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Topics in Basic Analysis: Homework 3 Solutions

1. Determine if the following sequences are increasing, decreasing, or neither, and if the sequence
is bounded.

a) 1
n

Solution. Decreasing and bounded. Note that for x, y > 0

1

x
<

1

y
⇐⇒ y < x.

Alternatively, note that the function f(x) = 1/x has derivative f ′(x) = −1/x2 < 0 for all
x > 0, so 1/n = f(n) is decreasing. Since 1/n → 0, the sequence is bounded.

b) (−1)n

n2

Solution. Neither and bounded. Note that (−1)n

n2 → 0, so it is bounded. However, the se-
quence alternates between positive and negative values, so it neither increasing nor decreas-
ing for all n ≥ 1.

c) sin
(
nπ
7

)
Solution. Neither and bounded. Note that

∣∣sin (nπ
7

)∣∣ ≤ 1, so the sequence is bounded. Since
the sin function oscillates, it is neither increasing nor decreasing for all n ≥ 1/

d) n
3n

Solution. Decreasing and bounded. Since n/3n → 0 it is bounded. To see that it is decreas-
ing, consider f(x) = x/3x. Then f is decreasing if and only if ln f(x) = ln x − x ln 3 is
decreasing. Since

d

dx
[lnx− x ln 3] =

1

x
− ln 3 < 0 ⇐⇒ x >

1

ln 3
≈ 0.91.

Thus
(

n
3n

)
n
is decreasing for n ≥ 1.

2. Let (sn)n be a sequence such that

|sn+1 − sn| < 2−n, ∀n ∈ N.

a) Prove that (sn)n is a Cauchy sequence and hence converges.

Solution. Let ε > 0. Note that
∑∞

n=1 2
−n < ∞. Choose N ∈ N such that n ≥ N implies

∞∑
k=n

2−k < ε.

Then for m > n ≥ N

|sm − sn| = |sm − sm−1 + sm−1 − · · · − sn+1 + sn+1 − sn|



2

≤
m−1∑
k=n

|sk+1 − sk|

<

m−1∑
k=n

2−k

≤
∞∑
k=n

2−k

< ε.

b) Is is still true that (sn)n is Cauchy if we only assume that

|sn+1 − sn| <
1

n
, ∀n ∈ N?

Solution. No. Consider the sequence sn =
∑n

k=1
1
k
for n ≥ 1. Then for all n ≥ 1

|sn+1 − sn| =

∣∣∣∣∣
n+1∑
k=1

1

k
−

n∑
k=1

1

k

∣∣∣∣∣ = 1

n+ 1
<

1

n
,

but sn =
∑n

k=1
1
k
diverges to infinity and hence is not Cauchy.

3. Let s1 = 1 and sn+1 =
1
3
(sn + 1) for n ≥ 1.

a) Find s2, s3, and s4.

Solution.

s2 =
1

3
(1 + 1) =

2

3
s3 =

1

3

(
2

3
+ 1

)
=

5

9
s4 =

1

3

(
5

9
+ 1

)
=

14

27
.

b) Use induction to show that sn > 1
2
for all n ∈ N.

Solution. Note that s1 = 1 > 1
2
. Now suppose that sk >

1
2
for some k ≥ 1. Then

sk+1 =
1

3
(sk + 1) >

1

2

(
1

2
+ 1

)
=

3

4
>

1

2
.

Then by induction sn > 1
2
for all n ≥ 1.

c) Show that (sn)n is decreasing.

Solution. Note that s2 =
5
9
≥ 2

3
= s1. Now, suppose that sk ≥ sk−1 for some k ≥ 2. Then,

sk+1 =
1

3
(sk + 1) ≥ 1

3
(sk−1 + 1) = sk.

Then by induction sk+1 ≥ sk for all k ≥ 1, i.e. (sn)n is decreasing.
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d) Show that limn→∞ sn = s exists and find s.

Solution. Since (sn)n is decreasing and bounded below limn→∞ sn = s exists and is finite.
Since sn+1 =

1
3
(sn + 1) for n ≥ 2, we have

lim
n→∞

sn+1 =
1

3

(
lim
n→∞

sn + 1
)

=⇒ s =
1

3
(s+ 1) =⇒ s =

1

2
.

4. For each of the following sequence:

sn = cos
(nπ

3

)
tn =

3

4n+ 1
un =

(
1

2

)n

vn = (−1)n +
1

n

a) Give its set of subsequential limit points.

Solution. Note that

(sn)n =

{
1

2
,−1

2
,−1,−1

2
,
1

2
, 1, . . .

}
,

so the set of subsequential limit points of (sn)n is
{
1, 1

2
,−1

2
,−1

}
.

Since tn → 0, the only subsequential limit point is {0}.

Since un → 0, the only subsequential limit point is {0}.

Since 1
n

→ 0 and (−1)n = {−1, 1,−1, 1, . . .}, the subsequential limit points of of vn are
{−1, 1}.

b) Give its lim sup and lim inf.

Solution.

lim inf
n→∞

sn = −1, lim sup
n→∞

sn = 1, and lim inf
n→∞

vn = −1, lim sup
n→∞

vn = 1.

lim inf
n→∞

tn = lim sup
n→∞

tn = 0, and lim inf
n→∞

un = lim sup
n→∞

un = 0,

5. Let (sn)n and (tn)n be sequences, and suppose that there exists and N0 ∈ N such that sn ≤ tn
for all n ≥ N0. Show that lim inf sn ≤ lim inf tn and lim sup sn ≤ lim sup tn. (Hint: Consider the
definition of lim inf and lim sup and HW2 problem 5c).

Solution. Let N ≥ N0, then sn ≤ tn for all n ≥ N , and

inf
k≥N

(tn − sn) ≥ 0.

Note that for all n ≥ N

tn = tn − sn + sn ≥ inf
k≥N

(tk − sk) + inf
k≥N

sk ≥ inf
k≥N

sk =⇒ inf
k≥N

tk ≥ inf
k≥N

sk.
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Since infk≥N tk ≥ infk≥N sk for all N ≥ N0,

lim inf
k→∞

sk = lim
N→∞

inf
k≥N

sk ≤ lim
N→∞

inf
k≥N

tk = lim inf
k→∞

tk.

Similarly, sn ≤ tn for all n ≥ N implies

sup
k≥N

(sk − tk) ≤ 0.

Then for all n ≥ N

sn = sn − tn + tn ≤ sup
k≥N

(sk − tk) + sup
k≥N

tk ≤ sup
k≥N

tk =⇒ sup
k≥N

sk ≤ sup
k≥N

tk.

Therefore,
lim sup
k→∞

sk = lim
N→∞

sup
k≥N

sk ≤ lim
N→∞

sup
k≥N

tk = lim sup
k→∞

tk.

6. Let (sn)n and (tn)n be bounded real sequences. Show that

lim sup(sn + tn) ≤ lim sup sn + lim sup tn.

Solution. Since (sn)n and (tn)n are bounded, (sn + tn)n is bounded, so

sup
k≥N

sk, sup
k≥N

tk, and sup
k≥N

(sk + tk)

exists and are finite for all N ∈ N. Let N ∈ N. Then for all n ≥ N

sn ≤ sup
k≥N

sk and tn ≤ sup
k≥N

tk,

so
sn + tn ≤ sup

k≥N
sk + sup

k≥N
tk, ∀n ≥ N.

Therefore
sup
k≥N

(sk + tk) ≤ sup
k≥N

sk + sup
k≥N

tk,

for all N ≥ N, which implies

lim sup
k→∞

(sk + tk) = lim
N→∞

sup
k≥N

(sk + tk) ≤ lim
N→∞

sup
k≥N

sk + lim
N→∞

sup
k≥N

tk = lim sup
k→∞

sk + lim sup
k→∞

tk.

7. Let (sn)n and (tn)n be bounded real sequences. Show that

lim sup sntn ≤ (lim sup sn)(lim sup tn).
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Solution. Let N ∈ N. Note that for n ≥ N

sn ≤ sup
k≥N

sk and tn ≤ sup
k≥N

tk =⇒ sntn ≤ sup
k≥N

sk sup
k≥N

tk

for all n ≥ N . Therefore,
sup
k≥N

(sktk) ≤ sup
k≥N

sk sup
k≥N

tk,

which implies

lim sup
k→∞

(sktk) = lim
N→∞

sup
k≥N

(sktk) ≤ lim
N→∞

[sup
k≥N

sk sup
k≥N

tk] = lim
N→∞

sup
k≥N

sk lim
N→∞

sup
k≥N

tk = lim sup
k→∞

sk lim sup
k→∞

tk.

8. Let (sn)n be a real sequence and define σn = 1
n

∑n
i=1 sn = 1

n
(s1 + s2 + . . .+ sn).

a) Show that
lim inf sn ≤ lim inf σn ≤ lim supσn ≤ lim sup sn.

Hint: For the third inequality, show first that M > N implies

sup
n≥M

σn ≤ 1

M
(s1 + · · ·+ sN) + sup

n≥N
sn.

Solution. Let N ∈ N. Then for n ≥ M > N

σn =
1

n
(s1 + s2 + · · · sn)

=
1

n
(s1 + · · ·+ sN) +

1

n
(sN+1 + · · · sn)

≤ 1

M
(s1 + · · ·+ sN) +

n−N

n
sup
k≥N

sk

≤ 1

M
(s1 + · · ·+ sN) + sup

k≥N
sk.

This implies that for all M > N

sup
k≥M

σk ≤
1

M
(s1 + · · ·+ sN) + sup

k≥N
sk.

Therefore,

lim sup
k→∞

σk = lim
M→∞

sup
k≥M

σk ≤ lim
M→∞

[
1

M
(s1 + · · ·+ sN) + sup

k≥N
sk

]
= sup

k≥N
sk.

Since N ∈ N was arbitrary,

lim sup
k→∞

σk ≤ lim
N→∞

sup
k≥N

sk = lim sup
k→∞

sk.

By the same argument using −σn = 1
n
(−s1 +−s2 + · · ·+−sn), we also have

lim sup
k→∞

(−σk) ≤ lim sup
k→∞

(−sk).

Using the fact that lim supk→∞(−xk) = − lim infk→∞ xk, we obtain

lim inf
k→∞

sk ≤ lim inf
k→∞

σk.
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b) Show that if limn→∞ sn exists, then limn→∞ σn exists and lim sn = limσn.

Solution. If limn→∞ sn = s ∈ R ∪ {−∞,∞} exists, then by part a)

s = lim inf sn ≤ lim inf σn ≤ lim supσn ≤ lim sup sn = s,

which implies that limn→∞ σn = s.


