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Topics in Basic Analysis: Homework 4 Solutions

1. Prove that the following sets have an empty interior.

a)
{

1
n
|n ∈ N

}
Solution. Suppose that the interior is not empty. Let x ∈

{
1
n
|n ∈ N

}◦
. Then ∃ε > 0 such

that B(x, ε) ⊆
{

1
n
|n ∈ N

}
. Then 1/n0 ∈ B(x, ε) for some n0 ∈ N. Since B(x, ε) is open,

∃ρ > 0 such that B(1/n0, ρ) ⊆ B(x, ε), but B(1/n0, ρ) = (1/n0 − ρ, 1/n0 + ρ) ̸⊆
{

1
n
|n ∈ N

}
.

b) Q

Solution. Suppose Q◦ ̸= ∅. Let x ∈ Q◦. Then ∃ε > 0 such that B(x, ε) = (x− ε, x + ε) ⊆ Q.
By the denseness of the irrationals, ∃t ∈ R \Q such that

x− ε < t < x =⇒ t ∈ B(x, ε) ⊆ Q,

but t ̸∈ Q. Hence, Q◦ = ∅.

2. Find the closure of the following sets.

a) Q

Solution. Recall that Q̄ = Q ∪Q′. Since Q are dense in R, every x ∈ R is a limit point of Q,
so Q̄ = R.

b) {r ∈ Q : r2 < 2}

Solution. Note that {r ∈ Q : r2 < 2} = {r ∈ Q : −
√
2 < r <

√
2}, so

{r ∈ Q : r2 < 2} = [−
√
2,
√
2],

since by density of Q every x ∈ [−
√
2,
√
2] is a limit point of {r ∈ Q : r2 < 2}.

3. Determine if the following series converge or diverge. Be sure to justify your answers.

a)
∑∞

n=1

n4

2n

Solution. Since n+1
n

→ 1,

lim
n→∞

∣∣∣∣(n+ 1)4/2n+1

n4/2n

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(
n+ 1

n

)4
2n

2n+1

∣∣∣∣∣
=

1

2
lim
n→∞

∣∣∣∣∣
(
n+ 1

n

)4
∣∣∣∣∣

=
1

2
< 1,

so the series converges absolutely by the ratio test.

b)
∑∞

n=1

2n

n!
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Solution. The series converges absolutely by the ratio test, since

lim
n→∞

∣∣∣∣2n+1/(n+ 1)!

2n/n!

∣∣∣∣ = lim
n→∞

∣∣∣∣ 2

n+ 1

∣∣∣∣ = 0 < 1.

c)
∑∞

n=1

n!

n4 + 3

Solution. Note that for all n ≥ 1

n!

n4 + 3
≥ n!

n4 + 3n4
=

n!

4n4
≥ 0.

The series
∑∞

n=1
n!
4n4 diverges by the ratio test since

lim
n→∞

∣∣∣∣(n+ 1)!/[4(n+ 1)4]

n!/[4n4]

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(

n

n+ 1

)4

(n+ 1)

∣∣∣∣∣ = ∞ > 1.

Then
∑∞

n=1
n!

n4+3
diverges by the comparison test.

d)
∑∞

n=1

cos2 n

n2

Solution. Note that for all n ≥ 1, ∣∣∣∣cos2 nn2

∣∣∣∣ ≤ 1

n2
.

Since the series
∑∞

n=1
1
n2 converges by the integral test, the series

∑∞
n=1

cos2 n

n2
converges ab-

solutely by the comparison test.

e)
∑∞

n=2

1

[n+ (−1)n]2

Solution. Note that for all n ≥ 2 ∣∣∣∣ 1

[n+ (−1)n]2

∣∣∣∣ ≤ 1

(n− 1)2
.

Since the series
∑∞

n=2

1

(n− 1)2
converges by the integral test, the series

∑∞
n=2

1

[n+ (−1)n]2

converges absolutely by the comparison test.

f)
∑∞

n=1

n!

nn

Solution. Note that ∣∣∣∣(n+ 1)!/(n+ 1)(n+1)

n!/nn

∣∣∣∣ = (
n

n+ 1

)n

= e
ln(n/(n+1))

(1/n) .
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By L’hôpital’s rule

lim
n→∞

ln(n/(n+ 1))

(1/n)
= lim

n→∞

n+1
n

· 1
(n+1)2

− 1
n2

= lim
n→∞

− n

n+ 1
= −1,

so

lim
n→∞

∣∣∣∣(n+ 1)!/(n+ 1)(n+1)

n!/nn

∣∣∣∣ = e−1 < 1.

Therefore,
∑∞

n=1

n!

nn
converges absolutely by the ratio test.

g)
∑∞

n=2

1√
n lnn

Solution. Note that for all n ≥ 2

1√
n lnn

≥ 1

n lnn
≥ 0,

and ∫ ∞

2

1

x lnx
dx = ln ln x|∞2 = ∞.

Hence, the series
∑∞

n=2

1

n lnn
diverges by the integral test, which implies that

∑∞
n=2

1√
n lnn

diverges by the comparison test.

h)
∑∞

n=4

1

n(lnn)(ln lnn)

Solution. Note that ∫ ∞

4

1

x lnx ln lnx
dx = ln ln lnx|∞4 = ∞.

Hence, the series
∑∞

n=4

1

n(lnn)(ln lnn)
diverges by the integral test.

i)
∑∞

n=2

lnn

n2

Solution. Using integration by parts with u = lnx and dv = (1/x2)dx, we get∫ ∞

2

lnx

x2
dx = − lnx

x

∣∣∣∣∞
2

−
∫ ∞

2

− 1

x2
dx =

ln 2

2
− 1

x

∣∣∣∣∞
2

=
ln 2

2
+

1

2
.

Since the integral converges, the series
∑∞

n=2

lnn

n2
converges by the integral test.

4. Prove the following: If
∑∞

n=1 |an| converges and (bn)n is a bounded sequence, then
∑∞

n=1 anbn
converges.
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Solution. Let M > 0 be such that |bn| ≤ M for all n ≥ 1. Let ε > 0. Choose N ∈ N such that
m > n ≥ N implies

m∑
k=n+1

|ak| <
ε

M
.

Then for m > n ≥ N , we have∣∣∣∣∣
m∑

k=n+1

akbk

∣∣∣∣∣ ≤
m∑

k=n+1

|ak||bk| ≤
m∑

k=n+1

|ak|M < M · ε

M
= ε.

Hence, by the Cauchy criterion,
∑∞

n=1 anbn converges.

5. Prove the following: If
∑∞

n=1 an is a convergent series of nonnegative numbers and p > 1, then∑∞
n=1 a

p
n converges.

Solution. Since
∑∞

n=1 an converges, an → 0. Choose N1 ∈ N such that 0 ≤ an < 1 for all
n ≥ N1. Then

n ≥ N1 =⇒ 0 ≤ apn ≤ an < 1.

Let ε > 0. Choose N2 ∈ N such that

m > n ≥ N2 =⇒

∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ < ε.

Then for m > n ≥ max{N1, N2} ∣∣∣∣∣
m∑

k=n+1

apk

∣∣∣∣∣ ≤
∣∣∣∣∣

m∑
k=n+1

ak

∣∣∣∣∣ < ε.

Hence,
∑∞

n=1 a
p
n converges by the Cauchy criterion.

6. Prove the following: If
∑∞

n=1 an and
∑∞

n=1 bn are convergent series of nonnegative numbers,
then

∑∞
n=1

√
anbn converges. Hint: Show that

√
anbn ≤ an + bn for all n ≥ 1.

Solution. Since an, bn ≥ 0 for all n ≥ 1,

anbn ≤ 2anbn ≤ a2n + 2anbn + b2n = (an + bn)
2,

which implies √
anbn ≤ an + bn.

Since
∑∞

n=1 an and
∑∞

n=1 bn converge,
∑∞

n=1(an + bn) converges. Therefore,
∑∞

n=1

√
anbn con-

verges by the comparison test.


