Inequalities

Definition 1. Let $-\infty \le a < b \le \infty$. A function $g:(a,b) \mapsto \mathbb{R}$ is said to be **convex** if for all $a < x_1 < x_2 < b$ and $0 \le \lambda \le 1$

$$g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2).$$

Note 1. Geometrically, a function is convex if the line segment between $(x_1, g(x_1))$ and $(x_2, g(x_2))$ does not go below the curve of g(x) for $x \in (x_1, x_2)$.

Lemma 1. If $g:(a,b)\mapsto \mathbb{R}$ is convex, then g is continuous on (a,b).

Proof. Let a < s < t < u < b. Then

$$t = \frac{u-t}{u-s}s + \left(1 - \frac{u-t}{u-s}\right)u = \frac{u-t}{u-s}s + \frac{t-s}{u-s}u,$$

so by convexity, we have

$$g(t) \le \frac{u-t}{u-s}g(s) + \frac{t-s}{u-s}g(u). \tag{1}$$

Now, fix s and u in (1). Then

$$\overline{\lim}_{t \to s^+} g(t) \le g(s).$$

Next, fix t and s in (1). Then

$$\underline{\lim}_{u \to t^+} g(u) \ge g(t).$$

Hence, for any $x \in (a, b)$,

$$\overline{\lim_{t \to x^+}} g(t) \le g(x) \le \underline{\lim_{t \to x^+}} g(t) \implies \lim_{t \to x^+} g(t) = g(x).$$

If we fix t and u in (1), then

$$\underline{\lim}_{s \to t^{-}} g(s) \ge g(t).$$

If we fix s and u in (1), then

$$\overline{\lim_{t \to u^{-}}} g(t) \le g(u).$$

Therefore, for any $x \in (a, b)$

$$\overline{\lim_{t \to x^{-}}} g(t) \le g(x) \le \underline{\lim_{t \to x^{-}}} g(t) \implies \lim_{t \to x^{-}} g(t) = g(x).$$

Together, these imply that for all $x \in (a, b)$,

$$g(x) = g(x+) = g(x-)$$
, i.e. g is continuous at x.

For a convex function $g:(a,b)\mapsto \mathbb{R}$, note that as in the prior proof, we have

$$g(t) \le \left(1 - \frac{t - s}{u - s}\right)g(s) + \frac{t - s}{u - s}g(u),$$

and so

$$\frac{g(t) - g(s)}{t - s} \le \frac{g(u) - g(s)}{u - s}, \ a < s < t < u < b.$$

Also note that

$$g(t) \le \frac{u-t}{u-s}g(s) + \left(1 - \frac{u-t}{u-s}\right)g(u),$$

and so

$$\frac{g(u) - g(s)}{u - s} \le \frac{g(u) - g(t)}{u - t}, \ a < s < t < u < b.$$

Hence

$$\frac{g(t) - g(s)}{t - s} \le \frac{g(u) - g(t)}{u - t}, \ a < s < t < u < b.$$
 (2)

Theorem 1 (Jensen's Inequality). Let $g : \mathbb{R} \to \mathbb{R}$ be a convex function, and let X be a random variables such that $E|X| < \infty$. Then Eg(X) exists and

$$g(EX) \le Eg(X)$$
.

Proof. It follows from (2) that

$$M \stackrel{def}{=} \sup_{s \leq EX} \frac{g(EX) - g(s)}{EX - s} \leq \frac{g(u) - g(EX)}{u - EX}, \ \forall u > EX.$$
 (3)

Now (3) implies that

$$g(EX) - g(s) \le M(EX - s), \ \forall s < EX,$$

or, equivalently, that

$$g(s) - g(EX) \ge M(s - EX), \ \forall s < EX.$$

Clearly, $g(EX) - g(EX) \ge M(EX - EX)$. Also, (3) implies

$$g(u) - g(EX) \ge M(u - EX), \ \forall u > EX.$$

Hence,

$$g(x) - g(EX) \ge M(x - EX), \ \forall x \in \mathbb{R},$$

i.e.

$$g(x) \ge M(x - EX) + g(EX), \ \forall x \in \mathbb{R}.$$

Thus,

$$g(X) \ge M(X - EX) + g(EX).$$

It follows that Eg(X) exists (possibly infinite), and by taking expectations of both sides we have

$$Eq(X) > 0 + q(EX) = q(EX).$$

Definition 2. For 0 , the**p-norm**of a random variable X is defined by

$$||X||_p \stackrel{def}{=} \left(\int_{-\infty}^{\infty} |x|^p dF\right)^{1/p} (\leq \infty).$$

Theorem 2 (Liapounov Inequality). Let X be a random variable, and let $0 < q < p < \infty$. Then

$$(E|X|^q)^{1/q} \le (E|X|^p)^{1/p}$$
,

i.e. $||X||_q \leq ||X||_p$.

Proof. Let r > 1 and let Y be a random variable such that $E|Y| < \infty$. Then by Jensen's inequality, applied to the function $g(x) = x^r$ and the random variable |Y|, we have

$$(E|Y|)^r = g(E|Y|) \le Eg(|Y|) = E|Y|^r. \tag{*}$$

This inequality trivially holds if $E|Y|=\infty$. In (\star) , replace Y by $|X|^q$ and replace r by $\frac{p}{q}>1$ yielding

$$(E|X|^q)^{p/q} \le E|X|^{q \cdot \frac{p}{q}} = E|X|^p,$$

which yields the conclusion.

Theorem 3. Let X, Y be random variables

(i) (Hölder's inequality) Let $1 and <math>1 < q < \infty$ be such that $\frac{1}{p} + \frac{1}{q} = 1$ (p and q are called conjugate indicies). Then

$$E|XY| \le (E|X|^p)^{1/p} (E|Y|^q)^{1/q}$$
,

that is $||XY||_1 \le ||X||_p ||Y||_q$.

(ii) (The Schwarz inequality). If $EX^2 < \infty$ and $EY^2 < \infty$, then $E|XY| < \infty$ and

$$|EXY| \le E|XY| \le \sqrt{EX^2 \cdot EY^2}$$

(iii) (The Minkowski inequality) If $E|X|^p < \infty$ and $E|Y|^p < \infty$, where $p \ge 1$, then

$$||X + Y||_p \le ||X||_p + ||Y||_p.$$

Proof. (i) If $||X||_p$ is 0 or ∞ , or if $||Y||_q$ is 0 or ∞ , then the inequality is clear. Otherwise, set

$$U = \frac{|X|}{\|X\|_p}$$
 and $V = \frac{|Y|}{\|Y\|_q}$.

Note that $-\log t$ is a convex function on $(0,\infty)$ implying that if a>0 and b>0, then

$$-\log\left(\frac{1}{p}a^p + \frac{1}{q}b^q\right) \le -\frac{1}{p}\log a^p - \frac{1}{q}\log b^q = -\log ab.$$

Thus,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

and so

$$UV \le \frac{U^p}{p} + \frac{V^q}{q}.$$

4

Now,

$$EU^p = E\left(\frac{|X|^p}{\|X\|_p^p}\right) = 1$$

and similarly $EV^q = 1$, and so

$$EUV \le \frac{1}{p} + \frac{1}{q} = 1,$$

i.e.

$$\frac{E|XY|}{\|X\|_p \|Y\|_q} \le 1.$$

- (ii) By noting that $\frac{1}{2} + \frac{1}{2} = 1$, the result follows by applying Hölder's inequality.
- (iii) We omit the proof of this inequality, but note that this is the triangly inequality for the L_p space norm.