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Topics in Basic Analysis: Homework 5 Solutions

1. Suppose that the limits L1 = limx→a f1(x) and L2 = limx→a f2(x) exists.

a) Prove that if ∃c < a < d such that f1(x) ≤ f2(x) for all x ∈ (c, d) \ a, then L1 ≤ L2.

Solution. Suppose ∃c, d ∈ R such that c < a < d and f1(x) ≤ f2(x) for all x ∈ (c, d) \ {a}.

Method 1: (ε − δ) Suppose that L1 > L2. Then L1 − L2 > 0. Since L1 = limx→a f1(x) and
L2 = limx→a f2(x), limx→a(f1(x)− f2(x)) = L1 − L2. Let ε = (L1 − L2)/2. Then ∃δ > 0 such
that for all x ∈ (c, d) \ {a}

0 < |x− a| < δ =⇒ |f1(x)− f2(x)− (L1 − L2)| <
L1 − L2

2
.

This implies that for x ∈ (c, d) \ {a} such that 0 < |x− a| < δ

0 <
L1 − L2

2
< f1(x)− f2(x) =⇒ f2(x) < f1(x),

a contradiction with f1(x) ≤ f2(x), ∀x ∈ (c, d) \ {a}. Thus, L1 ≤ L2.

Method 2: (Sequential characterization of limits) Let (xn)n ⊂ (c, d) \ {a} such that xn → a.
Then L1 = limx→a f1(x) and L2 = limx→a f2(x) implies that

f1(xn) → L1 and f2(xn) → L2.

Since f2(xn)− f1(xn) ≥ 0 for all n ≥ 1,

f2(xn)− f1(xn) → L2 − L1 =⇒ L2 − L1 ≥ 0.

b) Is it true that if f1(x) < f2(x) for all x ∈ (c, d) \ a, then L1 < L2?

Solution. No. As with the case of sequences, this is not true. Consider the functions

f1(x) = 0 and f(x) = x

with a = 0. Then clearly
f1(x) < f2(x), ∀x ∈ (−1, 1) \ {0}

but
lim
x→0

f1(x) = lim
x→0

f2(x) = 0.

2. Let f : (a, b) 7→ R be continuous. Prove that if f(r) = 0 for all r ∈ Q ∩ (a, b), then f(x) = 0 for
all x ∈ (a, b).
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Solution. Suppose f : (a, b) 7→ R is continuous, f(r) = 0 for all s ∈ Q∩(a, b), and that f(x0) ̸= 0
for some x0 ∈ (a, b). WLOG suppose that f(x0) > 0. Let ε = f(x0)/2 > 0. By continuity of f
at x0, ∃δ > 0 such that for x ∈ (a, b)

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

Then for all x ∈ (x0 − δ, x0 + δ), we have

0 <
f(x0)

2
< f(x),

but by density of Q, ∃r ∈ (x0 − δ, x0 + δ) ∩ Q and f(r) = 0, a contradiction. Thus f(x) = 0 for
all x ∈ (a, b).

3. Let f, g : (a, b) 7→ R be continuous. Prove that if f(r) = g(r) for all r ∈ Q ∩ (a, b), then
f(x) = g(x) for all x ∈ (a, b).

Solution. Let h(x) = f(x) − g(x). Then h : (a, b) 7→ R is continuous and h(r) = 0 for all
r ∈ Q ∩ (a, b), so by Q3, h(x) = 0 for all x ∈ (a, b). Hence f(x) = g(x) for all x ∈ (a, b).

4. Let f : R 7→ R be defined by

f(x) =

{
1, x ∈ Q
0, x ∈ R \Q.

Show that f is not continuous at any x ∈ R.

Solution. Proof 1: (ε − δ) Let x0 ∈ R and suppose that f is continuous at x0. Then x0 ∈ Q or
x0 ∈ R \Q. Suppose that x0 ∈ Q. Let ε = 1

2
. Then by continuity, ∃δ > 0 such that

|x− x0| < δ =⇒ |f(x)− f(x0)| <
1

2
⇐⇒ 1

2
< f(x) <

3

2
.

Since the irrationals are dense in R, ∃ an irrational number t ∈ (x0−δ, x0+δ) but f(t) = 0 < 1/2
a contradiction. The argument is similar if instead x0 ∈ R \Q.

Proof 2: (Sequential characterization of continuity) Suppose that h is continuous at x0 ∈ R.
Again, we consider two cases, x0 ∈ Q or x0 ∈ R \Q. Suppose that x0 ∈ Q. Since f is continuous
at x0, we must have ∀(xn)n ⊂ R

xn → x0 =⇒ f(xn) → f(x0).

By density of the irrationals, ∃(xn)n ⊂ R\Q such that xn → x0, but f(xn) = 0 for all n ≥ 1 and
f(xn) = 0 → 0 ̸= 1 = f(x0), a contradiction. Thus f is not continuous at any x ∈ Q. A similar
argument shows that f is not continuous at any x ∈ R \Q.

5. Let h : R 7→ R be defined by

h(x) =

{
x, x ∈ Q
0, x ∈ R \Q.

Prove that h is continuous at x = 0 only.
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Solution. Let ε > 0. Take δ = ε. Then for x ∈ R

|x− 0| < δ =⇒ |h(x)− h(0)| = |h(x)| ≤ |x| < δ = ε.

Thus, h is continuous at x = 0.

Suppose that h is continuous at x0 ̸= 0. We follow a similar argument to Q4. Suppose that
x0 ∈ Q. By density of the irrationals, we can construct a sequence (xn)n ∈ R \ Q such that
xn → x0, but h(xn) = 0 → 0 ̸= x0 = h(x0), a contradiction. Thus, h cannot be continuous at x0.
Similar argument shows that h is not continuous at any 0 ̸= x0 ∈ R \Q.

6. Let f, g : [a, b] 7→ R be continuous function such that f(a) ≥ g(a) and f(b) ≤ g(b). Prove that
f(x0) = g(x0) for at least one x0 ∈ [a, b].

Solution. Let h(x) = f(x) − g(x). Then h is continuous on [a, b], h(a) = f(a) − g(a) ≥ 0 and
h(b) = f(b)− g(b) ≤ 0. If h(a) = 0 or h(b) = 0, then we are done. If h(a) > 0 and h(b) < 0, then
by the intermediate value theorem, ∃x0 ∈ (a, b) such that 0 = h(x0) = f(x0)− g(x0).

7. Use Q6, to show that if f : [0, 1] 7→ [0, 1] is continuous, then f has a fixed point, i.e. ∃x0 ∈ [0, 1]
such that f(x0) = x0.

Solution. Note that f(0) ≥ 0 and f(1) ≤ 1. Take g(x) = x. Then f(0) ≥ g(0), f(1) ≤ g(1), and
f and g are continuous on [0, 1]. Then by Q6, ∃x0 ∈ [0, 1] such that f(x0) = g(x0) = x0, i.e. f
has a fixed point.

8. Prove that x = cosx for some x ∈ (0, π/2).

Solution. Note h(x) = cos x− x is continuous on [0, π/2], and

h(0) = cos(0)− 0 = 1 and h(π/2) = cos(π/2)− π/2 = −π/2.

Since h(π/2) < 0 < h(0), by the intermediate value theorem, ∃x0 ∈ (0, π/2) such that 0 =
h(x0) = cos x0 − x0.

9. Determine if the following functions are uniformly continuous. Be sure to justify your answers.

a) f(x) = x3 on (0, 1)

Solution. Yes. Note that f(x) = x3 is continuous on [0, 1] and [0, 1] is a compact set, so f is
uniformly continuous on [0, 1], which implies that f is uniformly continuous on (0, 1).

b) f(x) = x3 on R

Solution. No. Let xn = n+ 1
n
and yn = n. Then (xn)n, (yn)n ⊂ R and |xn − yn| = 1

n
→ 0, but

|f(xn)− f(yn)| =
∣∣∣∣n3 + 3n+

3

n
+

1

n3
− n3

∣∣∣∣ → ∞,

so f is not uniformly continuous on R.

c) f(x) = sin(1/x2) on (0, 1]
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Solution. No. Let xn =
√

2
nπ
. Then (xn)n ⊂ (0, 1]. Since xn → 0, (xn)n is a Cauchy se-

quence, but

(f(xn))n =
{
sin

(nπ
2

)}
n
= {1, 0,−1, 0, 1, . . .},

which does not converge and hence is not Cauchy. Thus, f is not uniformly continuous.

d) f(x) = x2 sin(1/x) on (0, 1]

Solution. Yes. Note that limx→0 f(x) = 0. If we consider

h(x) =

{
f(x), x ̸= 0

0, x = 0
,

then h is continuous on R and h(x) = f(x) for all x ∈ (0, 1]. In particular, h is continuous
on [0, 1] and [0, 1] is compact, so h is uniformly continuous on [0, 1]. Since h and f agree on
(0, 1] ⊂ [0, 1], f is uniformly continuous on (0, 1].

10. Prove that if f : S ⊆ R 7→ R is uniformly continuous and S is a bounded set, then f is bounded
on S. Hint: Assume not and use the Bolzano-Weierstrass theorem and the the fact that for a
uniformly continuous functions, f(xn)n is Cauchy whenever (xn)n ⊂ S is Cauchy.

Solution. Suppose that f is not bounded on S. Let (yn)n be an unbounded sequence in f(S) =
{y ∈ R|y = f(x) for some x ∈ S} such that |yn| ≥ n for all n ≥ 1. Then for each n ∈ N, yn =
f(xn) for some xn ∈ S. Since S is a bounded set and (xn)n ⊂ S, (xn)n is a bounded sequence.
By the Bolzano-Weierstrass theorem, (xn)n has a convergent subsequence (xnk

)k. Then (xnk
)k is

also a Cauchy sequence. Since f is uniformly continuous and ynk
= f(xnk

), we must also have
the (ynk

)k is Cauchy, and so (ynk
)k is also bounded. Let M > 0 be such that |ynk

| ≤ M for all
k ≥ 1. Choose N ∈ N such that N > M . Then for k ≥ N , nk ≥ k ≥ N , so |ynk

| ≥ nk ≥ N >
M , a contradiction. Thus, f must be bounded on S.

11. Prove that f(x) = sinx is uniformly continuous on R.

Solution. Note that |f ′(t)| = | cos t| ≤ 1 for all x ∈ R. Since f is continuous and differentiable
on R and f ′ is bounded, f is Lipschitz on R. Hence, f is uniformly continuous


