Topics in Basic Analysis: Homework 4

- 1. Prove that the following sets have an empty interior.
 - a) $\left\{\frac{1}{n}|n\in\mathbb{N}\right\}$
 - b) Q
- 2. Find the closure of the following sets.
 - a) Q
 - b) $\{r \in \mathbb{Q} : r^2 < 2\}$
- 3. Determine if the following series converge or diverge. Be sure to justify your answers.
 - a) $\sum_{n=1}^{\infty} \frac{n^4}{2^n}$
 - b) $\sum_{n=1}^{\infty} \frac{2^n}{n!}$
 - c) $\sum_{n=1}^{\infty} \frac{n!}{n^4 + 3}$
 - d) $\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2}$
 - e) $\sum_{n=2}^{\infty} \frac{1}{[n+(-1)^n]^2}$
 - f) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
 - g) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}$
 - h) $\sum_{n=4}^{\infty} \frac{1}{n(\ln n)(\ln \ln n)}$
 - i) $\sum_{n=2}^{\infty} \frac{\ln n}{n^2}$
- 4. Prove the following: If $\sum_{n=1}^{\infty} |a_n|$ converges and $(b_n)_n$ is a bounded sequence, then $\sum_{n=1}^{\infty} a_n b_n$ converges.
- 5. Prove the following: If $\sum_{n=1}^{\infty} a_n$ is a convergent series of nonnegative numbers and p > 1, then $\sum_{n=1}^{\infty} a_n^p$ converges.
- 6. Prove the following: If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent series of nonnegative numbers, then $\sum_{n=1}^{\infty} \sqrt{a_n b_n}$ converges. Hint: Show that $\sqrt{a_n b_n} \le a_n + b_n$ for all $n \ge 1$.