Topics in Basic Analysis: Homework 7 Solutions

1. Let

2?sinl, 2 #£0
x) = o’ :
o= oo o2

a) Using differentiation formulas from calculus, show that f is differentiable for all z # 0 and
find a formula for f'(z), « # 0.

Solution. For x # 0, note that

ix2—2x isinac—cosx il——i
dz” 77 dx N " drx 2%
SO
f'(z) = 2xsin — — cos l,
x x
by applying the product, quotient and chain rules. O

b) Use the definition of derivative to show that f is differentiable at x = 0 and that f’(0) = 0.

Solution. Y
, o |axfsin=—0 ] 1 )
/)] = i [ =2 i i ) < i o] = 0
O
¢) Show that f’ is not continuous at = = 0.
Solution. Let x,, = ﬁ, n > 1. Then z, — 0, but
f'(zn) = 2(2nm) sin(2nw) — cos(2nm) = =1 — —1 # 0 = f/(0).
Hence, f’ is not continuous at x = 0. [
2. Let
rsinl, . #0
)
0, T =
a) Prove that f is not differentiable at = 0.

Solution. Note that
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lim ——— = lim sin —
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does not exist. To see this, consider the sequence z,, = 2/[(2n + 1)7], then
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sin — = sin @n+ m = (-1)",
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which does not have a limit. ]

b) Is f continuous at z = 07 Justify your answer.



Solution. Yes. Note that |sinx| < 1 for all x € R implies that
1
: B o Lo _
lim | f(z) - f(0)] = lim |osin —| < lim || = 0,
by the squeeze theorem.

3. Suppose that f is differentiable at © = a. Prove the following statements.

fla+h) - f(a)

a) limy, h = f'(a)
Solution. Let € > 0. Since f is differentiable at a, 30 > 0 such that
O0<|z—al<d = ‘f—f(a)—f’(a) <e.
r—a

Then for 0 < |h| < 6,0 < |a+h —a|] =|h|] <d. Thus 0 < |h| < § implies
fla+h)— f(a) fla+h)— f(a)
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Solution. Method 1: Let € > 0. Since f is differentiable at a, 30 > 0 such that
0<|z—a|<d = ‘fTi(a)—f’(a) <e.

Then for 0 < |h| <9,0< |a+h—a|] <dand 0 < |a —h —a| <. Thus 0 < |h| < ¢ implies

fla+h)—fla—h) ’f(a+h)—f(a)+f(a)—f(a—h)
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— f(a)| = - f'(a)
1 ’f(a— h) — f(a)

2 —h

— f(a)| + — f'(a)

Method 2: Note that for h # 0,

fla+h) - fla—h)
2h

by part a) and the fact that h - 0 <= —h — 0.

4. Prove that |cosx — cosy| < |x — y| for all z,y € R.



Solution. Since cosz is continuous and differentiable on R, the MVT guarantees that for every
x,y € R, 3t between z and y such that

cosx — cosy = —sint(x — y).
Since |sint| <1 for all t € R, we obtain
|cosx — cosy| = |sint||z —y| < |z —y|.
Since x and y were arbitrary, we are done. O
. Suppose that f is differentiable on R and that f(0) =0, f(1) =1, and f(2) = 1.
a) Show that f'(z) = 4 for some z € (0,2).

Solution. Since f is differentiable on R, it is also continuous on R. Since

f2) -0 1
2—0 2’
Jz € (0,2) such that f'(z) = %, by the MVT. ]

b) Show that f'(x) = 0 for some z € (1,2).

Solution. Note that f is continuous on [1,2] and differentiable on (1,2). Since
f2) - ()
2—-1

Jz € (1,2) such that f'(x) = 0 by the MVT. (You can also apply Rolle’s theorem here as
well.) O

=0,

. Let f: R — R be a function such that |f(z) — f(y)| < (z — y)? for all z,y € R. Prove that f is
a constant functions.

Solution. Note that for all x # y,

flz) = f(y)
‘x——y‘ < |$ _y|-
Thus,
Ty r—y Ty

which implies that f'(y) = 0 for all y € R. Then by a result from class, f is constant on R. [
. Show that z < tanz for all z € (0,7/2).
Solution. Let h(z) = tanx — . Note that ~(0) = 0 and
W (z) =sec?z —1>0, Vz € (0,7/2).
This implies that A is strictly increasing on [0, 7/2), so that for all x € (0,7/2), we have

h(z) >0 = tanz > x.



8.

10.

11.

Show that x/sinz is a strictly increasing function on (0, 7/2).

Solution. For z € (0,7/2),

d =z 1 T COST tanx — x
= ) = 5 0,
sin x sin” x cosxsin“x

dx sinx

X

since tanz —x > 0 (by Q7),cosz > 0, and sin®z > 0 for all x € (0,7/2). This implies that —
sin x
is strictly increasing on (0, 7/2).

Show that z < Zsinx for x € [0,7/2].

sin x

Solution. The inequality clearly holds at x = 0. By Q8,

is strictly decreasing on (0, 7/2].

Since
msin(m/2) 1
2 w2
we have that 2322 > 1 for all 2 € (0,7/2], and the result follows. O

Suppose that f is differentiable on R, 1 < f’(z) < 2 for all z € R, and that f(0) = 0. Prove
that z < f(x) < 2z for all x > 0.

Solution. The result is clear for x — 0. Let > 0. By the MVT, 3 and ¢ € (0, z) such that

iy = =IO T
Since 1 < f/() < 2 for all ¢ € R, we have

1< 7= — o < jw)
and @

2> (1) =

. = 2z > f(x).

m
Find the Taylor series for cosx centered at 0, and prove that it converges to cosx for all z € R.

Solution. Let f(x) = cosz. Then
fY@) = —sinz, fO(z) = —cosz, fO(z)=sinz, fPD(z)=cosz,...

Since sin0 = 0 and cos0 = 1, we have the Taylor series expansion
n

= (0 < (-1
2:% ! n‘< )In - Z ((Qn;!

n=0

e

By Taylor’s theorem, for each x # 0 and for each n > 1, 3¢ between 0 and z such that
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since |f™(&)] < 1forall n > 1 and for all £ € R. To see why |z|"/n! — 0, consider the series
]
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Thus, by the ratio test, the series ) >~ JI* converges for all z # 0 (and clearly for x = 0), so
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