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Point Estimation

Given a sample X1, X2, . . . , Xn
iid∼ f (x |θ)

iid sample from a population with density f (x |θ)

θ is an unknown parameter

We want to find a good “estimator” of θ.

Point estimation uses the value of a statistic to estimate a
population parameter. The value is the point estimate of the
parameter.

Definition (2.1)
A statistic is a function of the data vector (X1, X2, . . . , Xn), which
does not depend on unknown parameters.
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Estimators

Consider a sample X = (X1, X2, . . . , Xn) which is iid N(µ, σ2).

µ and σ2 are unknown population parameters

T (X) =
∑n

i=1 Xi/n = X̄ is an estimator of µ

X̄ + µ is not a statistics since it depends on the unknown
parameter µ

s2 = 1
n−1

∑n
i=1(Xi − X̄ )2 is an estimator of σ2

Note that statistics need not be univariate. T (X) = (X̄ , s2) is
a multivariate statistic.
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Method of Moments

Idea: Equate the first few moments of a population to the
corresponding moments of a sample to get as many equations as
needed to solve fr the unknown parameters.

Setup: Given an iid sample X1, X2, . . . , Xn ∼ f (x |θ)

The kth population moment is µk = E [X k
1 ]

The kth sample moment is mk =
∑n

i=1 X k
i /n

If you have 1 parameter: set m1 = µ1 and solve for the parameter

If you have 2 parameters: set m1 = µ1 and m2 = µ2 and solve for
the parameters
...
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Method of Moments

Let X1, X2, . . . , Xn
iid∼ U(α, 1), α unknown. Use the method of

moments to estimate α.
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Method of Moments

Let X1, . . . , Xn
iid∼ Binomial(k, p), k =# of trials and p =probability

of success are both unknown. Use the method of moments to
estimate both k and p.
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Method of Moments

Let X1, . . . , Xn
iid∼ N(µ, σ2). Estimate µ and σ2 using the method of

moments.
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Method of Moments
1 The MoM is generally very easy to find
2 If there is a unique solution to MoM equations, then the

estimator is weakly consistent and under mild additional
assumptions it is asymptotically normal, that is
√

n(θ̂ − θ) D→ N(0, Σ).
3 A drawback to the MoM is that the estimators need not make

sense. For example, in the uniform example if we have
X1 = 0.1, X2 = 0.6, X3 = 0.7, X4 = 0.9, then α̂ = 0.2, but
X(1) = 0.1 so we must have α < 0.1. Similarly, for the
Binomial example, it is possible to have data that result in
p̂ < 0 and k̂ having a non-integer value.
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Maximum Likelihood Estimator (MLE)
Let X1, X2, . . . , Xn

iid∼ f (x |θ), θ an unknown parameter

Idea: Based on the observed data, choose the value of θ such that
the observed data is “most likely” to have occurred.

Suppose that X ∼ Binomial(5, 0.6), so the true value of n and p are
n = 5 and p = 0.6. Suppose that n is known and p is unknown, but
we observe X = 2. What is the most likely value of p?

p = 0: P(X = 2) = 0

p = 0.2: P(X = 2) =
(5

2
)
0.22(1 − 0.2)3 = 0.2048

p = 0.4: P(X = 2) =
(5

2
)
0.42(1 − 0.4)3 = 0.3456

p = 0.6: P(X = 2) =
(5

2
)
0.62(1 − 0.6)3 = 0.23

p = 0.8: P(X = 2) = 0.0512

p = 1: P(X = 2 = 0)

From this dataset the MLE is p̂ = 0.4.
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MLE

Definition (2.2)

Let X1, X2, . . . , Xn
iid∼ f (x |θ) (pdf or pmf). Given the data X = x,

the likelihood function is defined as the joing pdf (or pmf) of the
data viewed as a function of θ,

L(θ|x) =
n∏

i=1
f (xi |θ)

The maximum likelihood estimator (MLE) of θ is defined as

θ̂MLE = argmaxθ∈ΘL(θ|x).
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MLE

If the likelihood function is differentiable in θ, then possible
candidates for the MLE can be found by setting the set of first
derivatives to 0 and solving for θ. To make this easer, we will often
use the log-likelihood instead:

ℓ(θ|x) = log(L(θ|x)) =
n∑

i=1
log(f (xi |θ)).

We can do this because the log function is a monotonically
increasing function, so

argmaxθ∈ΘL(θ|x) = argmaxθ∈Θℓ(θ|x)
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MLE - Binomial

Let X ∼ Binomial(5, p). Find the MLE of p. Note that p ∈ [0, 1].
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MLE - Exponential

Let X1, X2, . . . , Xn
iid∼ Exp(θ), θ > 0. Find the MLE of θ.
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MLE - Normal with known variance

Let X1, X2, . . . , Xn
iid∼ N(θ, 1), θ ∈ R. Find θ̂MLE .
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MLE - Normal with known variance

Here we present an alternative least squares argument to fine the
MLE of µ.
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MLE - Normal with restricted parameter space

Let X1, X2, . . . , Xn
iid∼ N(θ, 1), θ ∈ [0, ∞). Find θ̂MLE .
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MLE - Normal

Let X1, X2, . . . , Xn
iid∼ N(µ, τ), µ ∈ R, τ > 0. Find the MLEs of µ

and τ .

17 / 97



Bivariate Maximization

To ensure a local maximum, the following conditions need to be
met:

a At least one second partial derivative is negative:
∂2l
∂µ2 |µ=µ̂,τ=τ̂ < 0 or ∂2l

∂τ2 |µ=µ̂,τ=τ̂ < 0.

b The determinant of the second derivatives is positive:∣∣∣∣∣
∂2l
∂µ2

∂2l
∂µ∂τ

∂2l
∂µ∂τ

∂2l
∂τ2

∣∣∣∣∣
µ=µ̂,τ=τ̂

> 0.
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MLE - Normal
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MLE - Uniform

Let X1, X2, . . . , Xn
iid∼ U[0, θ], θ ∈ (0, ∞). Find θ̂MLE .
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MLE - Uniform

Let X1, X2, . . . , Xn
iid∼ U[θ, θ + 1], θ ∈ (0, ∞). Find θ̂MLE .
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MLE - Cauchy

Suppose X1, . . . , Xn
i .i .d .∼ f (x |θ) = 1

π
[
1+(x−θ)2

] . The log-likelihood is

ℓ(θ; x) = −n log π −
∑n

i=1 log
[
1 + (xi − θ)2]

. Differentiating both
sides with regard to θ and setting it to zero,

ℓ′(θ; x) = 2
n∑

i=1

θ − xi
1 + (xi − θ)2 = 0.

When θ → −∞, l ′(θ; x) → 0− (from below); when θ → ∞,
l ′(θ; x) → 0+ (from above). Hence, there are ≥ 1 and odd number
of roots. Enforcing a common denominator for all θ−xi

1+(xi −θ)2 , we get
a polynomial of degree 2n − 1. So the number of roots satisfies
Rn = 2Kn − 1, 1 ≤ Kn ≤ n. Reeds (1985) shows that

P(Kn = k) → π−k

k! e−1/π, as n → ∞.

Actually, Kn ≤ 4 with probability close to 1 for all n.
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MLE
1 Under mild conditions, the MLE is both consistent and

asymptotically normal.
2 Advantages over MoM estimator

Estimator is always in the parameter space

Always a function of a sufficient statistic (more on this later)
3 Disadvantages

Solution may be difficult to solve for or not available in closed
form.

4 MLE’s may not be unique.
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MLE - Functions of the Parameter

If θ̂ is the MLE of θ, then for any function g(θ), the MLE of g(θ) is
g(θ̂).

Ex. Let X1, X2, . . . , Xn
iid∼ U[0, θ]. What is the MLE of θ2?
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MLE - Consistency

Regularity Conditions:

R0 The pdfs are identifiable. That is, θ ̸= θ′ =⇒ f (·|θ) ̸= f (·; θ′).

R1 The support of the pdfs does not depend on θ. That is, the
support of f (·; θ) is the same for all θ ∈ Θ.

R2 The true value of θ, θ0, is an interior point of the parameters
space Θ.

R3 The pdf f (x |θ) is differentiable in θ for all x .

Theorem

Suppose X1, X2, . . . , Xn
iid∼ f (x |θ) and suppose the regularity

conditions R0-R3 hold. Then the MLE θ̂n converges in probability
to θ0.
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MLE - Asymptotic Normality
R4 The pdf f (x |θ) is three times differentiable in θ for all x , and

we can exchange the order of integration and the first and
second derivative with respect to θ.

R5 For all θ0, there exists a c and a function M(x) (both possible
depending on θ0) such that Eθ0 [M(X1)] < ∞ such that∣∣∣∣∣ ∂3

∂θ3 log f (x |θ)
∣∣∣∣∣ ≤ M(x) for all x and for all θ ∈ [θ0 − c, θ0 + c].

Theorem

Let X1, X2, . . . , Xn
iid∼ f (x |θ), and suppose the regularity conditions

R0-R5 hold. Then the MLE, θ̂n, satisfies
√

n(θ̂n − θ0) d→ N(0, I−1(θ0)),

where I(θ) = E
[(

∂

∂θ
log f (X1|θ)

)2]
.
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MLE - AN Proof
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MLE - AN Proof
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MLE - AN Proof
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Unbiasedness
Definition (2.3)
The bias of an estimator T of a parameter θ is defined as

bias(T ) = Eθ[T ] − θ.

The estimator T is said to be unbiased if bias(T ) = 0 for all θ. Let
bn(θ) = Eθ[Tn] − θ. If bn(θ) → 0 as n → ∞ for all θ, then Tn is
asymptotically unbiased.
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Unbiased Estimator - Binomial

Let X ∼ Binomial(n, p) with n known and p ∈ [0, 1] unknown. Find
and unbiased estimator of p.
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Unbiased Estimator - Normal

Let X1, X2, . . . , Xn
iid∼ N(µ, σ2), µ ∈ R and σ2 > 0.
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Unbiased Estimator - Uniform

Let X1, X2, . . . , Xn
iid∼ U(0, θ). Is the θ̂ = X(n) unbiased?
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Efficiency - UMVUE

We want the unbiased estimator with the lowest variance (least
spread out sampling distribution).

Definition (2.4)

θ̂ is a uniformly minimum variance unbiased estimator (UMVUE) of
a parameter θ if (1) θ̂ is unbiased, and (2) for any other unbiased
estimator θ̃, Varθ(θ̂) ≤ Varθθ̃ uniformly for all θ.

There is no “best” estimator for all θ if we don’t restrict the class of
estimators. For example, the estimator θ̂ = 0 is the best when θ = 0
but a terrible estimator if θ ̸= 0. Even after restriction to unbiased
estimators, it is often not easy to find the UMVUE. However, there
exists a lower bound for the variances of all unbiased estimators.

34 / 97



Fisher Information
In the case of unbiased estimators, we can establish a lower bound
on the possible achievable variances under some conditions. To find
this lower bound, we need to first introduce the concept of Fisher
information.

Definition (2.5)

Let X1, X2, . . . , Xn
iid∼ f (x |θ). Each Xi carries "some information

about θ, so X1, X2, . . . , Xn carries "n pieces of information" about θ.
The Fisher information is defined as

I(θ) = E
[

∂ log f (X |θ)
∂θ

]2
= −E

[
∂2 log f (X |θ)

∂θ2

]
.

Note that this is based on one observation. The final equality only
holds under regularity conditions (such as R0-R4) which we will
discuss later, but will hold for most distributions we use in this class.
The total information is In(θ) = nI(θ), in the iid case.
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Fisher Information - Poisson

Let X ∼ Poisson(λ). Find the Fisher information.
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Fisher Information - Binomial

Let X1, X2, . . . , Xn
iid∼ Binomial(k, p), k known and p ∈ [0, 1]

unknown. Find the Fisher information for p.
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Cramer-Rao Lower Bound
Theorem (3.2 Cramer-Rao lower bound)
Suppose X = (X1, . . . , Xn) ∼ f (x|θ)and f (x|θ) satisfies the
following regularity conditions:

1 the support of f (x|θ) does not depend on θ; and
2 for any statistic T (X) satisfying Var(T ) < ∞, the following

exchangeability between integration and differentiation holds:

d
dθ

ET (X) = d
dθ

∫
T (x)f (x|θ)dx =

∫
T (x) d

dθ
f (x|θ)dx.

If T is an unbiased estimator for θ, then Var(T ) ≥ I−1
n (θ), where

In(θ) = E
[

d
dθ log f (X |θ)

]2
is the Fisher information.

In addition, if T is an unbiased estimator for g(θ),

Var(T ) ≥
[ d
dθ

g(θ)
]2I−1

n (θ).
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Cramer-Rao Lower Bound - Proof
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Cramer-Rao Lower Bound - Comments
1 If T (X) is an unbiased estimator of g(θ) and

X = (X1, . . . , Xn) are iid, then

Var(T (X)) ≥ [g ′(θ)]2
nI(θ) .

If Var(T (X)) = [g ′(θ)]2
nI(θ) , then T (X) has the smallest variance,

and we call T efficient (the best unbiased estimator).
2 If the pdf f (x |θ) is a regular one parameter exponential family,

then there exists an unbiased estimator T (X) such that its
variance achieves the Cramer-Rao lower bound. A one
parameter exponential family has a density of the form

f (x |θ) = h(x)c(θ)eT (x)w(θ).

In particular, if E [T (X)] = g(θ), d
dθ w(θ) ̸= 0 and is

continuous, and the support does not depend on θ, then T (X)
is the UMVUE for g(θ) and achieves the C-R lower bound.

40 / 97



Cramer-Rao Lower Bound - Comments

The regularity conditions are critical. Let X iid∼ U(0, θ). Recall the
MLE is θ̂ = X(n) and E [X(n)] = n

n+1θ.
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Cramer-Rao Lower Bound - Bernoulli

Let X1, X2, . . . , Xn
iid∼ Bernoulli(p) = Binomial(1, p).
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Cramer-Rao Lower Bound - Normal

Let X1, X2, . . . , Xn
iid∼ N(µ, σ2). Find the C-R lower bound for the

variance of unbiased estimators of µ and σ2.

43 / 97



Cramer-Rao Lower Bound - Normal
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Relative Efficiency
Definition (2.6)
If T1(X) and T2(X) are two unbiased estimators of g(θ), the
relative efficiency of T2 relative to T1 is given by

Var(T1(X))
Var(T2(X))

Definition (2.7)
If T1(X) is an unbiased estimator of θ and

Var(T1(X))
C-R lower bound → 1 as n → ∞,

then T1(X) is said to be asymptotically efficient.

45 / 97



Relative Efficiency - Uniform

Let X1, X2, . . . , Xn
iid∼ U(0, θ). Consider the following two unbiased

estimators of θ

1 T1(X) = n+1
n X(n)

2 T2(X) = 2X̄

Var(T1(X)) = θ2

n(n + 2) and Var(T2(X)) = θ2

3n , so

RE = Var(T1(X))
Var(T2(X)) =

θ2

n(n + 2)
θ2

3n

= 3
n + 2 → 0 as n → ∞.
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Asymptotically Efficient

Let X1, X2, . . . , Xn
iid∼ N(µ, σ2). Consider the sample variance S2

n .
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Mean Squared Error

We need not always use unbiased estimators. In such a case, we can
compare the MSE’s instead.

Definition (2.8)
Let T1(X) be an estimator of θ. The mean squared error (MSE)
is defined as

MSE = Eθ(T1(X) − θ)2.

Note: It is easy to see that

E(T − θ)2 = E(T − ET )2 + (ET − θ)2 = VarT + bias2(T ).

An estimator with good MSE usually has both small variance and
small bias. For unbiased estimators, we have MSE = Var(T ).
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MSE

Let X1, X2, . . . , Xn
iid∼ N(µ, σ2). We want to estimate σ2. Consider

the two estimators:

1 T1(X) = 1
n − 1

∑n
i=1(Xi − X̄ )2 (sample variance/unbiased)

2 T2(X) = 1
n

∑n
i=1(Xi − X̄ )2 (MLE/biased)

Which one is better?
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Sufficiency

Let X1, X2, . . . , Xn ∼ f (x |θ), θ is unknown. We want to estimate θ.
We may not be able to achieve the C-R lower bound, but we still
want the best estimator. We want an estimator that still contains
all the information about the parameter, but how do we justify this?
This is the concept of sufficiency.

Definition (2.9)
Let (X1, X2, . . . , Xn) ∼ f (x|θ). A statistic T (X) is a sufficient
estimator of θ iff for each value of θ the conditional distribution of
X given the value of T (X) does not depend on θ, i.e.

f (x|T (x)) is free of θ.
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Sufficient - Bernoulli

Let X1, X2, . . . , Xn
iid∼ Bernoulli(θ). Show that T (X) = X̄ is a

sufficient estimator of θ.
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Sufficient - Bernoulli

Show that Y = 1
6(X1 + 2X2 + 3X3) is not a sufficient estimator of

the Bernoulli parameter θ.
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Factorization Theorem
Theorem (Fisher-Neyman Factorization Theorem)
Let f (x|θ) denote the joint pdf of a sample X . A statistic T (X) is
a sufficient statistic of θ iff there exists functions g(t, θ) and h(x)
such that for all x and θ,

f (x|θ) = g(T (x), θ)h(x).
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Sufficient - Bernoulli

Let X1, X2, . . . , Xn
iid∼ Bernoulli(θ). Find a sufficient statistic for θ.
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Sufficient - Normal with known variance

Let X1, X2, . . . , Xn
iid∼ N(µ, σ2) where σ2 is known. Find a sufficient

statistic for µ.
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Sufficient - Uniform

Let X1, X2, . . . , Xn
iid∼ U(0, θ). Find a sufficient statistic for θ.
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Sufficient - Normal

Let X1, X2, . . . , Xn
iid∼ N(µ, σ2) where µ and σ2 are unknown. Find

a sufficient statistic for θ = (µ, σ2).
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Sufficient - Exponential Family

Theorem (Exponential family sufficient statistics)
Let X1, X2, . . . , Xn be a random sample (iid) that belongs to an
exponential family. That is the pdf (or pmf) can be written in the
form

f (x |θ) = h(x)c(θ) exp
{ k∑

i=1
wi(θ)ti(x)

}
.

Then T (X) = (
∑n

j=1 t1(Xj), . . . ,
∑n

j=1 tk(Xj)) is a sufficient
statistic for θ = (θ1, . . . , θd), d ≤ k.

Note: When d < k, it is called a curved exponential family, and
when k = 1 it is called a one parameter exponential family.
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Sufficient - Bernoulli

Let X1, X2, . . . , Xn
iid∼ Bernoulli(θ). Find a sufficient statistic for θ.
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Sufficient - Normal

Let X1, X2, . . . , Xn
iid∼ N(µ, σ2) where µ and σ2 are unknown. Find

a sufficient statistic for θ = (µ, σ2).
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Sufficient - Normal

Let X1, X2, . . . , Xn
iid∼ N(θ, θ2). Find a sufficient statistic for θ.
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Rao-Blackwell
Theorem (Rao-Blackwell)
Let T (X) be any unbiased estimator of θ and let W (X) be a
sufficient statistic for θ. Define ϕ(W ) = E [T |W ]. Then
Eϕ(W ) = θ and Var(ϕ(W )) ≤ Var(T ) for all θ.

Note: The previous theorem says that ϕ(W ) is unbiased

Eϕ(W ) = E [E [T |W ]] = E [T ] = θ

and is a uniformly better unbiased estimator than T since

Var(T ) = Var(E [T |W ])︸ ︷︷ ︸
=Var(ϕ(W ))

+ E [Var(T |W )]︸ ︷︷ ︸
≥0

≥ Var(ϕ(W )).
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Rao-Blackwell - Bernoulli

Let X1, X2, . . . , Xn
iid∼ Bernoulli(θ).
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Uniqueness of UMVUE
Theorem
If T is a UMVUE for g(θ), then T is unique.
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Uniqueness of UMVUE
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Complete
Definition (2.10)
Let f (t|θ) be a family of pdfs for a statistic T (X). The family of
pdfs is called complete if Eθ[g(T )] = 0 for all θ implies
P(g(T ) = 0) = 1 for all θ. Equivalently, T (X) is called a complete
statistic.
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Complete - Bernoulli

Let X1, X2, . . . , Xn
iid∼ Bernoulli(p) 0 < p < 1. Recall that

T (X) =
∑n

i=1 Xi is a sufficient statistic for p. Is T complete?
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Complete - Uniform

Let X1, X2, . . . , Xn
iid∼ U(0, θ), θ ∈ (0, ∞). We have shown that X(n)

is a sufficient statistic and is the MLE for θ. Is it complete?
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Complete - Exponential Family

Theorem (Complete statistic in an exponential family)

Let X1, X2, . . . , Xn
iid∼ f (x |θ) (θ may be a vector). If f (x |θ) forms

an exponential family given by

f (x |θ) = h(x)c(θ) exp{
k∑

j=1
wj(θ)tj(x)}

where θ = (θ1, . . . , θd), d ≤ k, then
T (X) = (

∑n
i=1 t1(Xi), . . . ,

∑n
i=1 tk(Xi)) is complete if

{(w1(θ), . . . , wk(θ)) : θ ∈ Θ)} contains an open set in Rk .
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Complete - Bernoulli

Let X1, X2, . . . , Xn
iid∼ Bernoulli(p) 0 < p < 1. Find a complete

statistic for θ.
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Lehmann-Scheffe

Theorem
Let T be a complete and sufficient statistic for the parameter θ and
let ϕ(T ) be any estimator based only on T . Then ϕ(T ) is the
unique best unbiased estimator (UMVUE) of its expected value.
That is, if E [ϕ(T )] = τ(θ), then ϕ(T ) is the UMVUE of τ(θ).
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UMVUE - Bernoulli

Let X1, X2, . . . , Xn
iid∼ Bernoulli(p) 0 < p < 1. Find the UMVUE of

p.
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UMVUE - Normal

Let X1, X2, . . . , Xn
iid∼ N(µ, σ2). Find the UMVUE of (µ, σ2).
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UMVUE - Uniform

Let X1, X2, . . . , Xn
iid∼ U(0, θ). Find the UMVUE of θ.
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UMVUE - Binomial

Let X1, X2, . . . , Xn
iid∼ Binomial(k, θ), k known and θ ∈ (0, 1), and

let
τ(θ) = P(X1 = 1) = kθ(1 − θ)k−1, k > 1.

Find the UMVUE of τ(θ).
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UMVUE - Binomial
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UMVUE - Normal

Let X1, X2, . . . , Xn
iid∼ N(θ, 1), θ ∈ R. X̄ is the UMVUE of θ. What

is the UMVUE of θ2?
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Unbiased Estimator of Zero and UMVUEs

Definition (2.11)
U(X) is said to be an unbiased estimator of 0 if Eθ[U(X)] = 0 for
all θ ∈ Θ.

Theorem
W (X) is the UMVUE for τ(θ) if and only if W (X) is unbiased for
τ(θ) and for every unbiased estimator of 0, U(X), we have

Covθ(W (X), U(X)) = Eθ[W (X)U(X)] = 0, for all θ ∈ Θ.

That is W (X) is uncorrelated with all unbiased estimators of 0,
U(X) for all θ ∈ Θ.
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Proof
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Proof
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Proof
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Non-existance of a UMVUE

Let X ∼ p(x |θ) = pθ(x), θ ∈ Z, where

Pθ(X = θ) = Pθ(X = θ − 1) = Pθ(X = θ + 1) = 1
3 .

Show that there does not exists a UMVUE for θ.

82 / 97



Non-existance of a UMVUE
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Non-existance of a UMVUE
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Not a UMVUE - Uniform MoM Estimator

Let X ∼ U(θ, θ + 1), θ ∈ R. Is the method of moments estimator
of θ

θ̂MoM = X − 1
2

the UMVUE of θ?.
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Minimal Sufficiency

We are looking for a sufficient statistic achieving the most data
reduction but keeping all of the information about the parameter θ.

Definition
A sufficient statistic T (X) is called a minimal sufficient statistic if
and only if for any other sufficient statistic, T ′(X), T (X) is a
function of T ′(X) or more explicitly if T ′(X) = T ′(Y ) then
T (X) = T (Y ).

Theorem
Let f (x |θ) be the joint pdf of X . Suppose there exists a function
T (X) such that for any two sample points x and y the ratio
f (x|θ)/f (y |θ) is constant as a function of θ if and only if
T (x) = T (y). Then T (X) is a minimal sufficient statistic for θ.
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Minimal Sufficiency - Normal

Let X1, X2, . . . , Xn
iid∼ N(µ, σ2). Find a minimal suffcient statistic

for (µ, σ2).
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Minimal Sufficiency
Theorem
(Bahadur’s Theorem) If a minimal sufficient statistic exists, then
any sufficient statistic that is complete is minimal sufficient.

Note: If T is a finite dimensional complete sufficient statistic, then
it is minimal sufficient.
Theorem
Let X = (X1, X2, . . . , Xn) denote an iid sample from a distribution
with pdf f (x |θ), θ ∈ Θ. If a sufficient statistic T (X) exists for θ
and if the MLE, θ̂, of θ exists uniquely, then θ̂ is a function of
T (X). If θ̂MLE exists uniquely and is sufficient for θ, then it must
be minimal sufficient.

Example: Let X1, X2, . . . , Xn
iid∼ N(µ, σ2), σ2 known and µ ∈ R.

We know that X̄ is the unique MLE for θ and X̄ is sufficient.
Therefore, X̄ is minimal sufficient.
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Ancillary
Definition
A statistic S(X) is said to be ancillary for θ if the distribution of
S(X) does not depend on θ.

Note: An ancillary statistic contains no information about θ, but
could be informative about θ in junction with other statistics.
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Ancillary

Let X1, X2, . . . , Xn
iid∼ N(µ, σ2), σ2 known. Show that

S2
n = 1

n − 1

n∑
i=1

(Xi − X̄ )2

is ancillary for µ.
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Ancillary - Basu’s Theorem

Theorem (Basu’s Theorem)
A complete and minimal sufficient statistic is independent of any
ancillary statistic.

Note: This theorem allows us to show that statistics are
independent without needing to find their joint distribution.

Example: Let X1, X2, . . . , Xn
iid∼ N(µ, σ2), σ2 known. We have

already shown that X̄ is complete and minimal sufficient for µ and
S2 is ancillary for µ, so by Basu’s theorem X̄ and S2 are
independent.
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Ancillary - Basu’s Theorem

Let X1, X2, . . . , Xn
iid∼ U(0, θ), θ > 0. Show that X(n) and

X1/
∑n

i=1 Xi are independent.
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Bayes Estimator

Let X ∼ f (x|θ), θ ∈ Θ. In the Bayesian paradigm, θ is treated as a
random variable and assigned a prior distribution θ ∼ π(θ).
Inference is then based on the posterior distribution of θ|X ,

π(θ|X) = f (x , θ)∫ ∞
−∞ f (x , θ) dθ

= f (x|θ)π(θ)∫ ∞
−∞ f (x , θ) dθ

.

If we observe X = (X1, X2, . . . , Xn), we update the distribution of θ
base on the observed data X . We call the mean of the posterior
distribution of θ, E [θ|X ], the Bayes estimate of θ.
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Bayes Estimator - Normal-Normal

Let X1, X2, . . . , Xn|θ iid∼ N(θ, σ2), σ2 known. Using the prior
θ ∼ N(µ, τ2), find the Bayes estimator of θ.
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Bayes Estimator - Normal-Normal
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Bayes Estimator - Beta-Binomial

Let X |p ∼ Binomial(k, p) k known. Let p ∼ Beta(a, b). Find the
Bayes estimator of p.
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Bayesian Estimation - Conjugate Prior
Definition
Let F denote the class of pdfs or pmfs f (x |θ). A class Π of prior
distributions is a conjugate family of F if the posterior distributions
are in the class Π for all f ∈ F , all priors in Π and all x ∈ X .

Example: Show that the Gamma family is conjugate for the
Poisson family.
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