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The Helly-Bray Theorem

One question of interest in probability and statistics is under what conditions does

EXn → EX,

or for what class of functions g does
Eg(Xn) → Eg(X).

We study one such set of conditions here with the Helly-Bray theorem.

Definition 1. A subdistribution function (sdf) F is a real-valued function defined on R satisfying

(i) F is nondecreasing.

(ii) F is right-continuous on R.

(iii) F (−∞) = limt→−∞ F (t) ≥ 0 and F (∞) = limt→∞ F (t) ≤ 1.

Note 1. Every cumulative distribution function (cdf) is an sdf, and an sdf is a cdf if we have equality
in (iii), i.e. both F (−∞) = 0 and F (∞) = 1.

Definition 2. For a sdf, F , let C(F ) denote the set of (finite) continuity points of F , i.e.

C(F ) = {x ∈ R : F (x) = F (x−)}.

Note 2. Recall that a bounded, monotonic function can have at most countably many jump dis-
continuities, so [C(F )]c = the set of discontinuity points is countable. This implies that ∀x ∈ R,
∃(xn)n ⊂ C(F ) and (yn)n ⊂ C(F ) with xn ↑ x and yn ↓ x.

Proof. Suppose that for some x ∈ R, there does not exist such sequences (xn)n and (yn)n. This im-
plies that there exists a δ > 0 such that

(x− δ, x+ δ) ∩ C(F ) = ∅,

so then
(x− δ, x+ δ)︸ ︷︷ ︸

uncountable

⊂ [C(F )]c︸ ︷︷ ︸
countable

.

We now introduce two modes of convergence. I do want to note here that the terminology used here
is old and not widely used this way anymore, but I want to make a distinction between convergence
to a cdf vs an sdf.

Definition 3. Let {Fn, n ≥ 1} be a sequence of cdf’s, and let F be an sdf. We say that Fn con-
verges weakly to F , written Fn

w→ F , if

Fn(t) → F (t), ∀t ∈ C(F ).

If F is also a cdf and Fn
w→ F , then we say that Fn converges completely to F , written Fn

c→ F .
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Example 1. Let Xn
iid∼ U(−n, n). Then

Fn(x) =


0, x < −n
1

2n
x+

1

2
, −n ≤ x ≤ n

1, x > n

Then Fn(t) → 1
2
for all t ∈ R. Thus, Fn

w→ F ≡ 1
2
, but Fn

c

̸→ F , since F is not a cdf.

Definition 4. If {Xn, n ≥ 1} are R.V.’s with cdf’s {Fn, n ≥ 1}, and X is a R.V. with cdf F , then we

say that Xn converges in distribution to X, written Xn
d→ X if Fn

c→ F .

Example 2. Does convergence in distribution have similar properties to limits? Similar to other
probabilistic convergence modes like convergence in probability? Below are some examples to get you
thinking about convergence in distribution, but we leave the solutions for a later course.

1. (Uniqueness of limits?) Show that if Xn
d→ XF and Xn

d→ XG, then F (x) = G(x), ∀x ∈ R.
(Hint: Consider points in C(F ) ∩ C(G) first.)

2. (Is the rate for convergence in distribution always
√
n like in the CLT?) Let Xn

iid∼ U(0, 1). Find
a cdf F , so that

n(1−X(n))
d→ XF ,

where X(n) = max{X1, X2, . . . , Xn}.

3. (Do we have additivity of limits for convergence in distribution?) Is it true that if Xn
d→ X and

Yn
d→ Y , then Xn + Yn

d→ X + Y ? In general, this is not true, but if we add independence
between Xn and Yn, then we can achieve such a result. To why this is not true in general, con-
sider Xn = Z ∼ N(0, 1) and Yn = −Z ∼ N(0, 1).

Theorem 1 (The Finite Helly-Bray Theorem). Let {Fn, n ≥ 1} be cdf ’s such that Fn
w→ F and let

a, b ∈ C(F ), where a < b. Then for every real continuous function g on [a, b]

lim
n→∞

∫ b

a

g dFn =

∫ b

a

g dF.

Proof. Let ε > 0. Since [a, b] is compact, g is uniformly continuous on [a, b], so we can choose a δ > 0,
such that

a ≤ x, y ≤ b, |x− y| < δ =⇒ |g(x)− g(y)| < ε.

Choose xi ∈ C(F ), 0 ≤ i ≤ k, such that

a = x0 < x1 < · · · < xk−1 < xk = b and max
0≤i≤k−1

{xi+1 − xi} < δ.

(Note that I can always choose xi ∈ C(F )) by Note 2.) Let M < ∞ be such that |g(x)| ≤ M for all
x ∈ [a, b]. Then

Hn
(let)
=

∫ b

a

g dFn −
∫ b

a

g dF =
k−1∑
i=0

(∫ xi+1

xi

g dFn −
∫ xi+1

xi

g dF

)
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=
k−1∑
i=0

(∫ xi+1

xi

[g(x)− g(xi)] dFn(x) +

∫ xi+1

xi

g(xi) dFn(x)

−
∫ xi+1

xi

g(xi) dF (x) +

∫ xi+1

xi

[g(xi)− g(x)] dF (x)

)
and so

|Hn| ≤
k−1∑
i=0

(∫ xi+1

xi

|g(x)− g(xi)| dFn(x) +

∫ xi+1

xi

|g(xi)− g(x)| dF (x)

+|g(xi)||Fn(xi+1)− Fn(xi)− F (xi+1)|F (xi)|)

≤ ε
k−1∑
i=0

(Fn(xi+1)− Fn(xi) + F (xi+1)− F (xi))

+M

k−1∑
i=0

(|Fn(xi+1)− F (xi+1)|+ |Fn(xi)− F (xi)|)

= ε(Fn(b)− Fn(a) + F (b)− F (a)) + o(1).

Thus, limn→∞ |Hn| ≤ 2ε, so limn→∞ Hn = 0.

Theorem 2 (The Extended Helly-Bray Theorem). Let Fn
c→ F and let g be a bounded continuous

function on R. Then
lim
n→∞

∫ ∞

−∞
g dFn =

∫ ∞

−∞
g dF.

Note 3. The Extended Helly-Bray theorem says that if Xn
d→ XF , then

E[g(Xn)] → E[g(XF )]

for all bounded continuous functions g. The reverse implications turns out to be true as well, so this
provides an equivalent definition of convergence in distribution, though we do not prove that here.

Proof. Let M = supx∈R |g(x)| < ∞. Let a, b ∈ C(F ) with a < b. Then∣∣∣∣∫ ∞

−∞
g dFn −

∫ ∞

−∞
g dF

∣∣∣∣
≤

∣∣∣∣∫ ∞

−∞
g dFn −

∫ b

a

g dFn

∣∣∣∣+ ∣∣∣∣∫ b

a

g dFn −
∫ b

a

g dF

∣∣∣∣︸ ︷︷ ︸
→0 by Finite Helly-Bray

+

∣∣∣∣∫ b

a

g dF −
∫ ∞

−∞
g dF

∣∣∣∣
≤ M [Fn(a)− Fn(−∞) + Fn(∞)− Fn(b) + F (a)− F (−∞) + F (∞)− F (b)] + o(1)
n→∞→ M [F (a) + 1− F (b) + F (a) + 1− F (b)]

a→−∞,b→∞→ 0,

where a → −∞ and b → ∞ along points in C(F ).

Example 3. The following example shows that the Extended Helly-Bray theorem can fail if Fn
c→ F

is replaces by Fn
w→ F . Let Xn

iid∼ U(−n, n). Then Fn
w→ F ≡ 1

2
. Let g(x) = 1 for all x ∈ R. Then g is

bounded and continuous on R, but

lim
n→∞

∫ ∞

−∞
g dFn = 1 while

∫ ∞

−∞
g dF = 0.
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Example 4. The Extended Helly-Bray theorem can also fail if g is not bounded. Let g(x) = x2 and
let {Xn, n ≥ 1} be R.V.’s with

P (Xn = n) =
1

n2
= 1− P (Xn = 0).

Then Xn
P→ XF ≡ 0, so that Xn

d→ XF , but

lim
n→∞

∫ ∞

−∞
g dFn = lim

n→∞
E[X2

n] = 1 while

∫ ∞

−∞
g dF = EX2

F = 0.


