Topics in Basic Analysis: Homework 3 Solutions

- 1. Determine if the following sequences are increasing, decreasing, or neither, and if the sequence is bounded.
 - a) $\frac{1}{n}$

Solution. Decreasing and bounded. Note that for x, y > 0

$$\frac{1}{x} < \frac{1}{y} \iff y < x.$$

Alternatively, note that the function f(x) = 1/x has derivative $f'(x) = -1/x^2 < 0$ for all x > 0, so 1/n = f(n) is decreasing. Since $1/n \to 0$, the sequence is bounded.

b)
$$\frac{(-1)^n}{n^2}$$

Solution. Neither and bounded. Note that $\frac{(-1)^n}{n^2} \to 0$, so it is bounded. However, the sequence alternates between positive and negative values, so it neither increasing nor decreasing for all $n \ge 1$.

c) $\sin\left(\frac{n\pi}{7}\right)$

Solution. Neither and bounded. Note that $\left|\sin\left(\frac{n\pi}{7}\right)\right| \leq 1$, so the sequence is bounded. Since the sin function oscillates, it is neither increasing nor decreasing for all $n \geq 1$

d) $\frac{n}{3^n}$

Solution. Decreasing and bounded. Since $n/3^n \to 0$ it is bounded. To see that it is decreasing, consider $f(x) = x/3^x$. Then f is decreasing if and only if $\ln f(x) = \ln x - x \ln 3$ is decreasing. Since

$$\frac{d}{dx} [\ln x - x \ln 3] = \frac{1}{x} - \ln 3 < 0 \iff x > \frac{1}{\ln 3} \approx 0.91.$$

Thus $\left(\frac{n}{3^n}\right)_n$ is decreasing for $n \ge 1$.

2. Let $(s_n)_n$ be a sequence such that

$$|s_{n+1} - s_n| < 2^{-n}, \ \forall n \in \mathbb{N}.$$

a) Prove that $(s_n)_n$ is a Cauchy sequence and hence converges.

Solution. Let $\varepsilon > 0$. Note that $\sum_{n=1}^{\infty} 2^{-n} < \infty$. Choose $N \in \mathbb{N}$ such that $n \geq N$ implies

$$\sum_{k=n}^{\infty} 2^{-k} < \varepsilon.$$

Then for $m > n \ge N$

$$|s_m - s_n| = |s_m - s_{m-1} + s_{m-1} - \dots - s_{n+1} + s_{n+1} - s_n|$$

$$\leq \sum_{k=n}^{m-1} |s_{k+1} - s_k|$$

$$< \sum_{k=n}^{m-1} 2^{-k}$$

$$\leq \sum_{k=n}^{\infty} 2^{-k}$$

$$< \varepsilon.$$

b) Is is still true that $(s_n)_n$ is Cauchy if we only assume that

$$|s_{n+1} - s_n| < \frac{1}{n}, \ \forall n \in \mathbb{N}?$$

Solution. No. Consider the sequence $s_n = \sum_{k=1}^n \frac{1}{k}$ for $n \ge 1$. Then for all $n \ge 1$

$$|s_{n+1} - s_n| = \left| \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} \right| = \frac{1}{n+1} < \frac{1}{n},$$

but $s_n = \sum_{k=1}^n \frac{1}{k}$ diverges to infinity and hence is not Cauchy.

- 3. Let $s_1 = 1$ and $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 1$.
 - a) Find s_2 , s_3 , and s_4 .

Solution.

$$s_2 = \frac{1}{3}(1+1) = \frac{2}{3}$$
 $s_3 = \frac{1}{3}\left(\frac{2}{3}+1\right) = \frac{5}{9}$ $s_4 = \frac{1}{3}\left(\frac{5}{9}+1\right) = \frac{14}{27}$.

b) Use induction to show that $s_n > \frac{1}{2}$ for all $n \in \mathbb{N}$.

Solution. Note that $s_1 = 1 > \frac{1}{2}$. Now suppose that $s_k > \frac{1}{2}$ for some $k \ge 1$. Then

$$s_{k+1} = \frac{1}{3}(s_k + 1) > \frac{1}{2}\left(\frac{1}{2} + 1\right) = \frac{3}{4} > \frac{1}{2}.$$

Then by induction $s_n > \frac{1}{2}$ for all $n \ge 1$.

c) Show that $(s_n)_n$ is decreasing.

Solution. Note that $s_2 = \frac{5}{9} \ge \frac{2}{3} = s_1$. Now, suppose that $s_k \ge s_{k-1}$ for some $k \ge 2$. Then,

$$s_{k+1} = \frac{1}{3}(s_k + 1) \ge \frac{1}{3}(s_{k-1} + 1) = s_k.$$

Then by induction $s_{k+1} \geq s_k$ for all $k \geq 1$, i.e. $(s_n)_n$ is decreasing.

d) Show that $\lim_{n\to\infty} s_n = s$ exists and find s.

Solution. Since $(s_n)_n$ is decreasing and bounded below $\lim_{n\to\infty} s_n = s$ exists and is finite. Since $s_{n+1} = \frac{1}{3}(s_n + 1)$ for $n \ge 2$, we have

$$\lim_{n \to \infty} s_{n+1} = \frac{1}{3} \left(\lim_{n \to \infty} s_n + 1 \right) \implies s = \frac{1}{3} (s+1) \implies s = \frac{1}{2}.$$

4. For each of the following sequence:

$$s_n = \cos\left(\frac{n\pi}{3}\right)$$
 $t_n = \frac{3}{4n+1}$ $u_n = \left(\frac{1}{2}\right)^n$ $v_n = (-1)^n + \frac{1}{n}$

a) Give its set of subsequential limit points.

Solution. Note that

$$(s_n)_n = \left\{ \frac{1}{2}, -\frac{1}{2}, -1, -\frac{1}{2}, \frac{1}{2}, 1, \dots \right\},$$

so the set of subsequential limit points of $(s_n)_n$ is $\{1, \frac{1}{2}, -\frac{1}{2}, -1\}$.

Since $t_n \to 0$, the only subsequential limit point is $\{0\}$.

Since $u_n \to 0$, the only subsequential limit point is $\{0\}$.

Since $\frac{1}{n} \to 0$ and $(-1)^n = \{-1, 1, -1, 1, \ldots\}$, the subsequential limit points of v_n are $\{-1, 1\}$.

b) Give its lim sup and lim inf.

Solution.

$$\liminf_{n\to\infty} s_n = -1, \ \limsup_{n\to\infty} s_n = 1, \ \text{ and } \ \liminf_{n\to\infty} v_n = -1, \ \limsup_{n\to\infty} v_n = 1.$$

$$\liminf_{n\to\infty} t_n = \limsup_{n\to\infty} t_n = 0, \ \text{ and } \ \liminf_{n\to\infty} u_n = \limsup_{n\to\infty} u_n = 0,$$

5. Let $(s_n)_n$ and $(t_n)_n$ be sequences, and suppose that there exists and $N_0 \in \mathbb{N}$ such that $s_n \leq t_n$ for all $n \geq N_0$. Show that $\liminf s_n \leq \liminf t_n$ and $\limsup s_n \leq \limsup t_n$. (Hint: Consider the definition of \liminf and \limsup and \limsup and \limsup and \limsup sup suppose \limsup sup

Solution. Let $N \geq N_0$, then $s_n \leq t_n$ for all $n \geq N$, and

$$\inf_{t>N} (t_n - s_n) \ge 0.$$

Note that for all $n \geq N$

$$t_n = t_n - s_n + s_n \ge \inf_{k \ge N} (t_k - s_k) + \inf_{k \ge N} s_k \ge \inf_{k \ge N} s_k \implies \inf_{k \ge N} t_k \ge \inf_{k \ge N} s_k.$$

Since $\inf_{k\geq N} t_k \geq \inf_{k\geq N} s_k$ for all $N\geq N_0$,

$$\liminf_{k \to \infty} s_k = \lim_{N \to \infty} \inf_{k \ge N} s_k \le \lim_{N \to \infty} \inf_{k \ge N} t_k = \liminf_{k \to \infty} t_k.$$

Similarly, $s_n \leq t_n$ for all $n \geq N$ implies

$$\sup_{k \ge N} (s_k - t_k) \le 0.$$

Then for all $n \geq N$

$$s_n = s_n - t_n + t_n \le \sup_{k \ge N} (s_k - t_k) + \sup_{k \ge N} t_k \le \sup_{k \ge N} t_k \implies \sup_{k \ge N} s_k \le \sup_{k \ge N} t_k.$$

Therefore,

$$\limsup_{k\to\infty} s_k = \lim_{N\to\infty} \sup_{k\ge N} s_k \le \lim_{N\to\infty} \sup_{k\ge N} t_k = \limsup_{k\to\infty} t_k.$$

6. Let $(s_n)_n$ and $(t_n)_n$ be bounded real sequences. Show that

$$\limsup (s_n + t_n) \le \limsup s_n + \limsup t_n.$$

Solution. Since $(s_n)_n$ and $(t_n)_n$ are bounded, $(s_n + t_n)_n$ is bounded, so

$$\sup_{k \ge N} s_k, \sup_{k \ge N} t_k, \text{ and } \sup_{k \ge N} (s_k + t_k)$$

exists and are finite for all $N \in \mathbb{N}$. Let $N \in \mathbb{N}$. Then for all $n \geq N$

$$s_n \le \sup_{k > N} s_k$$
 and $t_n \le \sup_{k > N} t_k$,

so

$$s_n + t_n \le \sup_{k \ge N} s_k + \sup_{k \ge N} t_k, \ \forall n \ge N.$$

Therefore

$$\sup_{k \ge N} (s_k + t_k) \le \sup_{k \ge N} s_k + \sup_{k \ge N} t_k,$$

for all $N \geq \mathbb{N}$, which implies

$$\limsup_{k\to\infty}(s_k+t_k)=\lim_{N\to\infty}\sup_{k\geq N}(s_k+t_k)\leq \lim_{N\to\infty}\sup_{k\geq N}s_k+\lim_{N\to\infty}\sup_{k\geq N}t_k=\limsup_{k\to\infty}s_k+\limsup_{k\to\infty}t_k.$$

7. Let $(s_n)_n$ and $(t_n)_n$ be bounded real sequences. Show that

$$\limsup s_n t_n \le (\limsup s_n)(\limsup t_n).$$

Solution. Let $N \in \mathbb{N}$. Note that for $n \geq N$

$$s_n \leq \sup_{k > N} s_k$$
 and $t_n \leq \sup_{k > N} t_k \implies s_n t_n \leq \sup_{k > N} s_k \sup_{k > N} t_k$

for all $n \geq N$. Therefore,

$$\sup_{k>N} (s_k t_k) \le \sup_{k>N} s_k \sup_{k>N} t_k,$$

which implies

$$\limsup_{k\to\infty}(s_kt_k)=\lim_{N\to\infty}\sup_{k\geq N}(s_kt_k)\leq \lim_{N\to\infty}[\sup_{k\geq N}s_k\sup_{k\geq N}t_k]=\lim_{N\to\infty}\sup_{k\geq N}s_k\lim_{N\to\infty}\sup_{k\geq N}t_k=\limsup_{k\to\infty}s_k\limsup_{k\to\infty}t_k.$$

- 8. Let $(s_n)_n$ be a real sequence and define $\sigma_n = \frac{1}{n} \sum_{i=1}^n s_i = \frac{1}{n} (s_1 + s_2 + \ldots + s_n)$.
 - a) Show that

$$\liminf s_n \le \liminf \sigma_n \le \limsup \sigma_n \le \limsup s_n$$
.

Hint: For the third inequality, show first that M > N implies

$$\sup_{n\geq M} \sigma_n \leq \frac{1}{M} (s_1 + \dots + s_N) + \sup_{n\geq N} s_n.$$

Solution. Let $N \in \mathbb{N}$. Then for $n \geq M > N$

$$\sigma_{n} = \frac{1}{n}(s_{1} + s_{2} + \dots + s_{n})$$

$$= \frac{1}{n}(s_{1} + \dots + s_{N}) + \frac{1}{n}(s_{N+1} + \dots + s_{n})$$

$$\leq \frac{1}{M}(s_{1} + \dots + s_{N}) + \frac{n-N}{n} \sup_{k \geq N} s_{k}$$

$$\leq \frac{1}{M}(s_{1} + \dots + s_{N}) + \sup_{k > N} s_{k}.$$

This implies that for all M > N

$$\sup_{k\geq M} \sigma_k \leq \frac{1}{M} (s_1 + \dots + s_N) + \sup_{k\geq N} s_k.$$

Therefore,

$$\limsup_{k\to\infty} \sigma_k = \lim_{M\to\infty} \sup_{k\geq M} \sigma_k \leq \lim_{M\to\infty} \left[\frac{1}{M} (s_1 + \dots + s_N) + \sup_{k\geq N} s_k \right] = \sup_{k\geq N} s_k.$$

Since $N \in \mathbb{N}$ was arbitrary,

$$\limsup_{k \to \infty} \sigma_k \le \lim_{N \to \infty} \sup_{k > N} s_k = \limsup_{k \to \infty} s_k.$$

By the same argument using $-\sigma_n = \frac{1}{n}(-s_1 + -s_2 + \cdots + -s_n)$, we also have

$$\limsup_{k \to \infty} (-\sigma_k) \le \limsup_{k \to \infty} (-s_k).$$

Using the fact that $\limsup_{k\to\infty} (-x_k) = -\liminf_{k\to\infty} x_k$, we obtain

$$\liminf_{k \to \infty} s_k \le \liminf_{k \to \infty} \sigma_k.$$

b) Show that if $\lim_{n\to\infty} s_n$ exists, then $\lim_{n\to\infty} \sigma_n$ exists and $\lim s_n = \lim \sigma_n$.

Solution. If $\lim_{n\to\infty} s_n = s \in \mathbb{R} \cup \{-\infty, \infty\}$ exists, then by part a)

 $s = \liminf s_n \le \liminf \sigma_n \le \limsup \sigma_n \le \limsup s_n = s,$

which implies that $\lim_{n\to\infty} \sigma_n = s$.