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The Delta Method

The delta method is an important theorem in asymptotic statistics, which allows us to get the asymp-
totic distribution of a transformation of a sequence of random variables that itself converge in distri-
bution. That is, suppose that we have a sequence of real numbers (rn)n such that rn → ∞, and a
sequence of random variables, {X,Xn, n ≥ 1} such that

rn(Xn − θ)
d→ X,

for some real number θ. If ϕ : R → R is a sufficiently well behaved function, then when can we also
conclude that

rn(ϕ(Xn)− ϕ(θ))

converges in distribution and if so to what?

Before, we can answer this question using the delta method, we need some preliminary results and
definitions.

Definition 1. Let {X,Xn, n ≥ 1} be random variables with distribution functions {F, Fn, n ≥ 1},
respectively. Then

a) Xn is said to converge in probability to X, written Xn
P→ X if

lim
n→∞

P (|Xn −X| > ε) = 0, ∀ε > 0.

b) Xn is said to converge in distribution to a random variable X, written Xn
d→ X if

Fn(t) → F (t)

for all points t ∈ R such that F is continuous at t.

c) {Xn, n ≥ 1} is said to be bounded in probability or uniformly tight if ∀ε > 0, ∃M > 0 such
that

sup
n≥1

P (|Xn| > M) < ε.

Note 1. The following implications always hold

Xn
P→ X =⇒ Xn

d→ X =⇒ {Xn, n ≥ 1} is bounded in probability.

We will also make use of the following, which is part of Slutsky’s lemma.

Lemma 1. Suppose that Xn
d→ X and Yn

d→ c for some constant c ∈ R. Then YnXn
d→ cX and

Xn + Yn
d→ X + c.

Note 2. It turns out that Yn
d→ c if and only if Yn

P→ c, where c ∈ R is a constant.

We will frequently work with sequences of random variables that are bounded in probability or that
converge to 0 in probability, so it is useful to have some short hand notation to represent such se-
quences.

Definition 2 (Stochastic o and O Notation). Let {Xn, n ≥ 1} be a sequences of random variables.
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a) By Xn = oP (1), we mean Xn
P→ 0.

b) By Xn = Op(1), we mean that Xn is bounded in probability.

c) For a sequence of random variables {Rn, n ≥ 1}, we write Xn = oP (Rn) to mean that Xn =
YnRn, where Yn is some sequence of random variables such that Yn = oP (1). Similarly, we write
Xn = OP (Rn) to mean that Xn = YnRn, where Yn is some sequence of random variables such that
Yn = OP (1).

We will need the following stochastic relation to prove the delta method.

Proposition 1. op(Op(1)) = op(1). That is, if Xn
P→ 0 and {Yn, n ≥ 1} are bounded in probability,

then XnYn
P→ 0.

Proof. Let ε > 0. Let δ > 0 and choose M > 0 such that

sup
n≥1

P (|Yn| ≥ M) < δ.

Then

P (|YnXn| > ε) = P (|YnXn| > ε, |Yn| ≥ M) + P (|YnXn| > ε, |Yn| < M)

≤ P (|Yn| ≥ M) + P (|M ||Xn| > ε)

< δ + P
(
|Xn| >

ε

M

)
→ δ.

Since δ > 0 and ε > 0 were arbitrary, we have

P (|YnXn| > ε) → 0,∀ε > 0.

We write that a function R(h) = o(|h|p) as h → 0 if

lim
h→0

R(h)

|h|p
= 0.

The final result we will need pertains to handling remainder terms in our first order Taylor expan-
sion.

Lemma 2. Let R : D ⊂ R 7→ R be a function such that R(0) = 0 and the support of the random

variables {Xn, n ≥ 1} lies within D such that Xn
P→ 0. Then for every p > 0, if R(h) = o(|h|p) as

h → 0, then R(Xn) = oP (|Xn|p).

Proof. Define g : D 7→ R as

g(h) =


R(h)

|h|p
, h ̸= 0

0, h = 0
.

Then g is continuous at 0 and R(h) = g(h)|h|p for all h ∈ D, so R(Xn) = g(Xn)|Xn|p. Because g is

continuous at 0, g(Xn)
P→ g(0) = 0 by the continuous mapping theorem. Thus, g(Xn) = oP (1), so

R(Xn) = g(Xn)|Xn|p = |Xn|poP (1) = oP (|Xn|p).
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Theorem 1 (Delta Method). Suppose that ϕ : D ⊂ R 7→ R is differentiable at θ. Let {Xn, n ≥ 1} be

random variables who support lies in D. If rn(Xn − θ)
d→ X for some random variable X and some

sequence rn → ∞, then rn(ϕ(Xn)− ϕ(θ))
d→ ϕ′(θ)X.

Proof. Since rn(Xn − θ) converges in distribution to X, it is bounded in probability. Moreover, rn →
∞ =⇒ 1/rn → 0. Hence

1

rn
= oP (1) and rn(Xn − θ) = OP (1) =⇒ Xn − θ =

1

rn
· rn(Xn − θ) = oP (1)OP (1) = oP (1).

ϕ differentiable at θ implies that

R(h) = ϕ(θ + h)− ϕ(θ)− ϕ′(θ)h = o(|h|) as h → 0.

Thus,
R(Xn − θ) = ϕ(Xn)− ϕ(θ)− ϕ′(θ)(Xn − θ) = oP (|Xn − θ|),

by Lemma 2. Mutiplying both sides by rn, we get

rn(ϕ(Xn)− ϕ(θ))− ϕ′(θ)[rn(Xn − θ)] = oP (|rn(Xn − θ)|).

By the continuous mapping theorem

rn(Xn − θ)
d→ X =⇒ |rn(Xn − θ)| d→ |X| =⇒ |rn(Xn − θ)| = OP (1).

Hence,
rn(ϕ(Xn)− ϕ(θ))− ϕ′(θ)[rn(Xn − θ)] = oP (|rn(Xn − θ)|) = oP (1).

This implies that

rn(ϕ(Xn)− ϕ(θ)) = rn(ϕ(Xn)− ϕ(θ))− ϕ′(θ)[rn(Xn − θ)]︸ ︷︷ ︸
oP (1)

+ϕ′(θ)[rn(Xn − θ)]︸ ︷︷ ︸
d→ϕ′(θ)X

d→ ϕ′(θ)X,

by Slutsky’s lemma.


