Topics in Basic Analysis: Homework 1

- 1. For each of the following sets, find its supremum and infimum.
 - a) [2, 7]
 - b) $\bigcup_{n=1}^{\infty} [2n, 2n+1]$
 - c) $\{1 1/3^n : n \in \mathbb{N}\}$
 - d) $\cap_{n=1}^{\infty} \left[-\frac{1}{n}, 1 + \frac{1}{n} \right]$
- 2. Let $S \subset \mathbb{R}$ be a nonempty, bounded set.
 - a) Prove that inf $S \leq \sup S$. (Hint: This should almost be obvious, your proof should be short.)
 - b) What can you say about S if $\inf S = \sup S$?
- 3. Let $S, T \subset \mathbb{R}$ be nonempty, bounded sets.
 - a) Prove that if $S \subseteq T$, then

$$\inf T \le \inf S \le \sup S \le \sup T.$$

b) Prove that

$$\sup(S \cup T) = \max\{\sup S, \sup T\}.$$

Note that we are NOT assuming $S \subset T$ in part b).

- 4. Let $a, b \in \mathbb{R}$ be such that a < b. Using the denseness of \mathbb{Q} in \mathbb{R} , prove that there are infinitely many rational numbers between a an b.
- 5. Let $A, B \subset \mathbb{R}$ be nonempty, bounded sets, and let

$$S = A + B = \{a + b : a \in A \text{ and } b \in B\}.$$

- a) Prove that $\sup S = \sup A + \sup B$.
- b) Prove that $\inf S = \inf A + \inf B$.