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Inequalities

Definition 1. Let −∞ ≤ a < b ≤ ∞. A function g : (a, b) 7→ R is said to be convex if for all
a < x1 < x2 < b and 0 ≤ λ ≤ 1

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2).

Note 1. Geometrically, a function is convex if the line segment between (x1, g(x1)) and (x2, g(x2))
does not go below the curve of g(x) for x ∈ (x1, x2).

Lemma 1. If g : (a, b) 7→ R is convex, then g is continuous on (a, b).

Proof. Let a < s < t < u < b. Then

t =
u− t

u− s
s+

(
1− u− t

u− s

)
u =

u− t

u− s
s+

t− s

u− s
u,

so by convexity, we have

g(t) ≤ u− t

u− s
g(s) +

t− s

u− s
g(u). (1)

Now, fix s and u in (1). Then
lim
t→s+

g(t) ≤ g(s).

Next, fix t and s in (1). Then
lim
u→t+

g(u) ≥ g(t).

Hence, for any x ∈ (a, b),

lim
t→x+

g(t) ≤ g(x) ≤ lim
t→x+

g(t) =⇒ lim
t→x+

g(t) = g(x).

If we fix t and u in (1), then
lim
s→t−

g(s) ≥ g(t).

If we fix s and u in (1), then
lim
t→u−

g(t) ≤ g(u).

Therefore, for any x ∈ (a, b)

lim
t→x−

g(t) ≤ g(x) ≤ lim
t→x−

g(t) =⇒ lim
t→x−

g(t) = g(x).

Together, theses imply that for all x ∈ (a, b),

g(x) = g(x+) = g(x−), i.e. g is continuous at x.
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For a convex function g : (a, b) 7→ R, note that as in the prior proof, we have

g(t) ≤
(
1− t− s

u− s

)
g(s) +

t− s

u− s
g(u),

and so
g(t)− g(s)

t− s
≤ g(u)− g(s)

u− s
, a < s < t < u < b.

Also note that

g(t) ≤ u− t

u− s
g(s) +

(
1− u− t

u− s

)
g(u),

and so
g(u)− g(s)

u− s
≤ g(u)− g(t)

u− t
, a < s < t < u < b.

Hence

g(t)− g(s)

t− s
≤ g(u)− g(t)

u− t
, a < s < t < u < b. (2)

Theorem 1 (Jensen’s Inequality). Let g : R 7→ R be a convex function, and let X be a random
variables such that E|X| < ∞. Then Eg(X) exists and

g(EX) ≤ Eg(X).

Proof. It follows from (2) that

M
def
= sup

s<EX

g(EX)− g(s)

EX − s
≤ g(u)− g(EX)

u− EX
, ∀u > EX. (3)

Now (3) implies that
g(EX)− g(s) ≤ M(EX − s), ∀s < EX,

or, equivalently, that
g(s)− g(EX) ≥ M(s− EX), ∀s < EX.

Clearly, g(EX)− g(EX) ≥ M(EX − EX). Also, (3) implies

g(u)− g(EX) ≥ M(u− EX), ∀u > EX.

Hence,
g(x)− g(EX) ≥ M(x− EX), ∀x ∈ R,

i.e.
g(x) ≥ M(x− EX) + g(EX), ∀x ∈ R.

Thus,
g(X) ≥ M(X − EX) + g(EX).

It follows that Eg(X) exists (possibly infinite), and by taking expectations of both sides we have

Eg(X) ≥ 0 + g(EX) = g(EX).



3

Definition 2. For 0 < p < ∞, the p-norm of a random variable X is defined by

∥X∥p
def
=

(∫ ∞

−∞
|x|pdF

)1/p

(≤ ∞).

Theorem 2 (Liapounov Inequality). Let X be a random variable, and let 0 < q < p < ∞. Then

(E|X|q)1/q ≤ (E|X|p)1/p ,

i.e. ∥X∥q ≤ ∥X∥p.

Proof. Let r > 1 and let Y be a random variable such that E|Y | < ∞. Then by Jensen’s inequality,
applied to the function g(x) = xr and the random variable |Y |, we have

(E|Y |)r = g(E|Y |) ≤ Eg(|Y |) = E|Y |r. (⋆)

This inequality trivially holds if E|Y | = ∞. In (⋆), replace Y by |X|q and replace r by p
q
> 1 yielding

(E|X|q)p/q ≤ E|X|q·
p
q = E|X|p,

which yields the conclusion.

Theorem 3. Let X, Y be random variables

(i) (Hölder’s inequality) Let 1 < p < ∞ and 1 < q < ∞ be such that 1
p
+ 1

q
= 1 (p and q are called

conjugate indicies). Then

E|XY | ≤ (E|X|p)1/p (E|Y |q)1/q ,
that is ∥XY ∥1 ≤ ∥X∥p∥Y ∥q.

(ii) (The Schwarz inequality). If EX2 < ∞ and EY 2 < ∞, then E|XY | < ∞ and

|EXY | ≤ E|XY | ≤
√
EX2 · EY 2.

(iii) (The Minkowski inequality) If E|X|p < ∞ and E|Y |p < ∞, where p ≥ 1, then

∥X + Y ∥p ≤ ∥X∥p + ∥Y ∥p.

Proof. (i) If ∥X∥p is 0 or ∞, or if ∥Y ∥q is 0 or ∞, then the inequality is clear. Otherwise, set

U =
|X|
∥X∥p

and V =
|Y |
∥Y ∥q

.

Note that − log t is a convex function on (0,∞) implying that if a > 0 and b > 0, then

− log

(
1

p
ap +

1

q
bq
)

≤ −1

p
log ap − 1

q
log bq = − log ab.

Thus,

ab ≤ ap

p
+

bq

q

and so

UV ≤ Up

p
+

V q

q
.
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Now,

EUp = E

(
|X|p

∥X∥pp

)
= 1

and similarly EV q = 1, and so

EUV ≤ 1

p
+

1

q
= 1,

i.e.
E|XY |

∥X∥p∥Y ∥q
≤ 1.

(ii) By noting that 1
2
+ 1

2
= 1, the result follows by applying Hölder’s inequality.

(iii) We omit the proof of this inequality, but note that this is the triangly inequality for the Lp

space norm.


