Inequalities

Definition 1. Let —oc0

<
a<xr<rTyg<band <A

a < b < oo. A function g : (a,b) — R is said to be convex if for all
<1
g(Az1 + (1 = Naz) < Ag(z1) + (1 = A)g(a2).

Note 1. Geometrically, a function is convex if the line segment between (z1, g(x1)) and (x4, g(x2))
does not go below the curve of g(z) for x € (x1, z3).

Lemma 1. If g : (a,b) — R is convez, then g is continuous on (a,b).

Proof. Let a < s <t <u <b. Then

u—t u—t u—t t—s
t = s+(1— )u: s+ U,

u—=S

so by convexity, we have

Now, fix s and u in (1). Then o
lim g(t) < g(s).

t—st

Next, fix t and s in (1). Then
lim g(u) > g(t).

u—tt
Hence, for any = € (a,b),

lim g(t) < g(z) < lim g(t) = lim g(t) = g().

t—axt P t—axt

If we fix ¢t and u in (1), then
lim g(s) > g(t).

s—t—

If we fix s and w in (1), then o
lim ¢(t) < g(u).

t—=u—

Therefore, for any = € (a, b)

lim g(t) < g(z) < lim g(t) = lim g(t) = g().

t—x— t—sp— t—x—
Together, theses imply that for all x € (a,b),

g(z) = g(x+) = g(x—), i.e. g is continuous at x.



For a convex function g :

and so

Also note that

and so

Hence

Theorem 1 (Jensen’s Inequality). Let g : R — R be a convex function, and let X be a random

(a,b) — R, note that as in the prior proof, we have

t—s t—s

o0 < (1= 222 o9+ =2t
o) —als) g —gls) _ .,
t—s —  u—s '

o)< 209+ (1- 222 gt

u—=S

9(w) = g(s) _ g(u) = g(1)

< " ,a<s<t<u<b.
u—S u —

9(t) —g(s) _ g(w) —g(t)

< ,a<s<t<u<b.
t—s u—t

variables such that E|X| < co. Then Eg(X) exists and

9(EX) < Eg(X).

Proof. Tt follows from (2) that

M = sup < , Yu > EX.

Now (3) implies that
or, equivalently, that

Clearly, g(EX) — g(EX)

Hence,
ie.

Thus,

It follows that Fg(X) exists (possibly infinite), and by taking expectations of both sides we have

def 9g(EX) —g(s) _ g(u) — g(EX)

s«Bx FX—-—s = wu—FEX

g(EX)—g(s) < M(EX —s), Vs < EX,

g(s) —g(EX) > M(s— EX), Vs < EX.
> M(EX — EX). Also, (3) implies

g(u) —g(EX) > M(u— EX), Yu> EX.

g(x) —g(EX) > M(x — EX), Vo € R,
g(x) > M(z — EX)+g(EX), Yz € R.

9(X) =2 M(X — EX) + g(EX).

Eg(X) >0+ g(EX) = g(EX).

(2)



Definition 2. For 0 < p < oo, the p-norm of a random variable X is defined by

def ([ 1
1,2 ([ lebar) (< o0

[e.9]

Theorem 2 (Liapounov Inequality). Let X be a random variable, and let 0 < ¢ < p < oo. Then
(BIX|)Y" < (BIX|)Y7,
e [ X|lg < X1l

Proof. Let r > 1 and let Y be a random variable such that E|Y| < co. Then by Jensen’s inequality,
applied to the function ¢g(z) = 2" and the random variable |Y|, we have

(EY])" =g(EY]) < Eg(Y) =EN|. (%)
This inequality trivially holds if E|Y| = oc. In (%), replace Y by [X|? and replace r by £ > 1 yielding
(B|X|)"" < E|X|"% = E|X]",
which yields the conclusion. O]

Theorem 3. Let X, Y be random variables

(1) (Hélder’s inequality) Let 1 < p < oo and 1 < ¢ < oo be such that % + % =1 (p and q are called
conjugate indicies). Then
EIXY| < (E|XP)"" (BlY|")',

that is || XY[[y < [ X|,[[Y 4
(ii) (The Schwarz inequality). If EX?* < oo and EY? < co, then E|XY| < oo and

|[EXY| < E|XY| < VEX?. EY?.

(i1i) (The Minkowski inequality) If E|X|P < oo and E|Y|P < oo, where p > 1, then

X+ Yl < X + 1Yl
Proof. (i) If ||X||, is 0 or oo, or if ||Y||, is 0 or oo, then the inequality is clear. Otherwise, set

| X Y]
= and V = .
1 X1 [hgP

Note that —logt is a convex function on (0, 00) implying that if @ > 0 and b > 0, then

1 1 1 1
~log <““” + —bq) < ——loga” — ~logb? = ~logab.
p q p q

Thus,
ab b
ab < — + —
p q
and so e ve
v < — + —.

p q



Now,

Ly
EU? =F ( =1
IXTE

and similarly EV? =1, and so
1 1
EUV < -+ - =1,

p q
i.e.
E|XY]|
— < 1.
[ X o [1Y [l

(ii) By noting that % + % = 1, the result follows by applying Holder’s inequality.

(iii) We omit the proof of this inequality, but note that this is the triangly inequality for the L,
space norm.



