Topics in Basic Analysis: Homework 5

- 1. Suppose that the limits $L_1 = \lim_{x\to a} f_1(x)$ and $L_2 = \lim_{x\to a} f_2(x)$ exists.
 - a) Prove that if $\exists c < a < d$ such that $f_1(x) \leq f_2(x)$ for all $x \in (c,d) \setminus a$, then $L_1 \leq L_2$.
 - b) Is it true that if $f_1(x) < f_2(x)$ for all $x \in (c, d) \setminus a$, then $L_1 < L_2$?
- 2. Let $f:(a,b)\mapsto \mathbb{R}$ be continuous. Prove that if f(r)=0 for all $r\in \mathbb{Q}\cap (a,b)$, then f(x)=0 for all $x\in (a,b)$.
- 3. Let $f, g:(a,b) \mapsto \mathbb{R}$ be continuous. Prove that if f(r) = g(r) for all $r \in \mathbb{Q} \cap (a,b)$, then f(x) = g(x) for all $x \in (a,b)$.
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Show that f is not continuous at any $x \in \mathbb{R}$.

5. Let $h: \mathbb{R} \to \mathbb{R}$ be defined by

$$h(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Prove that h is continuous at x = 0 only.

- 6. Let $f, g : [a, b] \to \mathbb{R}$ be continuous function such that $f(a) \ge g(a)$ and $f(b) \le g(b)$. Prove that $f(x_0) = g(x_0)$ for at least one $x_0 \in [a, b]$.
- 7. Use Q6, to show that if $f:[0,1] \mapsto [0,1]$ is continuous, then f has a fixed point, i.e. $\exists x_0 \in [0,1]$ such that $f(x_0) = x_0$.
- 8. Prove that $x = \cos x$ for some $x \in (0, \pi/2)$.
- 9. Determine if the following functions are uniformly continuous. Be sure to justify your answers.
 - a) $f(x) = x^3$ on (0,1)
 - b) $f(x) = x^3$ on \mathbb{R}
 - c) $f(x) = \sin(1/x^2)$ on (0, 1]
 - d) $f(x) = x^2 \sin(1/x)$ on (0, 1]
- 10. Prove that if $f: S \subseteq \mathbb{R} \mapsto \mathbb{R}$ is uniformly continuous and S is a bounded set, then f is bounded on S. Hint: Assume not and use the Bolzano-Weierstrass theorem and the fact that for a uniformly continuous functions, $f(x_n)_n$ is Cauchy whenever $(x_n)_n \subset S$ is Cauchy.
- 11. Prove that $f(x) = \sin x$ is uniformly continuous on \mathbb{R} .