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Topics in Basic Analysis: Homework 7 Solutions

1. Let

f(x) =

{
x2 sin 1

x
, x ̸= 0

0, x = 0
.

a) Using differentiation formulas from calculus, show that f is differentiable for all x ̸= 0 and
find a formula for f ′(x), x ̸= 0.

Solution. For x ̸= 0, note that

d

dx
x2 = 2x,

d

dx
sinx = cosx,

d

dx

1

x
= − 1

x2
,

so

f ′(x) = 2x sin
1

x
− cos

1

x
,

by applying the product, quotient and chain rules.

b) Use the definition of derivative to show that f is differentiable at x = 0 and that f ′(0) = 0.

Solution.

|f ′(0)| = lim
x→0

∣∣∣∣x2 sin 1
x
− 0

x− 0

∣∣∣∣ = lim
x→0

|x sin 1

x
| ≤ lim

x→0
|x| = 0.

c) Show that f ′ is not continuous at x = 0.

Solution. Let xn = 1
2nπ

, n ≥ 1. Then xn → 0, but

f ′(xn) = 2(2nπ) sin(2nπ)− cos(2nπ) = −1 → −1 ̸= 0 = f ′(0).

Hence, f ′ is not continuous at x = 0.

2. Let

f(x) =

{
x sin 1

x
, x ̸= 0

0, x = 0
.

a) Prove that f is not differentiable at x = 0.

Solution. Note that

lim
x→0

x sin 1
x
− 0

x− 0
= lim

x→0
sin

1

x

does not exist. To see this, consider the sequence xn = 2/[(2n+ 1)π], then

sin
1

xn

= sin
(2n+ 1)π

2
= (−1)n,

which does not have a limit.

b) Is f continuous at x = 0? Justify your answer.
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Solution. Yes. Note that | sinx| ≤ 1 for all x ∈ R implies that

lim
x→0

|f(x)− f(0)| = lim
x→0

|x sin 1

x
| ≤ lim

x→0
|x| = 0,

by the squeeze theorem.

3. Suppose that f is differentiable at x = a. Prove the following statements.

a) limh→0
f(a+ h)− f(a)

h
= f ′(a)

Solution. Let ε > 0. Since f is differentiable at a, ∃δ > 0 such that

0 < |x− a| < δ =⇒
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < ε.

Then for 0 < |h| < δ, 0 < |a+ h− a| = |h| < δ. Thus 0 < |h| < δ implies∣∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣∣ = ∣∣∣∣f(a+ h)− f(a)

a+ h− a
− f ′(a)

∣∣∣∣ < ε.

b) limh→0
f(a+ h)− f(a− h)

2h
= f ′(a)

Solution. Method 1: Let ε > 0. Since f is differentiable at a, ∃δ > 0 such that

0 < |x− a| < δ =⇒
∣∣∣∣f(x)− f(a)

x− a
− f ′(a)

∣∣∣∣ < ε.

Then for 0 < |h| < δ, 0 < |a+ h− a| < δ and 0 < |a− h− a| < δ. Thus 0 < |h| < δ implies∣∣∣∣f(a+ h)− f(a− h)

2h
− f ′(a)

∣∣∣∣ = ∣∣∣∣f(a+ h)− f(a) + f(a)− f(a− h)

2h
− f ′(a)

∣∣∣∣
≤ 1

2

∣∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣∣+ 1

2

∣∣∣∣f(a− h)− f(a)

−h
− f ′(a)

∣∣∣∣
<

ε

2
+

ε

2
= ε.

Method 2: Note that for h ̸= 0,

f(a+ h)− f(a− h)

2h
=

1

2

[
f(a+ h)− f(a) + f(a)− f(a− h)

h

]
=

1

2

[
f(a+ h)− f(a)

h
+

f(a+ (−h))− f(a)

−h

]
→ 1

2
[f ′(a) + f ′(a)]

by part a) and the fact that h → 0 ⇐⇒ −h → 0.

4. Prove that | cosx− cos y| ≤ |x− y| for all x, y ∈ R.
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Solution. Since cosx is continuous and differentiable on R, the MVT guarantees that for every
x, y ∈ R, ∃t between x and y such that

cosx− cos y = − sin t(x− y).

Since | sin t| ≤ 1 for all t ∈ R, we obtain

| cosx− cos y| = | sin t||x− y| ≤ |x− y|.

Since x and y were arbitrary, we are done.

5. Suppose that f is differentiable on R and that f(0) = 0, f(1) = 1, and f(2) = 1.

a) Show that f ′(x) = 1
2
for some x ∈ (0, 2).

Solution. Since f is differentiable on R, it is also continuous on R. Since

f(2)− f(0)

2− 0
=

1

2
,

∃x ∈ (0, 2) such that f ′(x) = 1
2
, by the MVT.

b) Show that f ′(x) = 0 for some x ∈ (1, 2).

Solution. Note that f is continuous on [1, 2] and differentiable on (1, 2). Since

f(2)− f(1)

2− 1
= 0,

∃x ∈ (1, 2) such that f ′(x) = 0 by the MVT. (You can also apply Rolle’s theorem here as
well.)

6. Let f : R 7→ R be a function such that |f(x)− f(y)| ≤ (x− y)2 for all x, y ∈ R. Prove that f is
a constant functions.

Solution. Note that for all x ̸= y, ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ |x− y|.

Thus,

lim
x→y

∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ lim
x→y

|x− y| = 0,

which implies that f ′(y) = 0 for all y ∈ R. Then by a result from class, f is constant on R.

7. Show that x < tanx for all x ∈ (0, π/2).

Solution. Let h(x) = tan x− x. Note that h(0) = 0 and

h′(x) = sec2 x− 1 > 0, ∀x ∈ (0, π/2).

This implies that h is strictly increasing on [0, π/2), so that for all x ∈ (0, π/2), we have

h(x) > 0 =⇒ tanx > x.
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8. Show that x/ sinx is a strictly increasing function on (0, π/2).

Solution. For x ∈ (0, π/2),

d

dx

x

sinx
=

1

sinx
− x cosx

sin2 x
=

tanx− x

cosx sin2 x
> 0,

since tan x−x > 0 (by Q7), cosx > 0, and sin2 x > 0 for all x ∈ (0, π/2). This implies that
x

sinx
is strictly increasing on (0, π/2).

9. Show that x ≤ π
2
sinx for x ∈ [0, π/2].

Solution. The inequality clearly holds at x = 0. By Q8, sinx
x

is strictly decreasing on (0, π/2].
Since

π

2

sin(π/2)

π/2
= 1,

we have that π
2
sinx
x

≥ 1 for all x ∈ (0, π/2], and the result follows.

10. Suppose that f is differentiable on R, 1 ≤ f ′(x) ≤ 2 for all x ∈ R, and that f(0) = 0. Prove
that x ≤ f(x) ≤ 2x for all x ≥ 0.

Solution. The result is clear for x− 0. Let x > 0. By the MVT, ∃ and t ∈ (0, x) such that

f ′(t) =
f(x)− f(0)

x− 0
=

f(x)

x
.

Since 1 ≤ f ′(t) ≤ 2 for all t ∈ R, we have

1 ≤ f ′(t) =
f(x)

x
=⇒ x ≤ f(x)

and

2 ≥ f ′(t) =
f(x)

x
=⇒ 2x ≥ f(x).

11. Find the Taylor series for cos x centered at 0, and prove that it converges to cosx for all x ∈ R.

Solution. Let f(x) = cos x. Then

f (1)(x) = − sinx, f (2)(x) = − cosx, f (3)(x) = sinx, f (4)(x) = cos x, . . .

Since sin 0 = 0 and cos 0 = 1, we have the Taylor series expansion

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

(−1)n

(2n)!
x2n.

By Taylor’s theorem, for each x ̸= 0 and for each n ≥ 1, ∃ξ between 0 and x such that∣∣∣∣∣cosx−
n∑

k=0

(−1)k

(2k)!
x2k

∣∣∣∣∣ =
∣∣∣∣f (2n+1)(ξ)

(2n+ 1)!
x2n+1

∣∣∣∣ ≤ |x|2n+1

(2n+ 1)!
→ 0,
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since |f (n)(ξ)| ≤ 1 for all n ≥ 1 and for all ξ ∈ R. To see why |x|n/n! → 0, consider the series∑∞
n=0

|x|n

n!
. Then for x ̸= 0

lim sup
n→∞

∣∣∣∣ |x|n+1/(n+ 1)!

|x|n/n!

∣∣∣∣ = lim sup
n→∞

|x|
n+ 1

= 0.

Thus, by the ratio test, the series
∑∞

n=0

|x|n

n!
converges for all x ̸= 0 (and clearly for x = 0), so

that
|x|n

n!
→ 0.


