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Elements of a Hypothesis Test

A hypothesis test is a statement about a population parameter.

Given data (X1, X2, . . . , Xn) ∼ f (x|θ), we wish to make a claim
about the parameter θ ∈ Θ. We test this by comparing two
hypotheses about the true value of the parameter θ:

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

where Θ0 ∩ Θ1 = ∅. (Note: Θ0 ∪ Θ1 need not equal Θ.)

H0 is called the null hyphothesis.
H1 (or HA) is called the alternative hypothesis
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Elements of a Hypothesis Test - simple vs Composite
1) If you are interested in if a coin is fair, we could toss it 1000

times and get 600 heads (say). Let p = P(head) and the
parameter space be Θ = [0, 1]. We would then want to test

H0 : p = 1
2 vs HA : p ̸= 1

2 (p ∈ [0, 1/2) ∪ (1/2, 1]).

(The alternative is a union of two intervals and is called a
composite hypothesis.)

2) Let X1, X2, . . . , Xn
iid∼ N(θ, 1), θ unknown. We could test

H0 : θ = 0 vs H1 : θ = 1.

Both the null and alternative hypotheses are examples of a
simple hypothesis (testing against a single value).
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Elements of a Hypothesis Test - Choosing the
Hypotheses

Let θ = the proportion of defective items, θ0 be the maximum
acceptable proportion of defective items. In this case, we could test

H0 : θ ≥ θ0 vs HA : θ < θ0.

Here, the alternative hypothesis is what we are most interested in.

In statistics, people frequently specify:

Null hypothesis: “no change”, “no difference”, or “no effect”
Alternative hypothesis: “some effect”, “some differences”, or
“some change”

In general, the alternative hypothesis is the statement that exhibits
a difference from normal or the condition that is of interest.
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Elements of a Hypothesis Test - General Idea
Definition
A hypothesis testing procedure or hypothesis test is a rule that
specifies

1 for which sample values the decision is made to accept H0 as
true

2 for which sample values H0 is rejected and H1 is accepted as
true.

Suppose wish to test

H0 : θ = Θ0 vs H1 : θ ∈ Θ1.

Assume H0 is true. We can make our conclusion based off of
whether or not the observed data is “likely” or “not likely” under
this assumption. If the observed data is “likely” under H0, then we
don’t reject H0 (there is not enough evidence to reject it). If the
observed data is “not likely”, then we reject H0.
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Elements of a Hypothesis Test - General Idea

Example: Let X1, X2, . . . , Xn
iid∼ N(θ, 1), θ ∈ R unknown. We wish

to test
H0 : θ = 0 vs H1 : θ ̸= 0.

Supposed we observed data such that X̄ = 1.1 with a sample size of
n = 9. Assume H0 : θ = 0 is true. Then

X̄ ∼ N(0, 1/9).
What values of X̄ are likely under H0?

Is our observed value of X̄ = 1.1 likely under H0?

P(|X̄ | > 1.1) = 2P(X̄ > 1.1)

= 2P
(

X̄ − 0
1/3 >

1.1 − 0
1/3

)
= 2P(Z > 3.3) = 0.00096 = 0.096%,

where Z ∼ N(0, 1). 6 / 100



Elements of a Hypothesis Test - Critical Region
Definition
Denote the sample space by D. A test of H0 vs H1 is based on a
subset R of D. The set R is called the critical region (or
(rejection region) and its decision rule is reject H0 if X ∈ R and
retain H0 if X ∈ Rc .

In the previous example, D = R and R = {X̄ : |X̄ | > 2/3} and
Rc = {X̄ : |X̄ | ≤ 2/3}.
Typically, the rejection region will be stated in terms of a test
statistic T (X) that contains the information about θ and the
null is rejected if T (X) ∈ R.
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Elements of a Hypothesis Test - Errors

This procedure can lead to two types of errors:

Truth
Decision H0 H1

Accept H0 Correct Type II error
Reject H0 Type I error Correct

α = P(Type I Error) = P(reject H0|H0 is true)

β = P(Type II Error) = P(accept H0|H1 is true)

1 − β = P(reject H0|H1 is true) (statistical power)
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Elements of a Hypothesis Test - Errors

Let X1, X2, . . . , Xn
iid∼ N(θ, 1), θ ∈ R unknown. We want to test the

simple hypotheses

H0 : θ = 0 vs H1 : θ = θ1 (θ1 ̸= 0).

Assume n = 9 as we had before. X̄ is sufficient for θ, so let’s base
our test on this statistic with rejection region R = {X : |X̄ | > 2/3}.
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Elements of a Hypothesis Test - Errors
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Elements of a Hypothesis Test
Definition
We say a critical region R is of size α if

sup
θ∈Θ0

Pθ(X ∈ R) = α.

We say a critical region R is of level α if

sup
θ∈Θ0

Pθ(X ∈ R) ≤ α.

Definition
The power function of a hypothesis test with rejection region R is
the function of θ defined by

β(θ) = Pθ(X ∈ R).

When θ ∈ Θ0, then β(θ) = α = P(Type I Error).

When θ ∈ Θ1, then β(θ) = 1 − P(Type II Error). 11 / 100



Elements of a Hypothesis Test - Errors

Suppose that the manufacturer of a new medication wants to test
the null hypothesis θ = 0.9 against the alternative θ = 0.6. His test
statistic is X = # of successses (recoveries) in 20 trials and he will
accept H0 if X > 14 otherwise he will reject H0. Find the type I and
type II error rates.
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Elements of a Hypothesis Test - Errors

Let X1, X2, . . . , Xn
iid∼ N(µ, 1).

H0 : µ = µ0 vs H1 : µ = µ1 (µ1 > µ0).

Find the value k, such that X̄ > k provides a critical region of size
α = 0.05 for a sample of size n and find the power function β(µ).
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Elements of a Hypothesis Test - Errors
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Generalized Likelihood Ratio Test (GLRT)

Let X1, X2, . . . , Xn
iid∼ f (x |θ). Recall that the likelihood function is

given by

L(θ|x) =
n∏

i=1
f (xi |θ).

The likelihood ratio test statistic for testing

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

is
λ(X) =

supθ∈Θ0 L(θ|X)
supθ∈Θ L(θ|X) = L(θ̂0|X)

L(θ̂|X)
,

where Θ = Θ0 ∪ Θ1, θ̂0 is the MLE of θ ∈ Θ0 and θ̂ is the MLE of
θ ∈ Θ.

The LRT is any test that has a rejection region of the form
{X : λ(X) ≤ C}, where C is any number satisfying 0 ≤ C ≤ 1.
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LRT - Normal Mean With Known Variance

Let X1, X2, . . . , Xn
iid∼ N(θ, 1). Find a size α LRT of

H0 : θ = θ0 vs H1 : θ ̸= θ0.
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LRT - Normal Mean With Known Variance
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LRT - Normal Mean With Known Variance
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LRT - Normal Mean With Known Variance
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LRT - Truncated Exponential

Let X1, X2, . . . , Xn be an iid sample from a truncated exponential
distribution with pdf

f (x |θ) =
{

e−(x−θ), x ≥ θ

0, otherwise.

Construct a level α LRT test of

H0 : θ ≤ θ0 vs H1 : θ > θ0.
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LRT - Truncated Exponential
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LRT - Truncated Exponential
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LRT - Uniform

Let X1, X2, . . . , Xn
iid∼ U[0, θ], and suppose we want to test

H0 : θ = θ0 vs H1 : θ > θ0.

Find the LRT.
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LRT - Uniform
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LRT and Sufficient Statistics

Let T (X) be a sufficient statistic for θ with pdf g(t|θ) and let the
likelihood based on T be given by

L⋆(θ|t) = g(t|θ)

instead of using the sample X and its likelihood L(θ|x). Let λ⋆(t)
be the LRT statistic based on T . We have λ⋆(T (x)) = λ(x) for all
samples x. The simplified expression for λ(X) should depend on x
only through T (x) if T (x) is a sufficient statistic for θ.
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LRT - Normal Mean With Known Variance

Let X1, X2, . . . , Xn
iid∼ N(θ, 1). Find a size α LRT of

H0 : θ = θ0 vs H1 : θ ̸= θ0.
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LRT - Truncated Exponential

Let X1, X2, . . . , Xn be an iid sample from a truncated exponential
distribution with pdf

f (x |θ) =
{

e−(x−θ), x ≥ θ

0, otherwise.

Construct a level α LRT test of

H0 : θ ≤ θ0 vs H1 : θ > θ0.
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LRT - Truncated Exponential
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LRT - Uniform

Let X1, X2, . . . , Xn
iid∼ U[0, θ], and suppose we want to test

H0 : θ = θ0 vs H1 : θ > θ0.

Find the LRT.
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Uniformly Most Powerful Tests (UMP)

Let X1, X2, . . . , Xn
iid∼ f (x |θ) and suppose that we want to test

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

using a test with rejection region R, i.e. reject if X ∈ R.

Each test is associated with a rejection region R. We may define a
test function

ϕ(X) =
{

1, X ∈ R
0, X ̸∈ R

This is a 1-1 mapping between ϕ and R. The power function is
βϕ(θ) = Pθ(ϕ(X) = 1) = Eθ[ϕ(X)]. In general, a statistical
hypothesis test is a test function ϕ : X → [0, 1] such that if X = x
is observed you reject the null hypothesis with probability ϕ(x) and
accept the null hypothesis with probability 1 − ϕ(x), and the power
function is defined by β(θ) = Eθ[ϕ(X)]
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Uniformly Most Powerful Tests (UMP)

A test ϕ is a UMP (uniformly most powerful) test with level α of

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

if Eθ[ϕ(X)] ≤ α for all θ ∈ Θ0 and βϕ(θ) ≥ βϕ′(θ) for all θ ∈ Θ1
where ϕ′ ∈ C and C = {ϕ : Eθ[ϕ(X)] ≤ α for all θ ∈ Θ0}.
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Neyman-Pearson Lemma
Theorem (Neyman-Pearson Lemma)
Consider testing

H0 : θ = θ0 vs H1 : θ = θ1

where the pdf or pmf corresponding to θi is given by
f (x |θi), i = 0, 1. Define a test ϕ(X) satisfying Eθ0 [ϕ(X)] = α (1)
and for some k > 0 and 0 ≤ c < 1

ϕ(x) =
{

1, if f (x|θ1) > kf (x|θ0)
0, if f (x|θ1) < kf (x|θ0)

=


1, if f (x|θ1)

f (x|θ0) > k

0, if f (x|θ1)
f (x|θ0) < k

(2)

then
(a) ϕ(X) is the UMP level α test. (Here, rather than UMP, we say

most powerful since Θ1 = {θ1}.)
(b) if ϕ(X) is UMP level α test then there exists a constant k such

that ϕ(X) satisfies (1) and (2). 32 / 100



Neyman-Pearson Lemma - Proof
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Neyman-Pearson Lemma - Proof
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Neyman-Pearson Lemma - Proof
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UMP Test - Normal Mean with Known Variance

Let X1, X2, . . . , Xn
iid∼ N(θ, 1). Find a UMP test of

H0 : θ = θ0 vs H1 : θ = θ1 (θ1 > θ0).
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UMP Test - Normal Mean with Known Variance
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UMP Test - Normal Mean with Known Variance
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UMP Test - Exponential

Let X1, X2, . . . , Xn
iid∼ Exponential(θ) and suppose we want to test

H0 : θ = θ0 vs H1 : θ = θ1 (θ1 > θ0).

Find a UMP level α test.
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UMP Test - Exponential
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UMP Test - Exponential
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UMP Test and Sufficient Statistics
Theorem

Consider testing

H0 : θ = θ0 vs H1 : θ = θ1

and suppose T (X) is a sufficient statistic for θ and g(t|θ) is the pdf
or pmf of T (X). Then any test based on T satisfying

ϕ(t) =
{

1, g(t|θ1) > kg(t|θ0)
0, g(t|θ1) < kg(t|θ0)

(1)

for some k > 0 such that Eθ0 [ϕ(T )] = α (2) is a UMP level α test.
Moreover, if ϕ is a MP level α test, then ϕ satisfies (1) and (2).
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UMP Test - Binomial Proportion

Let X1, X2, . . . , Xn
iid∼ Bernoulli(p), 0 < p < 1, and suppose we

want to test

H0 : p = p0 vs H1 : p = p1 (p1 > p0).

Find a UMP level α test.
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UMP Test - Binomial Proportion
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UMP Test - Binomial Proportion
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UMP Test - Uniform

Let X1, X2, . . . , Xn
iid∼ U[0, θ] and suppose we want to test

H0 : θ = θ0 vs H1 : θ = θ1 (θ1 > θ0).

Find a UMP level α test.
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UMP Test - Uniform

47 / 100



UMP Test - Uniform
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UMP Test - Monotone Likelihood Ratio
Definition
A family of pdfs {g(t|θ) : θ ∈ Θ} for a univariate random variable
T with real valued parameter θ has a monotone likelihood ratio
(MLR) if for any θ2 > θ1 (θ1, θ2 ∈ Θ),

g(t|θ2)
g(t|θ1) is a non-decreasing function in t

on the set {t : g(t|θ1) > 0 or g(t|θ2) > 0} where c/0 is defined to
be ∞ if c > 0.

1 If the likelihood ratio is a non-increasing function in t then
consider the family of densities for −T to get a non-decreasing
MLR.

2 Many common families of distributions have an MLR such as
the normal distribution (with known variance) and unknown
mean), Poisson, and binomial.

3 Any regular exponential family with g(t|θ) = h(t)c(θ)ew(θ)t

has an MLR if w(θ) is a non-decreasing function of θ. 49 / 100



UMP Test - Monotone Likelihood Ratio
Theorem
(Karlin-Rubin Theorem) Consider testing

H0 : θ ≤ θ0 vs H1 : θ > θ0.

Suppose that T (X) is a sufficient statistic for θ and the family of
pdfs (or pmfs) {g(t|θ) : θ ∈ Θ} of T has a non-decreasing MLR
then

ϕ(t) =


1, t > t0

δ, t = t0

0, t < t0

(1)

is a UMP level α test where Eθ0 [ϕ(T )] = α.
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Proof - Karlin-Rubin Theorem
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Proof - Karlin-Rubin Theorem
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Proof - Karlin-Rubin Theorem
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Karlin-Rubin Theorem - Other Cases

If g(t|θ) is a non-increasing MLR, then a UMP level α test of
H0 : θ ≤ θ0 vs H1 : θ > θ0

is

ϕ(t) =


1, t < t0

δ, t = t0

0, t ≥ t0

with Eθ0 [ϕ(T )] = α.

If g(t|θ) is a non-decreasing MLR, then a UMP level α test of
H0 : θ ≥ θ0 vs H1 : θ < θ0

is

ϕ(t) =


1, t < t0

δ, t = t0

0, t ≥ t0

with Eθ0 [ϕ(T )] = α.
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Karlin-Rubin Theorem - Other Cases

If g(t|θ) is a non-increasing MLR, then a UMP level α test of

H0 : θ ≥ θ0 vs H1 : θ < θ0

is

ϕ(t) =


1, t > t0

δ, t = t0

0, t ≤ t0

with Eθ0 [ϕ(T )] = α.
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Karlin-Rubin - Normal Mean with Known Variance

Let X1, X2, . . . , Xn
iid∼ N(θ, 1) and suppose we want to test

H0 : θ ≥ θ0 vs H1 : θ < θ0.

Find a UMP level α test.
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Karlin-Rubin - Normal Mean with Known Variance
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UMP Test Non-Existence

Let X1, X2, . . . , Xn
iid∼ N(θ, 1) and consider testing

H0 : θ = θ0 vs H1 : θ ̸= θ0.

In this case, a UMP level α test does not exist. To see that, we will
break the test into two one-sided tests.
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UMP Test Non-Existence
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UMP Test Non-Existence
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UMPU Test
Definition
A test with power function β(θ) is unbiased if β(θ) > β(θ′) for all
θ ∈ Θ1 and θ′ ∈ Θ0.

Definition
A UMPU level α test is a level α unbiased test ϕ such that for any
other level α unbiased test ϕ′

Eθ[ϕ(X)] ≥ Eθ[ϕ′(X)], for all θ ∈ Θ1.

Note: A UMP level α test is always an unbiased test. (Compare
the UMP test to the test function ϕ = α.)
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UMPU Test
Theorem
Let (X1, X2, . . . , Xn) ∼ f (x|θ) (joint density where)

f (x|θ) = a(θ)h(x)ew(θ)t(x), θ ∈ R

such that w(θ) is a strictly increasing function of θ. Then a UMPU
test of

H0 : θ = θ0 vs H1 : θ ̸= θ0

is given by

ϕ(t(x)) =


1, t(x) < c1 or t(x) > c2

δi , t(x) = ci , i = 1, 2
0, c1 < t(x) < c2

where δi and ci , i = 1, 2 are determined by Eθ0 [ϕ(t(X))] = α and
Eθ0 [t(X)ϕ(t(X))] = αEθ0 [t(X)]
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UMPU Test - Two Sided Test of Normal Mean

Let X1, X2, . . . , Xn
iid∼ N(θ, 1) and consider testing

H0 : θ = θ0 vs H1 : θ ̸= θ0.

Find a UMPU level α test.

Note that the joint density is

f (x|θ) = (2π)−n/2e− n
2 θ2e− 1

2
∑n

i=1 x2
i eθ

∑n
i=1 xi

where w(θ) = nθ is strictly increasing in θ with
T (X) = X̄ ∼ N(θ, 1/n). A UMPU level α test is then given by

ϕ(t) =
{

1, t < c1 or t > c2

0, c1 < t < c2

satisfying Eθ0 [ϕ(T )] = α and Eθ0 [Tϕ(T )] = αEθ0 [T ] = αθ0.
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UMPU Test - Two Sided Test of Normal Mean

To find the UMPU test, we would need to find a c1 and a c2
satisfying the following two equations:

1 α = Pθ0(T < c1) + Pθ0(T > c2)
2 αθ0 =

∫ c1
−∞ tφθ0,1/n(t) dt +

∫∞
c2

tφθ0,1/n(t) dt

where φθ0,1/n is the density of a normal distribution with mean θ0
and variance 1/n. Solving these two equations yields the UMPU test

ϕ(t) =
{

1, t < θ0 − z1−α/2/
√

n or t > θ0 + z1−α/2/
√

n
0, θ0 − z1−α/2/

√
n < t < θ0 + z1−α/2/

√
n
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Interval Estimation

Given data X = (X1, X2, . . . , Xn) ∼ f (x|θ), out goal is to find a
region of plausible values for the parameter θ.

Definition
An interval estimate of a real valued parameter θ is any pair of
function L(X) = L(X1, X2, . . . , Xn) and U(X) = U(X1, X2, . . . , Xn)
of a sample X that satisfies L(X) ≤ U(X) for every sample X ∈ X .
If x is observed the inference L(x) ≤ θ ≤ U(x) is made and we
write the interval estimator of θ as [L(x), U(x)].

Note: If L(x) = −∞, then θ ≤ U(x) is an upper bound. If
U(x) = ∞, then L(x) ≤ θ. Both are called one-sided interval
estimators.
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Interval Estimation

Let X1, X2, X3, X4
iid∼ N(µ, 1). Assume an interval estimator for µ is

given by [X̄ − 1, X̄ + 1]. Then

Pµ(θ ∈ [X̄ − 1, X̄ + 1]) = Pµ(X̄ − 1 ≤ µ ≤ X̄ + 1)
= Pµ(−µ − 1 ≤ −X̄ ≤ −µ + 1)
= Pµ(µ + 1 > X̄ > µ − 1)

= Pµ

(
µ − 1 − µ

1/2 ≤ Z ≤ µ + 1 − µ

1/2

)
= Pµ(−2 ≤ Z ≤ 2) ≈ 0.95
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Interval Estimation - Coverage Probability
Definition
For an interval estimator [L(X), U(X)] of a parameter θ, the
coverage probability of [L(X), U(X)] is the probability that the
random interval [L(X), U(X)] covers the true parameter θ.

Coverage Probability of [L(X), U(X)] at θ = Pθ(θ ∈ [L(X), U(X)]).

Definition
For an interval estimator [L(X), U(X)] of a parameter θ, the
confidence coefficient of [L(X), U(X)] is

inf
θ∈Θ

Pθ(θ ∈ [L(X), U(X)]).
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Interval Estimation - Coverage Probability

Let X1, X2, . . . , Xn
iid∼ U(0, θ). Let’s consider two interval estimators

of θ ∈ Θ = (0, ∞)
(a) [aX(n), bX(n)] for some 1 ≤ a < b
(b) [X(n) + c, X(n) + d ] for some 0 ≤ c < d
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Interval Estimation - Coverage Probability
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Methods of Finding Interval Estimators - Inverting a
Test

Consider size α test of
H0 : θ = θ0

with a rejection region R. Consider the acceptance region
A(θ0) = Rc . Then

1 − α = Pθ0(X ∈ A(θ0)).

Thus if we can invert this region, then we have an interval estimate
with coverage probability 1 − α.
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Methods of Finding Interval Estimators - Inverting a
Test

Let X1, X2, . . . , Xn
iid∼ N(θ, 1). We want a confidence interval for θ.

Consider the test of

H0 : θ = θ0 vs H1 : θ ̸= θ0.

The UMPU test based on T (X) = X̄ is given by

ϕ(t) =
{

1, t < θ0 − z1−α/2/
√

n or t > θ0 + z1−α/2/
√

n
0, θ0 − z1−α/2/

√
n < t < θ0 + z1−α/2/

√
n

71 / 100



Methods of Finding Interval Estimators - Inverting a
Test
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Methods of Finding Interval Estimators - Inverting a
Test

Let X1, X2, . . . , Xn
iid∼ N(θ, 1). Suppose we want a one sided

confidence interval. We can construct such an interval by inverting
the acceptance region of

H0 : θ = θ0 vs H1 : θ < θ0

We found the following UMP level α test based in T (X) = X̄

ϕ(t) =
{

1, t < θ0 − z1−α/2/
√

n
0, otherwise

.
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Methods of Finding Interval Estimators - Inverting a
Test
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Methods of Finding Interval Estimators - Inverting a
LRT

Let X1, X2, . . . , Xn
iid∼ Exponential(θ) and suppose we want a two

sided confidence interval for θ. Consider the two sided LRT of

H0 : θ = θ0 vs H1 : θ ̸= θ0.
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Methods of Finding Interval Estimators - Inverting a
LRT
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Methods of Finding Interval Estimators - Inverting a
LRT
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Methods of Finding Interval Estimators - Pivotal
Quantities

In the previous example, we based our confidence on
T (X , θ) = 2

∑n
i=1 Xi
θ

and the distribution of T (X , θ) does not
depend on θ. T (X , θ) is called a pivot.

Definition
A random variable T (X , θ) = T (X1, X2, . . . , Xn, θ) is a pivotal
quantity or pivot if the distribution of T (X , θ) is independent of all
parameters. That is, if X ∼ f (x|θ), then the distribution of T (X , θ)
is independent of θ for all θ.

Note: Once we have a pivot T (X , θ) for some given α, we let

Pθ(a ≤ T (X , θ) ≤ b) = 1 − α

define a 1 − α confidence interval for θ by solving for θ in terms of
X .
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Methods of Finding Interval Estimators - Pivotal
Quantities

1 Let X1, X2, . . . , Xn
iid∼ U(0, θ). Recall that T (X) = X(n) is

sufficient with pdf

g(t|θ) = ntn−1

θn , 0 < t < θ.

Let U(X , θ) = X(n)/θ, then U has pdf

g(u) = nun−1, 0 < u < 1.

The pdf of U does not depend on θ, so X(n)/θ is a pivot.
2 Let X1, X2, . . . , Xn

iid∼ Exp(θ). Then
∑n

i=1 Xi ∼ Gamma(n, θ) is
sufficient for θ. and

∑n
i=1 Xi/θ ∼ Gamma(n, 1) does not

depend on θ.
3 Let X1, X2, . . . , Xn

iid∼ N(θ, 1). Recall that X̄ is sufficient for θ
and note that

√
n(X̄ − θ) = X̄ − θ

1/
√

n ∼ N(0, 1).

79 / 100



Methods of Finding Interval Estimators - Pivotal
Quantities

(Location-Scale Pivots) Let X1, X2, . . . , Xn
iid∼ f given by

Form of pdf Type of pdf Pivot
f (x − µ) Location X̄ − µ

1
σ

f
(x

σ

)
Scale X̄

σ
1
σ

f
(x − µ

σ

)
Location-Scale X̄ − µ

S
Homework: Show that each of these are pivotal quantities
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Methods of Finding Interval Estimators - Pivotal
Quantities

Let X1, X2, . . . , Xn
iid∼ U(0, θ). Find a pivotal quantity.
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Methods of Finding Interval Estimators - Pivotal
Quantities

Let X1, X2, . . . , Xn
iid∼ N(θ, 1) with pdf

f (x) = (2π)−1/2e−(x−θ)2/2.

Find a pivotal quantity.
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Methods of Finding Interval Estimators - Pivotal
Quantities

Let X1, X2, . . . , Xn
iid∼ N(θ, σ2) with pdf

f (x) = (2πσ2)−1/2e−(x−θ)2/2σ2
.

Find a confidence interval for θ and for σ2.
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Methods of Finding Interval Estimators - Pivotal
Quantities
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Methods of Finding Interval Estimators - Pivotal
Quantities

85 / 100



Methods of Finding Interval Estimators - Pivotal
Quantities

Let X1, X2, . . . , Xn
iid∼ f (x |µ) = e−(x−µ), x > µ. Then

Xi − µ
iid∼ Exp(1), so we have the following pivots

1 X̄ − µ = 1
n
∑n

i=1(Xi − µ) ∼ Gamma(n, 1/n)
2
∑n

i=1(Xi − µ) ∼ Gamma(n, 1)
3 X(1) − µ ∼ Exp(1/n)
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Evaluating Interval Estimates - Shortest Interval
Length

Let X1, X2, . . . , Xn
iid∼ N(µ, 1). We have already seen that a pivot is√

n(X̄ − µ) ∼ N(0, 1). We want to choose an a < b such that
1 − α = P(a ≤

√
n(X̄ − µ) ≤ b)

which results in a (1 − α) × 100% confidence interval[
X̄ − b 1√

n , X̄ − a 1√
n

]
.

Consider α = 0.1 and the following choices of a and b

a b P(Z < a) P(Z > b) b − a
-1.34 2.33 0.09 0.01 3.67
-1.44 1.96 0.075 0.025 3.40
-1.65 1.65 0.05 0.05 3.30

The length of the confidence interval in each case is b − a√
n . The

shortest interval corresponds to a = zα/2 = −1.65 and
b = z1−α/2 = 1.65. 87 / 100



Evaluating Interval Estimates - Shortest Interval
Length

Theorem

Let f (x) be a unimodal pdf. If the interval [a, b] satisfies
1
∫ b

a f (x)dx = 1 − α
2 f (a) = f (b) > 0
3 a ≤ x⋆ ≤ b, where x⋆ is a mode of f (x)

then [a, b] is the shortest interval among all intervals that satisfy (1).

1 If f (x) is also symmetric about the y-axis (such as the standard
normal and Student t’s distributions), then a, b will be such
that P(X < a) = P(X > b) = α/2

2 If f (x) is strictly increasing over a finite interval [γ, β], then
the shortest interval is [a, b] where b = β and

∫ a
γ f (x)dx = α.

3 Similarly, if f (x) is strictly decreasing over a finite interval
[γ, β], then the shortest interval is [a, b] where a = γ and∫ β

b f (x)dx = α.
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Evaluating Interval Estimates - Shortest Interval
Length

Let X1, X2, . . . , Xn
iid∼ U(0, θ). Consider the pivot X(n)/θ with pdf

g(u) = nun−1, 0 < u < 1.

Find the shortest length 100(1 − α)% confidence interval for θ.
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Evaluating Interval Estimates - Shortest Interval
Length
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Bayesian Inference

Let X = (X1, . . . , Xn) where X |θ ∼ f (x|θ), θ ∈ Θ. In the Bayesian
paradigm, θ is treated as a random variable and assigned a prior
distribution θ ∼ π(θ). Inference is then based on the posterior
distribution of θ|X ,

π(θ|X) = f (x , θ)∫∞
−∞ f (x , θ) dθ

= f (x|θ)π(θ)∫∞
−∞ f (x , θ) dθ

.

If we observe X = (X1, X2, . . . , Xn) given θ, we update the
distribution of θ base on the observed data X .

In this section, we will introduce Bayesian interval estimation and
hypothesis testing.

91 / 100



Bayesian Interval Estimation
Definition
A 100(1 − α)% credible set for θ is a subset Sx ⊆ Θ such that
P(θ ∈ Sbx |x) = 1 − α.

Like in frequentist CI, a common way to build a a credible interval is
to find the α/2% and (1 − α/2)% quantiles, say ξ1 and ξ2
respectively, of the posterior distribution to form the 100(1 − α)%
credible interval (ξ1, ξ2).

Definition
A 100(1 − α)% highest posterior density (HPD) set for θ is a subset
Sx = {θ ∈ Θ : π(θ|x) ≥ cα} such that P(θ ∈ Sbx |x) = 1 − α.

The HPD set has the smallest size (or length) among all
100(1 − α)% credible sets. If π(θ|x) is unimodal and continuous, it
is the interval satisfying π(a|x) = π(b|x) = cα.
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Bayesian Interval Estimation

Let X1, X2, . . . , Xn|θ iid∼ N(θ, σ2), σ2 known. Using the prior
θ ∼ N(µ, τ2), we showed earlier that posterior distribution of θ|X is

θ|X ∼ N
(

nτ2x̄ + µσ2

σ2 + nτ2 ,
σ2τ2

nτ2 + σ2

)
.

Find a 100(1 − α)% credible interval for θ.
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Bayesian Hypothesis Testing

Suppose we’d like to test H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ1, where
Θ0 ∩ Θ1 = ∅ and Θ0 ∪ Θ1 = Θ. For hypothesis testing, it’s often
more convenient to define the prior as a mixture distribution. Let
π0 = P(θ ∈ Θ0) and π1 = P(θ ∈ Θ1) = 1 − π0. Then given θ ∈ Θ0,
define a distribution p0(θ) on Θ0. Similarly, define p1(θ) on Θ1.
The overall prior is then

π(θ) = π0p0(θ)1(θ ∈ Θ0) + π1p1(θ)1(θ ∈ Θ1).

The evidence for H1 over H0 is measured by the posterior odds

P(θ ∈ Θ1|x)
P(θ ∈ Θ0|x) =

∫
Θ1

π(θ|x)dθ∫
Θ0

π(θ|x)dθ

=
∫

Θ1
π1p1(θ)f (x|θ)dθ∫

Θ0
π0p0(θ)f (x|θ)dθ

= 1 − π0
π0

∫
Θ1

p1(θ)f (x|θ)dθ∫
Θ0

p0(θ)f (x|θ)dθ
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Bayesian Hypothesis Testing

For simple hypothesis H0 : θ = θ0 vs. H1 : θ = θ1, as
P(θ = θk |x) ∝ πk f (x|θk), k = 0, 1, we simply have

P(θ = θ1|x)
P(θ = θ0|x) = 1 − π0

π0

f (x|θ1)
f (x|θ0) .

This equation can also be derived from the general formula. Noting
that Θ0 = {θ0} and Θ1 = {θ1}, and p0(θ0) = p1(θ1) = 1
(degenerate with probability one at a single point), we have∫

Θk
pk(θ)f (x|θ)dθ =

∫
Θk

f (x|θ)dPk(θ) = f (x|θk), k = 0, 1, where
Pk(θ) is a step function with a jump from 0 to 1 at θk (counting
measure).\
A reasonable test is to rejected H0 if P(θ∈Θ1|x)

P(θ∈Θ0|x) > C . For simple
hypothesis, if π0 = π1 = 0.5, then the rejection region simplifies to
f (x|θ1)
f (x|θ0) > C , the same as the likelihood ratio test, which is the MP
test.
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Bayesian Hypothesis Testing

How to choose the threshold C? We have two decisions (actions):

Reject H0. If H1 is true (which happens with probability
P(θ ∈ Θ1|x)), there is no penalty. If H0 is true (which happens
with probability P(θ ∈ Θ0|x)), the penalty is K0. Then the
expected posterior loss is

K0P(θ ∈ Θ0|x) + 0P(θ ∈ Θ1|x) = K0P(θ ∈ Θ0|x).

Accept H0. If H1 is true, there is a penalty of K1. If H0 is true,
there is no penalty. Then the expected posterior loss is
K1P(θ ∈ Θ1|x)

To minimize the expected posterior loss, we choose “reject H0’ ’
when K0P(θ ∈ Θ0|x) < K1P(θ ∈ Θ1|x), or equivalently,
K0
K1

< P(θ∈Θ1|x)
P(θ∈Θ0|x) . Consequently, C = K0/K1. If K0 = K1, C = 1.
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Bayesian Hypothesis Testing

Let X1, . . . , Xn
i .i .d .∼ N(µ, σ2), where σ is known. Consider testing

H0 : µ = µ0 vs. H1 : µ = µ1 (µ1 > µ0). Let π0 = P(µ = µ0) and
π1 = P(µ = µ1) be the prior distribution.
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Asymptotic Inference

Suppose that
√

n(θ̂ − θ) d→ N (0, σ2), then θ̂ ± z1−α/2 · σ√
n is a

(1 − α) × 100% asymptotic CI for θ. If in addition σ̂n
P→ σ, then

√
n(θ̂ − θ)/σ̂n =

√
n(θ̂ − θ)/σ × (σ/σ̂n) d→ N (0, 1).

Thus for large n
θ̂ ∼ N (θ, σ̂2

n/n),

and we can construct approximate (asymptotically valid) CI and HT
as we did in the normal case, i.e θ̂ ± z1−α/2

σ̂n√
n is also a

(1 − α) × 100% asymptotic CI for θ.
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Asymptotic Inference

Suppose that X1, . . . , Xn are i.i.d. with unknown mean µ and
unknown variance σ2 < ∞. Find a CI for µ.
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Asymptotic Inference

Suppose X1, . . . , Xn
i .i .d .∼ Bernoulli(p). Find an asymptotic CI for p.
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