Topics in Basic Analysis: Homework 8 Solutions

Throughout, let $F : [a, b] \to \mathbb{R}$ be a monotonically increasing function with $< -\infty < F(a) < F(b) < \infty$, and by $h \in \mathcal{R}(F, [a, b])$, we mean that h is Riemann-Stieltjes integrable with respect to F over [a, b].

1. Let h be a bounded function. Suppose that there exists a sequence of upper and lower Darboux-Stieltjes sums for h with respect to F over [a,b] such that $\lim_{n\to\infty}(U_n-L_n)=0$. Show that $h\in \mathscr{R}(F,[a,b])$ and that $\int_a^b h\ dF=\lim_{n\to\infty}U_n=\lim_{n\to\infty}L_n$.

Solution. Suppose h is bounded on [a, b] and suppose there exists sequences $(P_n)_n$ and $(Q_n)_n$ of partitions of [a, b] such that

$$U(h, P_n, F) - L(h, Q_n, F) \rightarrow 0.$$

Let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that

$$U(h, P_N, F) - L(h, Q_N, F) < \varepsilon,$$

and let $P = P_N \cup Q_N$ be the refinement of P_N with Q_N . Then

$$U(h, P, F) - L(h, P, F) \le U(h, P_N, F) - L(h, Q_N, F) < \varepsilon,$$

so $h \in \mathcal{R}(F,[a,b])$ by the Cauchy criterion for integrability. Next, note that for all $n \geq 1$

$$L(h, Q_n, F) \le \int_a^b h \ dF \le U(h, P_n, F).$$

This implies that

$$0 \le U(h, P_n, F) - \int_a^b h \, dF \le U(h, P_n, F) - L(h, Q_n, F) \to 0,$$

and

$$0 \le \int_a^b h \, dF - L(h, Q_n, F) \le U(h, P_n, F) - L(h, Q_n, F) \to 0.$$

2. Let $h \in \mathcal{R}(F, [a, b])$, and suppose that g is a function on [a, b] such that h(x) = g(x) except at finitely many points in [a, b]. Show that $\int_a^b h \ dF = \int_a^b g \ dF$.

Solution. Suppose $h \in \mathcal{R}(F, [a, b])$, and that g(x) = f(x) for all $x \in [a, b]$ except at a finite number of points $\{x_1, \ldots, x_n\}$. Choose a partition P of [a, b] such that

$$U(h, P, F) - L(h, P, F) < \frac{\varepsilon}{2}.$$

Let $d = \max\{|g(x_i) - h(x_i)| : i = 1, ..., m\}$ and let $M = \sup_{x \in [a,b]} |h(x)| < \infty$, since h is integrable. Let $Q = \{t_k\}_{k=0}^m$ be a refinement of P such that $\operatorname{mesh}_F(Q) < \frac{\varepsilon}{8n(M+d)}$. WLOG assume that each interval $[t_{j-1}, t_j], j = 1, ..., m$, contains at most one of $x_k, k = 1, 2, ..., n$ (otherwise, we can construct a refinement of P where this is true). Let $A = \{j \in \{1, 2, ..., m\} : x_k \in [t_{j-1}, t_j]\}$, and note that $|A| \leq 2n$, since each x_k is contained in at most two intervals $[t_{j-1}, t_j]$

(It is either a point in the partition P, in which case x_k lies in exactly two such intervals, or it lies within only one interval). Then

$$U(g,Q,F) - L(g,Q,F) = U(h,Q,F) - L(h,Q,F)$$

$$+ \sum_{j \in A} [M(g,[t_{j-1},t_j]) - m(g,[t_{j-1},t_j])] \Delta F_j$$

$$- \sum_{j \in A} [\underbrace{M(h,[t_{j-1},t_j]) - m(h,[t_{j-1},t_j])}_{\geq 0}] \Delta F_j$$

$$< \frac{\varepsilon}{2} + \sum_{j \in A} [(2(M+d))] \Delta F_j$$

$$< \frac{\varepsilon}{2} + 2n \cdot 2(M+d) \cdot \frac{\varepsilon}{8n(M+d)}$$

$$= \varepsilon.$$

Furthermore,

$$|U(h,Q,F) - U(g,Q,F)| = \left| \sum_{j \in A} [M(h,[t_{j-1},t_j]) - M(g,[t_{j-1},t_j])] \Delta F_j \right|$$

$$\leq \sum_{j \in A} (2M+d) \cdot \frac{\varepsilon}{8n(M+d)}$$

$$\leq \varepsilon.$$

Thus,

$$\left| \int_{a}^{b} h \, dF - \int_{a}^{b} g \, dF \right| \leq U(h, Q, F) - \int_{a}^{b} h \, dF + |U(h, Q, F) - U(g, Q, F)|$$

$$+ U(g, Q, P) - \int_{a}^{b} g \, dF$$

$$< \frac{\varepsilon}{2} + \varepsilon + \varepsilon.$$

3. Show that if $h \in \mathcal{R}(F, [a, b])$, then $h \in \mathcal{R}(F, [c, d])$ for every $[c, d] \subset [a, b]$.

Solution. Let P be a partition of [a, b] such that

$$U(h, P, F) - L(h, P, F) < \varepsilon.$$

Consider the refinement of P given by $Q = P \cup \{c, d\} = \{t_k\}_{k=0}^n$. Suppose that $c = t_{k_1}$ and $d = t_{k_2}$. Then $Q^* = \{t_k\}_{k=k_1}^{k_2}$ is a partition of [c, d] and

$$U(h, Q^*, F) - L(h, Q^*, F) = \sum_{j=k_1}^{k_2} [M(h, [t_{j-1}, t_j]) - m(h, [t_{j-1}, t_j]) \Delta F_j]$$

$$\leq \sum_{j=1}^{n} [M(h, [t_{j-1}, t_j]) - m(h, [t_{j-1}, t_j]) \Delta F_j]$$

$$= U(h, Q, F) - L(h, Q, F)$$

$$\leq U(h, P, F) - L(h, P, F)$$

$$< \varepsilon.$$

Thus, $h \in \mathcal{R}(F, [c, d])$ by the Cauchy criterion for integrability.

4. Show that if $h(x) \geq 0$ for all x, h is continuous, and $h \in \mathcal{R}([a,b])$ with $\int_a^b h \ dt = 0$, then h(x) = 0 for all $x \in [a,b]$.

Solution. Suppose that $h(x_0) > 0$. Since h is continuous at x_0 , we can choose a $\delta > 0$ such that $h(x) > h(x_0)/2$ for all $x \in [x_0 - \delta, x_0 + \delta]$. Let $\varepsilon = 2\delta \cdot h(x_0)/2$. Since

$$0 = \int_a^b h \ dt = \inf_P U(h, P),$$

we can choose a partition P of [a, b] such that $U(h, P) < \varepsilon$. Consider that refinement of P given by $Q = P \cup \{x_0 - \delta, x_0 + \delta\}$. Then

$$\varepsilon > U(h, P, F) \ge U(H, Q) \ge \frac{h(x_0)}{2} \cdot 2\delta = \varepsilon,$$

a contradiction. Thus, h(x) = 0 for all $x \in [a, b]$.

Alternatively, we can argue as follows using the construction above, additivity, and the order property of the integral. Note that

$$\int_{a}^{b} h \ dt = \underbrace{\int_{a}^{x_{0} - \delta} h \ dt}_{\geq 0} + \int_{x_{0} - \delta}^{x_{0} + \delta} \underbrace{h}_{\geq h(x_{0})/2} \ dt + \underbrace{\int_{x_{0} + \delta}^{b} h \ dt}_{> 0} \geq \frac{h(x_{0})}{2} \cdot 2\delta > 0,$$

again contradicting that $\int_a^b h \ dt = 0$.

- 5. Let $h, g \in \mathcal{R}(F, [a, b])$.
 - a) Show that $\min\{h, g\} = \frac{1}{2}[(h+g) |h-g|]$ and that $\max\{h, g\} = -\min\{-h, -g\}$.

Solution. If h(x) < g(x), then |h(x) - g(x)| = g(x) - h(x) and

$$\frac{1}{2}[(h(x)+g(x))-|h(x)-g(x)|] = \frac{1}{2}[h(x)+g(x)-(g(x)-h(x))] = \frac{1}{2} \cdot 2h(x) = h(x) = \min\{h(x),g(x)\}.$$

Similarly, if $h(x) \ge g(x)$, then |h(x) - g(x)| = h(x) - g(x) and

$$\frac{1}{2}[(h(x)+g(x))-|h(x)-g(x)|] = \frac{1}{2}[h(x)+g(x)-(h(x)-g(x))] = \frac{1}{2} \cdot 2g(x) = g(x) = \min\{h(x),g(x)\}.$$

Note that $-\min\{-h,-g\} = -\frac{1}{2}[(-h+-g)-|-h--g|] = \frac{1}{2}[(h+g)+|h-g|]$. A similar argument to the one above shows that this is equal to $\max\{h,g\}$.

b) Use part a), to show that $\max\{h,g\}, \min\{h,g\} \in \mathscr{R}(F,[a,b]).$

Solution. Since $h, g \in \mathcal{R}(F, [a, b])$, we have $h + g, h - g \in \mathcal{R}(F, [a, b])$, which also implies that $|h - g| \in \mathcal{R}(F, [a, b])$. The result then follows by linearity of the integral.

6. Suppose that h and g are continuous functions on [a, b] such that $g(x) \ge 0$ for all $x \in [a, b]$. Prove that there exists and $x \in [a, b]$ such that

$$\int_{a}^{b} h(t)g(t) \ dF(t) = h(x) \int_{a}^{b} g(t) \ dF(t).$$

Solution. Since h is continuous on [a,b] it is bounded, and by the EVT, it attains its max and min on [a,b]. That is $\exists x_l, x_u \in [a,b]$ such that $h(x_l) \leq h(x) \leq h(x_u)$ for all $x \in [a,b]$. Then $h(x_l)g(t) \leq h(x)g(x) \leq h(x_u)g(x)$ for all $x \in [a,b]$. Since h,g are continuous, $h,g \in \mathcal{R}(F,[a,b])$, and by the order and linearity properties for integrals

$$h(x_l) \int_a^b g \ dF \le \int_a^b hg \ dF \le h(x_u) \int_a^b g \ dF.$$

If $\int_a^b g \ dF = 0$, then g(x) = 0 for all $x \in [a, b]$, which implies that $\int_a^b hg \ dF = 0$, and the result follows. If $\int_a^b g \ dF > 0$, then we have

$$h(x_l) \le \frac{1}{\int_a^b g \ dF} \int_a^b hg \ dF \le h(x_u).$$

Since h is continuous, the IVT implies that there exists an x between x_l and x_u such that

$$h(x) = \frac{1}{\int_a^b g \ dF} \int_a^b hg \ dF.$$

7. Use Q6, to prove the intermediate value theorem for integrals: If h is continuous on [a, b], then there exists and $x \in [a, b]$ such that

$$h(x) = \frac{1}{F(b) - F(a)} \int_a^b h \, dF.$$

Solution. Let g(x) = 1 for all $x \in [a, b]$. Then g is continuous on [a, b] and $\int_a^b g \ dF = F(b) - F(a)$. By Q6, there exists and $x \in [a, b]$ such that

$$h(x) = \frac{1}{\int_a^b g \, dF} \int_a^b hg \, dF = \frac{1}{F(b) - F(a)} \int_a^b h \, dF.$$

8. Calculate the following limits:

a) $\lim_{x\to 0} \frac{1}{x} \int_0^x e^{t^2} dt$

Solution. Let $F(x) = \int_{-1}^{x} e^{t^2} dt$. Since e^{t^2} is continuous on [-1, 1], F is also continuous on [-1, 1] and differentiable at 0 with $F'(0) = e^{0^2} = 1$. Note that

$$\lim_{x \to 0} \frac{1}{x} \int_0^x e^{t^2} dt = \lim_{x \to 0} \frac{F(x) - F(0)}{x - 0} = F'(0) = 1.$$

b)
$$\lim_{h\to 0} \frac{1}{h} \int_3^{3+h} e^{t^2} dt$$

Solution. Let $F(x) = \int_0^x e^{t^2} dt$. Similar to part a), F is differentiable at 3 with $F'(3) = e^9$, so

$$\lim_{h \to 0} \frac{1}{h} \int_{3}^{3+h} e^{t^2} dt = \lim_{h \to 0} \frac{F(3+h) - F(3)}{h} = F'(3) = e^{3^2} = e^9.$$