The Delta Method

The delta method is an important theorem in asymptotic statistics, which allows us to get the asymp-
totic distribution of a transformation of a sequence of random variables that itself converge in distri-
bution. That is, suppose that we have a sequence of real numbers (r,), such that r, — oo, and a
sequence of random variables, { X, X,,,n > 1} such that

ro(X, — 0) 5 X,

for some real number 0. If ¢ : R — R is a sufficiently well behaved function, then when can we also
conclude that

ra(@(Xn) — ¢(6))
converges in distribution and if so to what?

Before, we can answer this question using the delta method, we need some preliminary results and
definitions.

Definition 1. Let {X, X,,,n > 1} be random variables with distribution functions {F, F,,,n > 1},
respectively. Then

a) X, is said to converge in probability to X, written X, 5 xif

lim P(|X, — X|>e) =0, Ve > 0.

n—oo

b) X, is said to converge in distribution to a random variable X, written X, A Xif
E.(t) = F(t)
for all points ¢ € R such that F'is continuous at .

¢) {Xn,n > 1} is said to be bounded in probability or uniformly tight if Ve > 0, 3M > 0 such

that
sup P(|X,| > M) < e.

n>1

Note 1. The following implications always hold
X, 5X = X, 45X = {X,,n > 1} is bounded in probability.
We will also make use of the following, which is part of Slutsky’s lemma.

Lemma 1. Suppose that X, L X and Y, N ¢ for some constant ¢ € R. Then Y, X, A eX and
X, +Y, 5 X +el

Note 2. It turns out that Y, % ¢ if and only if Y,, EiR ¢, where ¢ € R is a constant.

We will frequently work with sequences of random variables that are bounded in probability or that
converge to 0 in probability, so it is useful to have some short hand notation to represent such se-
quences.

Definition 2 (Stochastic o and O Notation). Let {X,,,n > 1} be a sequences of random variables.



a) By X,, = op(1), we mean X, Lo,
b) By X,, = O,(1), we mean that X,, is bounded in probability.

c¢) For a sequence of random variables {R,,n > 1}, we write X,, = op(R,) to mean that X,, =
Y, R,, where Y, is some sequence of random variables such that Y,, = op(1). Similarly, we write
X, = Op(R,,) to mean that X,, = Y, R,, where Y,, is some sequence of random variables such that

Y, = Op(1).
We will need the following stochastic relation to prove the delta method.

Proposition 1. 0,(0,(1)) = o,(1). That is, if X, 50 and {Y,,n > 1} are bounded in probability,
then X,Y, it 0.
Proof. Let € > 0. Let 6 > 0 and choose M > 0 such that

sup P(|Y,| > M) < 6.

n>1

Then

P(|Y,X,| > ¢) = P(|YoXa| > e, |Yu] > M)+ P(|Y, X0| > e, Yo < M)
< P([Y,| > M) + P(IM[|X,| > ¢)
g
<5+P<|Xn| > M)
— 0.

Since 6 > 0 and € > 0 were arbitrary, we have

P(|YuX,| > €) = 0,¥e > 0.

We write that a function R(h) = o(|h|P) as h — 0 if
lim R(h) _ 0.

h—0 ‘h|p a

The final result we will need pertains to handling remainder terms in our first order Taylor expan-
sion.

Lemma 2. Let R : D C R — R be a function such that R(0) = 0 and the support of the random
variables {X,,n > 1} lies within D such that X, L0, Then for every p > 0, if R(h) = o(|h|P) as
h — 0, then R(X,) = op(|X,|P).
Proof. Define g : D — R as
R(h
B o
gh) = { TP |
0, h=0
Then ¢ is continuous at 0 and R(h) = g(h)|h|? for all h € D, so R(X,) = g(X,)|X,|’. Because g is
continuous at 0, g(X,) R g(0) = 0 by the continuous mapping theorem. Thus, g(X,) = op(1), so

R(X,) = g(Xo)|Xa|" = | X0 [Pop(1) = op(|Xa]").



Theorem 1 (Delta Method). Suppose that ¢ : D C R +— R is differentiable at 6. Let {X,,n > 1} be
random variables who support lies in D. If r,(X, — 0) 4 X for some random variable X and some
sequence r, — oo, then r,(d(X,) — ¢(0)) KA ¢ (0)X.

Proof. Since r,(X,, — 0) converges in distribution to X, it is bounded in probability. Moreover, r, —
o0 = 1/r, — 0. Hence

L op(1) and (X, —0) = Op(1) —> X — 0 = — -1 (X, — 0) = 0p(1)Op(1) = 0p(1).

T'n Tn

¢ differentiable at 6 implies that
R(h) = (0 4+ h) — ¢(0) — ¢'(0)h = o(|h|) as h — 0.

Thus,
R(Xp = 0) = ¢(Xn) — ¢(0) — ¢'(0)(Xn — 0) = op(| Xy — 0]),

by Lemma 2. Mutiplying both sides by r,, we get
ra(9(Xn) — 6(0)) — &' (0)[ra(Xn — 0)] = op(|rn(Xn — 0)]).
By the continuous mapping theorem
(X —0) 5 X = [ra(X, —0)] 3 |X| = |ra(X, — 0)| = Op(1).

Hence,
ra(@(Xn) = 6(0)) — &' (0)[ra(Xn — 0)] = op(|ra(Xn — 0)]) = op(1).
This implies that

rn(@(Xn) — &(0)) = ra(d(Xn) = 6(0)) — &/ (0) [rn(Xn — 0)] + ¢ (0)[rn( X — )] = ¢/(0) X,

by Slutsky’s lemma. m



