Topics in Basic Analysis: Homework 7

1. Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

- a) Using differentiation formulas from calculus, show that f is differentiable for all $x \neq 0$ and find a formula for f'(x), $x \neq 0$.
- b) Use the definition of derivative to show that f is differentiable at x=0 and that f'(0)=0.
- c) Show that f' is not continuous at x = 0.
- 2. Let

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

- a) Prove that f is not differentiable at x = 0.
- b) Is f continuous at x = 0? Justify your answer.
- 3. Suppose that f is differentiable at x = a. Prove the following statements.

a)
$$\lim_{h\to 0} \frac{f(a+h) - f(a)}{h} = f'(a)$$

b)
$$\lim_{h\to 0} \frac{f(a+h) - f(a-h)}{2h} = f'(a)$$

- 4. Prove that $|\cos x \cos y| \le |x y|$ for all $x, y \in \mathbb{R}$.
- 5. Suppose that f is differentiable on \mathbb{R} and that f(0) = 0, f(1) = 1, and f(2) = 1.
 - a) Show that $f'(x) = \frac{1}{2}$ for some $x \in (0, 2)$.
 - b) Show that f'(x) = 0 for some $x \in (1, 2)$.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x) f(y)| \le (x y)^2$ for all $x, y \in \mathbb{R}$. Prove that f is a constant functions.
- 7. Show that $x < \tan x$ for all $x \in (0, \pi/2)$.
- 8. Show that $x/\sin x$ is a strictly increasing function on $(0,\pi/2)$.
- 9. Show that $x \leq \frac{\pi}{2} \sin x$ for $x \in [0.\pi/2]$.
- 10. Suppose that f is differentiable on \mathbb{R} , $1 \leq f'(x) \leq 2$ for all $x \in \mathbb{R}$, and that f(0) = 0. Prove that $x \leq f(x) \leq 2x$ for all $x \geq 0$.
- 11. Find the Taylor series for $\cos x$ centered at 0, and prove that it converges to $\cos x$ for all $x \in \mathbb{R}$.