Topics in Basic Analysis: Homework 3

- 1. Determine if the following sequences are increasing, decreasing, or neither, and if the sequence is bounded.
 - a) $\frac{1}{n}$
 - b) $\frac{(-1)^n}{n^2}$
 - c) $\sin\left(\frac{n\pi}{7}\right)$
 - d) $\frac{n}{3^n}$
- 2. Let $(s_n)_n$ be a sequence such that

$$|s_{n+1} - s_n| < 2^{-n}, \ \forall n \in \mathbb{N}.$$

- a) Prove that $(s_n)_n$ is a Cauchy sequence and hence converges.
- b) Is is still true that $(s_n)_n$ is Cauchy if we only assume that

$$|s_{n+1} - s_n| < \frac{1}{n}, \ \forall n \in \mathbb{N}?$$

- 3. Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 1$.
 - a) Find s_2 , s_3 , and s_4 .
 - b) Use induction to show that $s_n > \frac{1}{2}$ for all $n \in \mathbb{N}$.
 - c) Show that $(s_n)_n$ is decreasing.
 - d) Show that $\lim_{n\to\infty} s_n = s$ exists and find s.
- 4. For each of the following sequence:

$$s_n = \cos\left(\frac{n\pi}{3}\right)$$
 $t_n = \frac{3}{4n+1}$ $u_n = \left(\frac{1}{2}\right)^n$ $v_n = (-1)^n + \frac{1}{n}$

- a) Give its set of subsequential limit points.
- b) Give its lim sup and lim inf.
- 6. Let $(s_n)_n$ and $(t_n)_n$ be bounded real sequences. Show that

$$\limsup (s_n + t_n) \le \limsup s_n + \limsup t_n$$
.

7. Let $(s_n)_n$ and $(t_n)_n$ be bounded real sequences. Show that

$$\limsup s_n t_n \le (\limsup s_n)(\limsup t_n).$$

- 8. Let $(s_n)_n$ be a real sequence and define $\sigma_n = \frac{1}{n} \sum_{i=1}^n s_i = \frac{1}{n} (s_1 + s_2 + \ldots + s_n)$.
 - a) Show that

$$\liminf s_n \le \liminf \sigma_n \le \limsup \sigma_n \le \limsup s_n$$
.

Hint: For the third inequality, show first that M > N implies

$$\sup_{n>M} \sigma_n \le \frac{1}{M} (s_1 + \dots + s_N) + \sup_{n>N} s_n.$$

b) Show that if $\lim_{n\to\infty} s_n$ exists, then $\lim_{n\to\infty} \sigma_n$ exists and $\lim s_n = \lim \sigma_n$.