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Topics in Basic Analysis: Homework 8 Solutions

Throughout, let F : [a, b] 7→ R be a monotonically increasing function with < −∞ < F (a) < F (b) <
∞, and by h ∈ R(F, [a, b]), we mean that h is Riemann-Stieltjes integrable with respect to F over
[a, b].

1. Let h be a bounded function. Suppose that there exists a sequence of upper and lower Darboux-
Stieltjes sums for h with respect to F over [a, b] such that limn→∞(Un − Ln) = 0. Show that

h ∈ R(F, [a, b]) and that
∫ b

a
h dF = limn→∞ Un = limn→∞ Ln.

Solution. Suppose h is bounded on [a, b] and suppose there exists sequences (Pn)n and (Qn)n of
partitions of [a, b] such that

U(h, Pn, F )− L(h,Qn, F ) → 0.

Let ε > 0. Choose N ∈ N such that

U(h, PN , F )− L(h,QN , F ) < ε,

and let P = PN ∪QN be the refinement of PN with QN . Then

U(h, P, F )− L(h, P, F ) ≤ U(h, PN , F )− L(h,QN , F ) < ε,

so h ∈ R(F, [a, b]) by the Cauchy criterion for integrability. Next, note that for all n ≥ 1

L(h,Qn, F ) ≤
∫ b

a

h dF ≤ U(h, Pn, F ).

This implies that

0 ≤ U(h, Pn, F )−
∫ b

a

h dF ≤ U(h, Pn, F )− L(h,Qn, F ) → 0,

and

0 ≤
∫ b

a

h dF − L(h,Qn, F ) ≤ U(h, Pn, F )− L(h,Qn, F ) → 0.

2. Let h ∈ R(F, [a, b]), and suppose that g is a function on [a, b] such that h(x) = g(x) except at

finitely many points in [a, b]. Show that
∫ b

a
h dF =

∫ b

a
g dF .

Solution. Suppose h ∈ R(F, [a, b]), and that g(x) = f(x) for all x ∈ [a, b] except at a finite
number of points {x1, . . . , xn}. Choose a partition P of [a, b] such that

U(h, P, F )− L(h, P, F ) <
ε

2
.

Let d = max{|g(xi) − h(xi)| : i = 1, . . . ,m} and let M = supx∈[a,b] |h(x)| < ∞, since h is inte-
grable. Let Q = {tk}mk=0 be a refinement of P such that meshF (Q) < ε

8n(M+d)
. WLOG assume

that each interval [tj−1, tj], j = 1, . . . ,m, contains at most one of xk, k = 1, 2, . . . , n (otherwise,
we can construct a refinement of P where this is true). Let A = {j ∈ {1, 2, . . . ,m} : xk ∈
[tj−1, tj]}, and note that |A| ≤ 2n, since each xk is contained in at most two intervals [tj−1, tj]
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(It is either a point in the partition P , in which case xk lies in exactly two such intervals, or it
lies within only one interval). Then

U(g,Q, F )− L(g,Q, F ) = U(h,Q, F )− L(h,Q, F )

+
∑
j∈A

[M(g, [tj−1, tj])−m(g, [tj−1, tj])]∆Fj

−
∑
j∈A

[M(h, [tj−1, tj])−m(h, [tj−1, tj])︸ ︷︷ ︸
≥0

]∆Fj

<
ε

2
+
∑
j∈A

[(2(M + d))]∆Fj

<
ε

2
+ 2n · 2(M + d) · ε

8n(M + d)

= ε.

Furthermore,

|U(h,Q, F )− U(g,Q, F )| =

∣∣∣∣∣∑
j∈A

[M(h, [tj−1, tj])−M(g, [tj−1, tj])]∆Fj

∣∣∣∣∣
≤

∑
j∈A

(2M + d) · ε

8n(M + d)

≤ ε.

Thus, ∣∣∣∣∫ b

a

h dF −
∫ b

a

g dF

∣∣∣∣ ≤ U(h,Q, F )−
∫ b

a

h dF + |U(h,Q, F )− U(g,Q, F )|

+ U(g,Q, P )−
∫ b

a

g dF

<
ε

2
+ ε+ ε.

3. Show that if h ∈ R(F, [a, b]), then h ∈ R(F, [c, d]) for every [c, d] ⊂ [a, b].

Solution. Let P be a partition of [a, b] such that

U(h, P, F )− L(h, P, F ) < ε.

Consider the refinement of P given by Q = P ∪ {c, d} = {tk}nk=0. Suppose that c = tk1 and
d = tk2 . Then Q∗ = {tk}k2k=k1

is a partition of [c, d] and

U(h,Q∗, F )− L(h,Q∗, F ) =

k2∑
j=k1

[M(h, [tj−1, tj])−m(h, [tj−1, tj])∆Fj]

≤
n∑

j=1

[M(h, [tj−1, tj])−m(h, [tj−1, tj])∆Fj]
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= U(h,Q, F )− L(h,Q, F )

≤ U(h, P, F )− L(h, P, F )

< ε.

Thus, h ∈ R(F, [c, d]) by the Cauchy criterion for integrability.

4. Show that if h(x) ≥ 0 for all x, h is continuous, and h ∈ R([a, b]) with
∫ b

a
h dt = 0, then

h(x) = 0 for all x ∈ [a, b].

Solution. Suppose that h(x0) > 0. Since h is continuous at x0, we can choose a δ > 0 such that
h(x) > h(x0)/2 for all x ∈ [x0 − δ, x0 + δ]. Let ε = 2δ · h(x0)/2. Since

0 =

∫ b

a

h dt = inf
P

U(h, P ),

we can choose a partition P of [a, b] such that U(h, P ) < ε. Consider that refinement of P given
by Q = P ∪ {x0 − δ, x0 + δ}. Then

ε > U(h, P, F ) ≥ U(H,Q) ≥ h(x0)

2
· 2δ = ε,

a contradiction. Thus, h(x) = 0 for all x ∈ [a, b].

Alternatively, we can argue as follows using the construction above, additivity, and the order
property of the integral. Note that∫ b

a

h dt =

∫ x0−δ

a

h dt︸ ︷︷ ︸
≥0

+

∫ x0+δ

x0−δ

h︸︷︷︸
≥h(x0)/2

dt+

∫ b

x0+δ

h dt︸ ︷︷ ︸
≥0

≥ h(x0)

2
· 2δ > 0,

again contradicting that
∫ b

a
h dt = 0.

5. Let h, g ∈ R(F, [a, b]).

a) Show that min{h, g} = 1
2
[(h+ g)− |h− g|] and that max{h, g} = −min{−h,−g}.

Solution. If h(x) < g(x), then |h(x)− g(x)| = g(x)− h(x) and

1

2
[(h(x)+g(x))−|h(x)−g(x)|] = 1

2
[h(x)+g(x)−(g(x)−h(x))] =

1

2
·2h(x) = h(x) = min{h(x), g(x)}.

Similarly, if h(x) ≥ g(x), then |h(x)− g(x)| = h(x)− g(x) and

1

2
[(h(x)+g(x))−|h(x)−g(x)|] = 1

2
[h(x)+g(x)−(h(x)−g(x))] =

1

2
·2g(x) = g(x) = min{h(x), g(x)}.

Note that −min{−h,−g} = −1
2
[(−h + −g) − | − h − −g|] = 1

2
[(h + g) + |h − g|]. A similar

argument to the one above shows that this is equal to max{h, g}.

b) Use part a), to show that max{h, g},min{h, g} ∈ R(F, [a, b]).

Solution. Since h, g ∈ R(F, [a, b]), we have h+ g, h− g ∈ R(F, [a, b]), which also implies that
|h− g| ∈ R(F, [a, b]). The result then follows by linearity of the integral.
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6. Suppose that h and g are continuous functions on [a, b] such that g(x) ≥ 0 for all x ∈ [a, b].
Prove that there exists and x ∈ [a, b] such that∫ b

a

h(t)g(t) dF (t) = h(x)

∫ b

a

g(t) dF (t).

Solution. Since h is continuous on [a, b] it is bounded, and by the EVT, it attains its max and
min on [a, b]. That is ∃xl, xu ∈ [a, b] such that h(xl) ≤ h(x) ≤ h(xu) for all x ∈ [a, b]. Then
h(xl)g(t) ≤ h(x)g(x) ≤ h(xu)g(x) for all x ∈ [a, b]. Since h, g are continuous, h, g ∈ R(F, [a, b]),
and by the order and linearity properties for integrals

h(xl)

∫ b

a

g dF ≤
∫ b

a

hg dF ≤ h(xu)

∫ b

a

g dF.

If
∫ b

a
g dF = 0, then g(x) = 0 for all x ∈ [a, b], which implies that

∫ b

a
hg dF = 0, and the result

follows. If
∫ b

a
g dF > 0, then we have

h(xl) ≤
1∫ b

a
g dF

∫ b

a

hg dF ≤ h(xu).

Since h is continuous, the IVT implies that there exists an x between xl and xu such that

h(x) =
1∫ b

a
g dF

∫ b

a

hg dF.

7. Use Q6, to prove the intermediate value theorem for integrals: If h is continuous on [a, b], then
there exists and x ∈ [a, b] such that

h(x) =
1

F (b)− F (a)

∫ b

a

h dF.

Solution. Let g(x) = 1 for all x ∈ [a, b]. Then g is continuous on [a, b] and
∫ b

a
g dF = F (b) −

F (a). By Q6, there exists and x ∈ [a, b] such that

h(x) =
1∫ b

a
g dF

∫ b

a

hg dF =
1

F (b)− F (a)

∫ b

a

h dF.

8. Calculate the following limits:

a) limx→0
1
x

∫ x

0
et

2
dt

Solution. Let F (x) =
∫ x

−1
et

2
dt. Since et

2
is continuous on [−1, 1], F is also continuous on

[−1, 1] and differentiable at 0 with F ′(0) = e0
2
= 1. Note that

lim
x→0

1

x

∫ x

0

et
2

dt = lim
x→0

F (x)− F (0)

x− 0
= F ′(0) = 1.
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b) limh→0
1
h

∫ 3+h

3
et

2
dt

Solution. Let F (x) =
∫ x

0
et

2
dt. Similar to part a), F is differentiable at 3 with F ′(3) = e9, so

lim
h→0

1

h

∫ 3+h

3

et
2

dt = lim
h→0

F (3 + h)− F (3)

h
= F ′(3) = e3

2

= e9.


