Topics in Basic Analysis: Homework 6 Solutions

- 1. Find the radius of convergence of the following power series, and determine whether or not they converge at each endpoint if $0 < R < \infty$.
 - a) $\sum_{n=0}^{\infty} n^2 x^n$

Solution. Note that

$$\overline{\lim}_{n \to \infty} |n^2|^{1/n} = 1,$$

so the radius of convergence is R = 1. Thus, the series converges absolutely for all $x \in (-1,1)$. When x = 1, the series does not converge since

$$\lim_{n \to \infty} n^2 = \infty \neq 0.$$

Similarly, the series does not converge when x = -1 since

$$\lim_{n \to \infty} n^2 (-1)^n \neq 0.$$

b) $\sum_{n=0}^{\infty} \frac{n^3}{3^n} x^n$

Solution. Note that

$$\overline{\lim_{n \to \infty}} \left| \frac{n^3}{3^n} \right|^{1/n} = \overline{\lim_{n \to \infty}} \frac{(n^{1/n})^3}{3} = \frac{1}{3},$$

so the radius of convergence is R=3. Thus, the series converges absolutely for all $x\in (-3,3)$. At x=3, the series diverges, since

$$\lim_{n \to \infty} \frac{n^3}{3^n} \cdot 3^n = \lim_{n \to \infty} n^3 = \infty \neq 0.$$

Similarly, the series diverges at x = -3, since

$$\lim_{n \to \infty} \frac{n^3}{3^n} (-3)^n = \lim_{n \to \infty} (-1)^n n^3 \neq 0.$$

c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 \cdot 4^n} x^n$

Solution. Note that

$$\lim_{n \to \infty} \left| \frac{(-1)^n}{n^2 \cdot 4^n} \right|^{1/n} = \lim_{n \to \infty} \frac{1}{4(n^{1/n})^2} = \frac{1}{4},$$

so the radius of convergence is R=4. At x=4, we have the alternating series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2},$$

which converges by the alternating series test, and at x = -4 we have the series

$$\sum_{n=0}^{\infty} \frac{1}{n^2}$$

which converges by the integral test.

2. Prove that $f_n(x) = \frac{1 + \cos^2(nx)}{\sqrt{n}}$ converges uniformly to 0 on \mathbb{R} .

Solution. For all $x \in \mathbb{R}$, we have

$$|f_n(x)| \le \frac{1+1}{\sqrt{n}} = \frac{2}{\sqrt{n}}.$$

Thus,

$$\sup_{x \in \mathbb{R}} |f_n(x)| \le \frac{2}{\sqrt{n}} \to 0,$$

so $f_n \to 0$ uniformly on \mathbb{R} .

- 3. Let $f_n(x) = (x \frac{1}{n})^2$ for $x \in [0, 1]$.
 - a) Does the sequence $\{f_n\}$ converge pointwise to some function f on [0,1]? If so, then find f. Solution. For each $x \in [0.1]$,

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} (x - \frac{1}{n})^2 = x^2 := f(x).$$

Thus, $f_n \to f$ pointwise on [0, 1].

b) Does $\{f_n\}$ converge uniformly on [0,1]? Justify your answer.

Solution. Yes. Note that

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} |(x - \frac{1}{n})^2 - x^2| = \sup_{x \in [0,1]} \left| -\frac{2x}{n} + \frac{1}{n^2} \right| \le \frac{2}{n} + \frac{1}{n^2} \to 0.$$

4. Prove that if $f_n \to f$ uniformly on S, and $g_n \to g$ uniformly on S, then $f_n + g_n \to f + g$ uniformly on S.

Solution. Method 1: (ε -Definition). Let $\varepsilon > 0$. Then $\exists N \in \mathbb{N}$ such that $n \geq N$ implies

$$|f_n(x) - f(x)| < \frac{\varepsilon}{2}$$
 and $|g_n(x) - g(x)| < \frac{\varepsilon}{2}$, $\forall x \in S$.

Then for $n \ge N$

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))| = |f_n(x) - f(x) + g_n(x) - g(x)|$$

$$\leq |f_n(x) - f(x)| + |g_n(x) + g(x)|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

for all $x \in S$.

Method 2: Recall that $f_n \to f$ and $g_n \to g$ uniformly on S if and only if

$$\sup_{x \in S} |f_n(x) - f(x)| \to 0 \text{ and } \sup_{x \in S} |g_n(x) - g(x)| \to 0.$$

Then

$$\sup_{x \in S} |(f_n(x) + g_n(x)) - (f(x) + g(x))| \le \sup_{x \in S} |f_n(x) - f(x)| + \sup_{x \in S} |g_n(x) - g(x)| \to 0,$$

so
$$f_n + g_n \to f + g$$
 uniformly on S .

- 5. Show that if $f_n \to f$ uniformly on S, and $g_n \to g$ uniformly on S, then it need not be true that $f_n g_n \to f g$ uniformly on S with the following example.
 - a) Show that $f_n(x) = x$ converges uniformly to f(x) = x on \mathbb{R} and $g_n(x) = \frac{1}{n}$ converges uniformly to g(x) = 0 on \mathbb{R} .

Solution. Note that

$$\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} |x - x| = 0 \to 0,$$

and

$$\sup_{x \in \mathbb{R}} |g_n(x) - g(x)| = \sup_{x \in \mathbb{R}} \frac{1}{n} \to 0.$$

b) Show that $f_n g_n$ does not converge uniformly to fg on \mathbb{R} .

Solution. Even though $f_n \to f$ and $g_n \to g$ uniformly on \mathbb{R} , note that

$$\sup_{x \in \mathbb{R}} |f_n(x)g_n(x) - f(x)g(x)| = \sup_{x \in \mathbb{R}} \frac{|x|}{n} = \infty \not\to 0,$$

so $f_n g_n$ does not converge uniformly to fg in \mathbb{R} .

6. Let $\{f_n\}$ be a sequence of continuous functions on [a,b] that converge uniformly to f on [a,b]. Show that if $(x_n)_n \subset [a,b]$ and $x_n \to x$, then $\lim_{n\to\infty} f_n(x_n) = f(x)$. Is this true, if $f_n \to f$ pointwise but not uniformly?

Solution. Since f_n is continuous for each n and $f_n \to f$ uniformly on [a, b], f is also continuous. Let $(x_n)_n$ be a sequence in [a, b] such that $x_n \to x$. Then

$$|f_n(x_n) - f(x)| = |f_n(x_n) - f(x_n) + f(x_n) - f(x)|$$

$$\leq |f_n(x_n) - f(x_n)| + |f(x_n) - f(x)|$$

$$\leq \sup_{t \in [a,b]} |f_n(t) - f(t)| + |f(x_n) - f(x)|$$

$$\to 0.$$

Note that the first time in the second to last line converges to 0 because $f_n \to f$ uniformly on [a, b], and the second term converges to 0 by the continuity of f.

- 7. Consider the series $\sum_{n=0}^{\infty} \frac{x^n}{1+x^n}$
 - a) Show that the series converges for all $x \in [0, 1)$.

Solution. Note that for each $x \in [0,1)$,

$$\frac{x^n}{1+x^n} \le x^n, \ \forall n \ge 0.$$

Since $\sum_{n=0}^{\infty} x^n$ (geometric series) converges for $x \in [0,1)$, $\sum_{n=0}^{\infty} \frac{x^n}{1+x^n}$ converges for $x \in [0,1)$ by the comparison test.

b) Show that the series converges uniformly on [0, a] for all 0 < a < 1.

Solution. Let 0 < a < 1. Note that $f(x) = \frac{x^n}{1+x^n}$ is increasing in x on [0,1). To see this, note that

$$f'(x) = \frac{nx^{n-1}}{1+x^n} - \frac{nx^{2n-1}}{(1+x^n)^2} = \frac{nx^{n-1}}{(1+x^n)^2} > 0, \ \forall x \in (0,a).$$

Thus, for each $n \geq 0$,

$$\left| \frac{x^n}{1+x^n} \right| \le \frac{a^n}{1+a^n} \le a^n.$$

Since $\sum_{n=0}^{\infty} a^n < \infty$, $\sum_{n=0}^{\infty} \frac{x^n}{1+x^n}$ converges uniformly on [0,a] by the M-test.

c) Does the series converge uniformly on [0,1)? Explain.

Solution. No. Note that

$$\sup_{x \in [0,1)} \left| \sum_{n=0}^{m} \frac{x^n}{1+x^n} - \sum_{n=0}^{\infty} \frac{x^n}{1+x^n} \right| = \sup_{x \in [0,1)} \sum_{n=m+1}^{\infty} \frac{x^n}{1+x^n} \ge \sup_{x \in [0,1)} \sum_{n=m+1}^{\infty} x^n = \sup_{x \in [0,1)} \frac{x^{m+1}}{1-x} = \infty.$$