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Topics in Basic Analysis: Homework 2 Solutions

1. Prove that limn→∞
2n−1
3n+2

= 2
3
.

Solution. Note that for n ≥ 1, ∣∣∣∣2n− 1

3n+ 2
− 2

3

∣∣∣∣ = ∣∣∣∣6n− 3− 6n− 4

9n+ 6

∣∣∣∣
=

∣∣∣∣ −7

9n+ 6

∣∣∣∣
≤ 9

9n

=
1

n
→ 0.

Thus limn→∞
2n−1
3n+2

= 2
3
by the squeeze theorem.

2. Determine the limits of the following sequences and prove your claim.

a) an =
4n+ 3

7n− 5
, n ≥ 1.

Solution. From calculus, we know that an → 4
7
. To see this, note that 7n− 5 ≥ 2n ⇐⇒ n ≥

1, so for n ≥ 1, ∣∣∣∣4n+ 3

7n− 5
− 4

7

∣∣∣∣ = ∣∣∣∣28n+ 21− 28n+ 20

7(7n− 5)

∣∣∣∣
=

∣∣∣∣ 41

7(7n− 5)

∣∣∣∣
≤ 42

7(2n)

=
3

n
→ 0.

Thus an → 4
7
by the squeeze theorem.

b) sn = 1
n
sinn, n ≥ 1,

Solution. Note that for n ≥ 1.

|sn| =
∣∣∣∣sinnn

∣∣∣∣ ≤ 1

n
→ 0.

Thus, sn → 0 by the squeeze theorem.

3. Prove the following claim: If (an)n, (bn)n and (sn)n are reals sequences such that an ≤ sn ≤ bn
for all n ≥ 1, and limn→∞ an = limn→∞ bn = s, then limn→∞ sn = s.

Solution. Let ε > 0. Since bn → 0, ∃N1 ∈ N such that

n ≥ N1 =⇒ |bn − s| < ε =⇒ bn < s+ ε.
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Similarly, since an → s, ∃N2 ∈ N such that

n ≥ N2 =⇒ |an − s| < ε =⇒ s− ε < an.

Thus, for n ≥ max{N2, N2}

s− ε < an ≤ sn ≤ bn < s+ ε =⇒ |sn − s| < ε.

Since ε > 0 was arbitrary, sn → s.

4. Prove that limn→∞
√
n2 + n− n = 1

2
. Hint: Consider multiplying by 1 =

√
n2+n+n√
n2+n+n

.

Solution. First, note that n ≥ 1,

√
n2 + n− n =

√
n2 + n− n ·

√
n2 + n+ n√
n2 + n+ n

=
n2 + n− n2

√
n2 + n+ n

=
1√

1 + 1
n
+ 1

→ 1√
1 + 0 + 1

=
1

2
.

Note, that we have used two facts in the last line:

� sn → s =⇒ √
sn →

√
s if sn, s ≥ 0.

� sn → s =⇒ 1/sn → 1/s if sn, s ̸= 0.

The second point was proven in class. The first was mentioned and used but not proven. To see
why this is true, we can argue as follows. Let ε > 0. Note that

√
sn −

√
s =

√
sn −

√
s ·

√
sn +

√
s

√
sn +

√
s
=

sn − s
√
sn +

√
s
.

Since sn → s, ∃N1 ∈ N such that sn > s/4 for n ≥ N1, and ∃N2 ∈ N such that n ≥ N2 implies
|sn − s| < 3

2

√
sε. Then for n ≥ maxN1, N2,

|
√
sn −

√
s| = |sn − s|

√
sn +

√
s
≤

3
2

√
sε

3
2

√
s

= ε.

5. Let (sn)n and (tn)n be real sequences, and suppose ∃N0 ∈ N such that sn ≤ tn for n ≥ N0.
Prove the following statements.

a) If limn→∞ sn = ∞, then limn→∞ tn = ∞.

Solution. Let M > 0. Since sn → ∞, ∃N ∈ N such that n ≥ N implies M ≤ sn. Then, for
n ≥ N,N0

M ≤ sn ≤ tn.

Since M was arbitrary, tn → ∞.
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b) If limn→∞ tn = −∞, then limn→∞ sn = −∞.

Solution. Let M < 0. Since tn → −∞, ∃N ∈ N such that n ≥ N implies tn ≤ M . Then, for
n ≥ N,N0

sn ≤ tn ≤ M.

Since M was arbitrary, sn → −∞.

c) If limn→∞ sn and limn→∞ tn exists, then limn→∞ sn ≤ limn→∞ tn.

Solution. The inequality is already proven in parts a) and b) if either sn → ∞ or tn → −∞.
It is trivially true if sn → −∞ or tn → ∞. The only case that remains is if both sn → s ∈ R
and tn → t ∈ R. Then

0 ≤ tn − sn,∀n ≥ 1 and tn − sn → t− s

implies that t− s ≥ 0 ⇐⇒ t ≥ s.

6. Let (sn)n and (tn)n be real sequences. Prove the following statements:

a) If limn→∞ sn = ∞ and infn∈N tn > −∞, then limn→∞(sn + tn) = ∞.

Solution. Let M > 0. Let K = infn∈N tn. Then tn ≥ K for all n ≥ 1. Since sn → ∞, choose
N ∈ N such that n ≥ N implies sn ≥ M −K. Then n ≥ N implies

sn + tn ≥ M −K +K = M.

b) If limn→∞ sn = ∞ and limn→∞ tn > −∞, then limn→∞(sn + tn) = ∞.

Solution. We need to consider two cases: (1) limn→∞ tn = t ∈ R and (2) limn→∞ tn = ∞.

Case 1: Let M > 0. Choose N1 ∈ N such that n ≥ N2 implies

|tn − t| ≤ |t|
2
.

Then as we argued in class in Proposition 2.6 part d), |tn| > |t|/2 for n ≥ N1. Next, choose
N2 ∈ N such that n ≥ N2 implies sn ≥ M − |t|/2. Then for n ≥ max{N1, N2},

sn + tn ≥ M − |t|
2

+
|t|
2

= M.

Case 2: Let M > 0. Choose N1 ∈ N such that

n ≥ N1 =⇒ tn ≥ M

2
,

and choose N2 ∈ N such that

n ≥ N2 =⇒ sn ≥ M

2
.

Then for n ≥ max{N1, N2}
sn + tn ≥ M

2
+

M

2
= M.
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c) If limn→∞ sn = ∞ and (tn)n is bounded, then limn→∞(sn + tn) = ∞.

Solution. Let M > 0, and let K > 0 be such that |tn| ≤ K for all n ≥ 1. Then tn ≥ −K for
all n ≥ 1. Since sn → ∞, choose N ∈ N such that n ≥ N implies sn ≥ M −K. Then n ≥ N
implies

sn + tn ≥ M −K +K = M.

7. Let (sn)n be a real sequence and assume that sn ̸= 0 for all n ≥ 1. Suppose that limn→∞

∣∣∣ sn+1

sn

∣∣∣ =
L exists.

a) Prove that if L < 1, then limn→∞ sn = 0. Hint: Select a so that L < a < 1, and obtain an N
so that |sn+1| < a|sn| for n ≥ N . Then show that |sn| < an−N |sN | for n > N .

Solution. Suppose that limn→∞

∣∣∣ sn+1

sn

∣∣∣ = L < 1. Let L < a < 1. Then ∃N ∈ N such that

n ≥ N implies ∣∣∣∣sn+1

sn

∣∣∣∣ < a.

Then by a similar induction argument used in the proof of Theorem 2.2, we have for n > N

|sn| < an−N |sN | = an
(sN

a

)N

.

Since 0 ≤ L < a < 1, an → 0, which implies that sn → 0 by the squeeze theorem.

b) Show that if L > 1, then limn→∞ |sn| = ∞. Hint: Apply part a) to the sequence tn = 1/|sn|.

Solution. Note that with tn = 1/|sn|,

lim
n→∞

∣∣∣∣tn+1

tn

∣∣∣∣ = lim
n→∞

∣∣∣∣ sn
sn+1

∣∣∣∣ = 1

L
< 1,

since L > 1. Thus, by part a), tn → 0. Since |sn| > 0 and 1/|sn| → 0, |sn| → ∞ by
Proposition 2.8 part b) of the course notes.


