ∩ B)
P(B) = P(A)P(B|A)

P(A)P(B|A) + P(Ac)P(B|Ac)
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Three Prisoners Problem

Three prisoners A, B, and C are on death row. The governor
decided to pardon one of them and randomly picked the one to be
pardoned. He told the warden about his choice but asked him to
keep it secret. Prisoner A asked the warden who had been pardoned,
and the warden wouldn’t tell. A then asked which of B and C would
be executed. The warden though for a while and then told A that B
would be executed.

Warden’s reasoning: each prisoner has a 1/3 chance to be
pardoned. Clearly, either B or C will be executed. I gave A no
information about whether he will be pardoned.

A’s reasoning: given that B will be executed, then either A or
C will be pardoned and the chances are equal. My chance of
being pardoned has increased from 1/3 to 1/2.

Who is correct?
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Three Prisoners Problem - Warden
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Three Prisoners Problem - Prisoner’s Mistake
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Random Variables
Definition (1.13)
A random variable is a function (mapping) from a sample space S
into the real numbers. These are usually denoted by the capital
letters X , Y , Z , U, V , W .

Given a random variable X on a probability space (S, B, P), the
cumulative distribution function of X is

FX (x) = P(X ≤ x).

Properties of a CDF
Let F (x) = P(X ≤ x) be the CDF of a random variable X

(i) lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1
(ii) F (x) ≤ F (y) whenever x ≤ y
(iii) F is right continuous (i.e. F (b+) = lim

x→b+
F (x) = F (b)

(iv) F (b−) = lim
x→b−

F (x) exists and is finite.
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Discrete Random Variable

A discrete random variable X : S 7→ R takes only a countable
number of values X (S) = {X (ω) : ω ∈ S} = {x1, x2, x2, . . .} and
has a probability mass function (pmf)

p(xi) = pi = P(X = xi), i = 1, 2, . . . ,

where
∑

i pi = 1. The cumulative distribution function (cdf) is
F (x) =

∑
i :xi ≤x p(xi).

A function p(x) is a pmf iff
(i) p(x) ≥ 0 for all x
(ii)

∑
all x p(x) = 1

Examples: Binomial, Poisson, Negative Binomial, Geometric,
Hypergeometric
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Continuous Random Variable

A random variable X is said to be continuous if its CDF
F (x) = P(X ≤ x) is a continuous function. F is continuous at b iff

P(X < b) = lim
y→b−

F (y) = lim
y→b+

F (y) = P(X ≤ b), ∀b ∈ R

iff P(X = b) = 0 for all b. The probability density function pdf of a
continuous random variable X is defined as f (x) = d

dy F (y)
∣∣∣
y=x

.

A function f is a pdf iff
(i) f (x) ≥ 0 for all x ∈ R
(ii)

∫∞
−∞ f (x)dx = 1

Examples: Exponential, Uniform, Normal, Beta, Gamma
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Expected Value

Definition (1.15)
The expected value or mean of a random variable X , denoted
E [X ], is given by

(i) Discrete: E [X ] =
∑

x∈X(S) x · P(X = x) =
∑

all x xp(x)
(ii) Continuous: E [X ] =

∫∞
−∞ xf (x)dx

if E [|X |] < ∞. The variance is given by

Var(X ) = E [(X − E [X ])2] = E [X 2] − (E [X ])2.

Note: For any function g : R → R

E [g(X )] =
{∑

all x g(x)P(X = x), (X is discrete)∫∞
−∞ g(x)f (x)dx , (X is continuous)

For example, taking g(x) = xn for any integer n > 0 yields the nth

moment of X , E [Xn].
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Mean of a Poisson RV

Let X ∼ Poisson(λ) with pmf of

p(x) = e−λλx

x ! , x = 0, 1, 2, . . . .

Find the expected value of X .
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Let X be a random variable with pmf

p(x) = C/x2, x = 1, 2, 3, . . . .

Find C such that this is a valid pmf and calculate E [X ] if it exists.
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Variance of an Exponential RV

Let X ∼ Exp(θ) with pdf

f (x) =


e−x/θ

θ
, x > 0

0, x ≤ 0
.

Calculate the variance of X .
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Mean of a Cauchy RV

Find the mean of the Cauchy distribution if it exists. Let
X ∼ Cauchy with pdf

f (x) = 1
π(1 + x2) , −∞ < x < ∞.

38 / 110



Moment Generating Functions

Definition (1.16)
For a random variable X , the moment generating function (mgf)
is defined to be

MX (t) = E [etX ]

provided the expectation exists for t ∈ (−h, h) for some h > 0.

Theorem (1.2)
Let MX (t) be the mgf of X and assume that MX (t) < ∞ for all
t ∈ (−h, h) for some h > 0. Then

dn

dtn MX (t)
∣∣∣∣
t=0

= E [Xn], n = 1, 2, 3, . . . .

39 / 110



Binomial MGF

Let X ∼ Binomial(n, p) with pmf

p(x) =
(

n
x

)
px (1 − p)n−x , x = 0, 1, 2, . . . , n.
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Poisson MGF

Let Y ∼ Poisson(λ) with pmf

p(x) = e−λλx

x ! , x = 0, 1, 2, . . . .
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MGFs completely determine the distribution of a random variable
when they exist and can be used to establish convergence in
distribution for sequence of random variables (also called weak
convergence. more on this later). This is formally stated in the next
theorems.

Theorem (1.3)

(i) Let X and Y be random variables with mgfs MX and MY ,
respectively. If MX (t) = MY (t) for all t ∈ (−h, h) for some
h > 0 and are finite, then FX = FY (they have the same
distribution).

(ii) Let {Xi , i ≥ 1} be a sequence of random variables with mgfs
MXn and X a random variable with mgf MX . If
lim

n→∞
MXn(t) = MX (t) for all t ∈ (−h, h) for some h > 0, then

lim
n→∞

FXn(x) = FX (x) whenever FX is continuous at x.
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Square of a Standard Normal

Let Z ∼ N(0, 1) with pdf f (z) = 1√
2π

e−z2/2, −∞ < z < ∞, and

let Y ∼ Gamma(α, β) with mgf MY (t) =
( 1

1 − βt

)α

, t < 1/β.

What is the distribution of Z 2?
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Binomial Approximation of a Poisson

Let Xn ∼ Binomial(n, pn) and Y ∼ Poisson(λ) be such that
npn → λ.
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Univariate Transformations

Let X be a continuous random variable with pdf fX . Suppose we
want to know the pdf of the random variable Y = g(X ), fY . We
can find this pdf the method of cdf.

1 Express {Y ≤ y} in terms of X
2 Express FY (y) = P(Y ≤ y) in terms of FX

3 fY (y) = d
dy FY (y)
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Univariate Transformations

Let Y = g(X ) where X is a random variable with pdf fX (x). The
cdf of Y is

FY (y) = P(Y ≤ y) = P(g(X ) ≤ y) = P({x : g(x) ≤ y})

=
∫

{x :g(x)≤y}
fX (x)dx

If g is an increasing function, g(X ) ≤ y ⇐⇒ X ≤ g−1(y)
and FY (y) = P(g(X ) ≤ y) = P(X ≤ g−1(y)) = FX (g−1(y))

If g is an decreasing function, g(X ) ≤ y ⇐⇒ X ≥ g−1(y)
and
FY (y) = P(g(X ) ≤ y) = P(X ≥ g−1(y)) = 1 − FX (g−1(y))

Generally, if g is monotonic and the derivative of g−1 is
continuous, then

fY (y) = d
dy FY (y) =

fX (g−1(y))
∣∣∣∣ d
dy g−1(y)

∣∣∣∣ , y ∈ Y

0, otherwise
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Square of a Standard Normal

Let Z ∼ N(0, 1) with pdf

f (z) = 1√
2π

e−z2/2, −∞ < z < ∞.

Find the distribution of Y = Z 2.
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Binomial Distribution
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Poisson Distribution
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Poisson Variance
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Geometric Distribution
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Geometric Distribution: Mean
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Geometric Distribution: Mean
Lemma
Suppose the

∑∞
x=1 h(p, x) converges for some p ∈ (a, b) and

(i) for all x , ∂

∂p h(p, x) is continuous for p ∈ (a, b).

(ii)
∑∞

x=1
∂

∂p h(p, x) converges uniformly for p ∈ [c, d ] ⊆ (a, b).

Then
∑∞

x=1
∂

∂p h(p, x) = d
dp
∑∞

x=1 h(p, x).
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Geometric Distribution: Mean
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Memoryless Property
Lemma
If X ∼ Geometric(p), then P(X ≥ t + s|X ≥ s) = P(X ≥ t) for all
t, s ≥ 0.
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Memoryless Property
Lemma
Suppose that X is a random variable such that

(i) Supp(X)⊆ Z.
(ii) P(X ≥ 0) > 0
(iii) P(X ≥ t + s|X ≥ s) = P(X ≥ t) for all non-negative integers

s and t.
Then X ∼ Geometric(p), where p = P(X = 0).
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Memoryless Property
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Negative Binomial Distribution
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Uniform Distribution
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Exponential Distribution
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Memoryless Property
Lemma
Suppose X is a continuous random variable. Then
P(X ≥ t + s|X ≥ t) = P(X ≥ s) for all s, t ≥ 0 and P(X ≥ 0) > 0
if and only if X ∼ Exp(θ) for some θ > 0.
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Memoryless Property
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Memoryless Property
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Memoryless Property
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Gamma Distribution
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Normal Distribution
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Beta Distribution
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Chi-Square Distribution
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Student’s t distribution
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Joint Distributions
Lemma
If X ∼ Geometric(p), then P(X ≥ t + s|X ≥ s) = P(X ≥ t) for all
t, s ≥ 0.

Definition (1.17)
The joint distribution function of two random variables X and Y
id denoted by FX ,Y and is defined as

FX ,Y (x , y) = P(X ≤ x , Y ≤ y), for all x , y ∈ R.

Definition (Joint mass functions and densities (1.18))
If X and Y are both discrete, then their joint mass function
is defined as pX ,Y (x , y) = P(X = x , Y = y) for all x , y
If X and Y are jointly continuous, then there exists a function
fX ,Y (x , y) called a joint probability density function such
that
P(X ≤ x , Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX ,Y (s, t)dtds, for all x , y ∈ R
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Marginal Distributions
(i) To obtain the marginal density function for X or Y in the

discrete case sum over the range of the other variable:
pX (x) =

∑
y∈Y pX ,Y (x , y) and py (y) =

∑
x∈X pX ,Y (x , y)

(ii) To obtain the marginal densities in the jointly continuous case,
integrate over the range of the other variable:
fX (x) =

∫∞
−∞ fX ,Y (x , y)dy and fY (y) =

∫∞
−∞ fX ,Y (x , y)dx

Note: To calculate joint probabilities over non-rectangular sets,
sum the joint pmf (discrete) or integrate the joint pdf (continuous)
over the desired region.

P((X , Y ) ∈ A) =
{∑

(x ,y)∈A pX ,Y (x , y), (discrete)∫ ∫
A fX ,Y (x , y)dxdy , (continuous)
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Calculating a Joint Probability

Consider the joint density

fX ,Y (x , y) =
{

e−y , 0 ≤ x ≤ y < ∞
0, otherwise

Find P(X ≤ 1, Y ≤ 2).
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Conditional Distributions

The support of a random variable X , Supp(X ) = {x : fX (x) > 0}.

Definition (1.19)
The conditional mass function of X given Y = y is defined as

fX |Y =y (x) = fX ,Y (x , y)
fY (y) , for all x ∈ Supp(X )

and is defined to be 0 for all y ̸∈ Supp(Y ) (i.e. for all y such that
fY (y) = 0).

Definition (1.20)
Suppose that (X , Y ) are continuous R.V.’s. The conditional
density of X given Y = y is defined as

fX |Y =y (x) = fX ,Y (x , y)
fY (y) , for all x ∈ Supp(X )

and is defined to be 0 for all y ̸∈ Supp(Y ). 73 / 110



X |Y = y

Suppose (X , Y ) are jointly continuous with density

fX ,Y (x , y) =
{

e−y , 0 ≤ x ≤ y < ∞
0, otherwise

.

74 / 110



Y |X = x

Suppose (X , Y ) are jointly continuous with density

fX ,Y (x , y) =
{

e−y , 0 ≤ x ≤ y < ∞
0, otherwise

.
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Joint and Condtional Expectations
Definition (1.21)
Let X and Y be R.V.’s with joint density fX ,Y and g : R2 → R,
then the expected value of g(X , Y ) exists if∫ ∞

−∞

∫ ∞

−∞
|g(x , y)|fX ,Y (x , y)dxdy < ∞.

In such a case E [g(X , Y )] =
∫∞

−∞
∫∞

−∞ g(x , y)fX ,Y (x , y)dxdy . (In
the case that X and Y are discrete, integrals are replaced with
sums).

Definition (1.22)
Let X and Y be jointly continuous R.V.’s and let h : R → R. The
conditional expectation of h(X ) given Y = y is

E [h(X )|Y = y ] =
∫ ∞

−∞
h(x)fX |Y =y (x)dx

provided
∫∞

−∞ |h(x)|fX |Y =y (x)dx < ∞.
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E [X 2 + Y ]

Let X and Y be jointly continuous R.V.’s with joint density

fX ,Y (x , y) =
{

e−y , 0 ≤ x ≤ y < ∞
0, otherwise
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E [X 2|Y = y ]

Let X and Y be jointly continuous R.V.’s with joint density

fX ,Y (x , y) =
{

e−y , 0 ≤ x ≤ y < ∞
0, otherwise
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Tower Property
Definition (1.23)
The conditional expectation of X given Y is a function of Y ,
denoted E [X |Y ]. This function, say h, is specified as
h(y) = E [X |Y = y ].

Theorem (Tower Property)
E [X ] = E [E [X |Y ]] provided E [X ] exists.
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Proof of the Tower Property
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Conditional Variance Formula

Definition (1.24)
The conditional variance of X given Y , denoted V (X |Y ), is
defined as

V (X |Y ) = E [(X − E [X |Y ])2|Y ] = E [X 2|Y ] − (E [X |Y ])2

Theorem (Conditional Variance Formula)

V (X ) = V (E [X |Y ]) + E [V (X |Y )]
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E[X] using the Tower Property

Toss a coin n times. Suppose p = P(heads) is unknown. Let

X = the number of heads observed out of n tosses,

then X |p ∼ Binomial(n, p). Suppose p ∼ Beta(a, b).
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V(X) using the Conditional Variance

Toss a coin n times. Suppose p = P(heads) is unknown. Let

X = the number of heads observed out of n tosses,

then X |p ∼ Binomial(n, p). Suppose p ∼ Beta(a, b).
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V(X) using the Conditional Variance
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Independence
Definition (1.25)
Two random variables are said to be independent if

P(X ≤ x , Y ≤ y) = P(X ≤ x)P(Y ≤ y), for all x , y ∈ R.

Theorem
If X and Y are jointly continuous R.V.’s, then X and Y are
independent if and only if

fX ,Y (x , y) = fX (x)fY (y), for all x , y ∈ R.
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Proof
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Independence
Theorem
If there exists integrable functions g and h such that
fX ,Y (x , y) = g(x)h(y) for all x , y ∈ R, then X and Y are
independent.

Theorem
If X and Y are independent, then for any functions g and h
E [g(X )h(Y )] = E [g(X )]E [h(Y )].
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Covariance
Definition (1.26)
The covariance of two R.V.’s X and Y is defined as

Cov(X , Y ) = E [(X − E [X ])(Y − E [Y ])].

Properties:
(i) Cov(X , Y ) = E [XY ] − E [X ]E [Y ]
(ii) Cov(X , Y ) = Cov(Y , X )
(iii) Cov(X + Y , Z ) = Cov(X , Z ) + Cov(Y , Z )
(iv) Cov(aX , Y ) = aCov(X , Y ) for any a ∈ R
(v) Cov(X , X ) = Var(X )
(vi) For all ai , bi ∈ R,

Cov

 n∑
i=1

aiXi ,
m∑

j=1
biYi

 =
n∑

i=1

m∑
j=1

aibiCov(Xi , Yi)
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Correlation
Definition (1.27)
The correlation between two R.V.’s X and Y is defined as

ρX ,Y = Cov(X , Y )√
Var(X )Var(Y )

.

Properties of ρX ,Y :
(i) ρX ,Y is unitless
(ii) |ρX ,Y | ≤ 1
(iii) If ρX ,Y = 1, then Y = a + bX where b > 0. If ρX ,Y = −1,

then Y = a + bX where b < 0. If ρX ,Y = 0, then there is no
linear association between X and Y (this is not the same as no
association).
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Independence and Covariance
Theorem
If X and Y are independent, then Cov(X , Y ) = 0.
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Independence and Covariance

Does Cov(X , Y ) = 0 imply X and Y are independent? No!

Let X ∼ N(0, 1) and Y = I|X |<2. X and Y are clearly not
independent, but

Cov(X , Y ) = E [XY ] − E [X ]E [Y ]
= E [XI|X |<2] (since E [X ] = 0)

=
∫ ∞

−∞
xI|x |<2

1√
2π

e−x2/2 dx

=
∫ 2

−2

1√
2π

xe−x2/2 dx

= 0. (since xe−x2/2 is odd)
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Bivariate Transformations - Discrete Case

Let X ∼ Poisson(θ) and Y ∼ Poisson(λ) with X independent of Y .
Find the distribution of U = X + Y .
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Bivariate Transformations - Discrete Case
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Bivariate Transformations - Continous Case
Theorem
Let X and Y be two continuous random variables with joint density
f (x , y). Define two new random variables U = g1(X , Y ) and
V = g2(X , Y ) with one-to-one functions g1 and g2. The joint
density of U and V is given by
fU,V (u, v) = fX ,Y

(
h1(u, v), h2(u, v)

)
|J|, where x = h1(u, v) and

y = h2(u, v) are the inverse transformations associated with g1 and

g2, and J =
∣∣∣∣∣ ∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣∣.
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Bivariate Transformations - Continuous Case

Let X and Y be independent R.V.’s with X ∼ Gamma(α, 1) and
Y ∼ Gamma(β, 1). Find the distribution of

(U, V ) =
( X

X + Y , X + Y
)

.
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Bivariate Transformations - Continuous Case
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Inequalities
1 Markov’s Inequality: Let g be a nonnegative, increasing

function such that E [g(X )] exists. Then,

g(a)P(X > a) ≤ E [g(X )], for every a ∈ R.

2 Chebychev’s Inequality: P(|X − E [X ]| > k) ≤ Var(X )/k2, for
all k > 0.

3 Cauchy-Schwarz Inequality:

|EXY | ≤ E|XY | ≤
(
E|X |2

)1/2(E|Y |2
)1/2

.

4 Jensen’s Inequality: If g(x) is a convex function, then
Eg(X ) ≥ g(EX ).

A function g(x) is convex if
g(λx + (1 − λ)y) ≤ λg(x) + (1 − λ)g(y) for all x and y , where
λ ∈ (0, 1). A function g(x) is concave if −g(x) is convex.
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Inequalities

Prove that |ρX ,Y | ≤ 1.
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Convergence in Probability
Motivation: We want to estimate a population parameter θ.
Suppose that we have independent and identically distributed (i.i.d.)
data, X1, X2, . . . , Xn. We want to find a sequence of estimators θ̂n
such that θ̂n “converges” to θ as the sample size n increases to
infinity. This property is called consistency.

Definition (1.28)
Let {Xn, n ≥ 1} be a sequence of R.V.’s. We say that the sequence
{Xn, n ≥ 1} converges in probability to a R.V. X if for all ε > 0,

P(|Xn − X | > ε) → 0 as n → ∞.

This is denoted by Xn
P→ X as n → ∞.

Definition (1.29)

A sequence of estimators {θ̂n, n ≥ 1} is said to be weakly
consistent for θ if θ̂n

P→ θ.
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Weak Consistency of X̄n

Suppose that X1, X2, . . . are iid with E [X1] = θ and
Var(X1) = σ2 < ∞. Let θ̂n =

∑n
i=1 Xi/n. Is the sequence of

estimators, {θ̂n, n ≥ 1}, weakly consistent for θ?

100 / 110



Convergence in Probability
Theorem (Weak Law of Large Numbers)
Let {Xn, n ≥ 1} be a sequence of iid R.V.’s such that E [X1] exists.
Then,

1
n

n∑
i=1

Xi
P→ E [X1].

Properties of Convergence in Probability:

1 If Xn
P→ X and Yn

P→ Y , then Xn ± Yn
P→ X ± Y .

2 If Xn
P→ X and Yn

P→ Y , then XnYn
P→ XY .

3 If Xn
P→ X and Yn

P→ Y , then Xn/Yn
P→ X/Y , (provided

Yn, Y ̸= 0 with probability 1).

4 If Xn
P→ X and f is a continuous function, then f (Xn) P→ f (X ).
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Suppose {Xn, n ≥ 1} are iid with mean E [X1] = θ and
Var(X1) = σ2 < ∞. Let θ̂n = X̄ . Show that
σ̂2

n =
∑n

i=1(Xi − θ̂n)2/n is a weakly consistent estimator of σ2.
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Theorem
Tn is a weakly consistent sequence of estimators for g(θ) if
ETn → g(θ) and Var(Tn) → 0.
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Convergence in Distribution
Definition (1.30)
A sequence of R.V.’s {Xn, n ≥ 1} is said to converge in
distribution to a R.V. X (Xn

D→ X ) if

FXn(x) → FX (x) as n → ∞

for every x ∈ R such that FX is continuous at x .

Motivation: If θ̂n is a consistent estimator of θ, then how accurate
is it? We want to know what the value of P(|θ̂n − θ| > ε) is (What
is the probability that θ̂n is beyond some threshold from θ?)

Theorem (Central Limit Theorem (CLT))
Let X1, X2, X3, . . . be iid R.V.’s with E [X1] = θ and
Var(X1) = σ2 < ∞. Then

1
n
∑n

i=1 Xi − θ

σ/
√

n
D→ Z where Z ∼ N(0, 1).
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Suppose {Xn, n ≥ 1} are iid with mean E [X1] = θ and
Var(X1) = σ2 < ∞. Let θ̂n =

∑n
i=1 Xi/n. Then by the CLT

θ̂n − θ

σ/
√

n
D→ Z where Z ∼ N(0, 1),

so that for large n

P(|θ̂n − θ| > ε) = P
(∣∣∣∣∣ θ̂n − θ

σ/
√

n

∣∣∣∣∣ >
ε

σ/
√

n

)
≈ P

(
|Z | >

ε

σ/
√

n

)
.

Thus for a large sample size, we can approximate these probabilities
using the standard normal distribution.
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Delta Method
Theorem (Slutsky’s theorem)

If Xn
D→ X and Yn

P→ y ∈ R, then XnYn
D→ X · y.

Theorem

If Xn
P→ X, then Xn

D→ X.

Theorem

For a constant a ∈ R, Xn
P→ a iff Xn

D→ a.

Theorem (Delta Method)

Suppose
√

n(Yn − µ) D→ N(0, σ2) and let g : R → R be a function
with non-zero derivative at µ . Then

√
n(g(Yn) − g(µ)) D→ N(0, [g ′(µ)]2σ2).
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“Proof” Of Delta Method

Suppose g is differentiable in an open neigborhood of µ with
g ′(µ) ̸= 0 and g ′ continuous at µ. Then we have the following
Taylor expansion about µ: for any x near µ there exists an x∗

between x and µ such that
g(x) = g(µ) + g ′(x∗)(x − µ).

By assumption,
√

n(Yn − µ) D→ N(0, σ2), so

Yn − µ = 1√
n

√
n(Yn − µ) D→ 0 · Z = 0,

by Slutsky’s theorem, where Z ∼ N(0, σ2). Then by Lemma 44,
Yn − µ

P→ 0. Define Y ∗
n to be the random variable such that

g(Yn) = g(µ) + g ′(Y ∗
n )(Yn − µ).

Then Y ∗
n

P→ µ, since Yn
P→ µ and |Y ∗

n − µ| ≤ |Yn − µ|. Thus,
√

n(g(Yn) − g(µ)) = g ′(Y ∗
n )︸ ︷︷ ︸

P→g ′(µ)

√
n(Yn − µ)︸ ︷︷ ︸
D→N(0,σ2)

D→ N(0, [g ′(µ)]2σ2).
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Example

Let X1, X2, . . . be iid Uniform(0, θ). Consider the estimator
X(n) = max{X1, . . . , Xn} for θ (which is the MLE of θ). Show that
n(θ − X(n))

D→ X where X ∼ Exp(θ).
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Fn(θ−X(n))(x) = 1 − P
(

X1 ≤ −x
n + θ

)n

=


1, if − x/n + θ ≤ 0

1 −
(−x/n + θ

θ

)n
, if 0 < −x/n + θ < θ

0, if − x/n + θ ≥ θ

=


1, if − x/n + θ ≤ 0

1 −
(

1 − x/θ

n

)n
, if 0 < −x/n + θ < θ

0, if − x/n + θ ≥ θ

→
{

1 − e−x/θ, x ≥ 0
0, x < 0
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Variance Stabilizing Transformation

Let X1, X2, . . . , Xn, . . . be iid Poisson(λ), λ > 0. Find the
asymptotic distribution of

√
n(2

√
X̄ − 2

√
λ).
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