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Probability Generating Functions

Generating functions are widely used in mathematics and play an important role in probability the-
ory. Probability generating functions provide a major analytical tool when working with stochastic
processes on discrete state spaces, such as branching processes.

1 Definition and Basic Properties

Definition 1. Let X be a nonnegative integer valued random variable such that P (X = n) = pn,
n = 0, 1, 2, . . . is its probability mass function. Then the probability generating function (pgf) of
X is defined by

gX(s) = E[sX ] =
∞∑
n=0

snP (X = n) =
∞∑
n=0

pns
n.

Note that

gX(1) =
∞∑
n=0

pn1
n =

∞∑
n=0

pn = 1.

Since 0 ≤ pn ≤ 1, ∀n ≥ 1, and
∑∞

n=0 pn = 1, we have that for |s| ≤ 1

|pnsn| ≤ pn, ∀n ≥ 1 and
∞∑
n=0

pn < ∞,

so by the Weierstrass M-test, gX(s) =
∑∞

n=0 pns
n converges uniformly for |s| ≤ 1. Furthermore, since

for each m ≥ 1

fm(s) =
m∑

n=0

pns
n

is continuous on [−1, 1] and fm → gX uniformly on [−1, 1], we also have that gX(s) is continuous on
[−1, 1].

The name probability generating function comes from the following property.

Proposition 1. Let X be a nonnegative integer valued random variable with pmf P (X = n) = pn,
n = 0, 1, 2, . . .. If X has pgf

gX(s) =
∞∑
n=0

pns
n,

then for each k = 0, 1, 2, . . .,

pk = g
(k)
X (0) =

1

k!

dk

dsk
gX(s)

∣∣∣∣
s=0

.

Proof. Note that gX(s) defines a power series with radius of convergence R ≥ 1. Therefore, gX is
infinitely differentiable for |s| < R, and for each k = 1, 2, . . .

dk

dsk
gX(s) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)pns
n−k.

Then
g
(0)
X (0) = gX(0) = p0,
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and for k = 1, 2, . . .,
dk

dsk
gX(s)

∣∣∣∣
s=0

= k(k − 1) · · · (k − k + 1)pk = k!pk.

An immediate consequence of this result is that the pgf of a nonnegative integer valued random vari-
able uniquely determines its distribution.

Corollary 1. Let X and Y be two nonnegative integer values random variables with pgfs

gX(s) =
∞∑
n=0

pns
n and gY (s) =

∞∑
n=0

qns
n.

Then X
d
= Y if and only if gX(s) = gY (s) for all s in some interval containing 0.

Proof. ( =⇒ ) Suppose that X
d
= Y . Then pn = P (X = n) = P (Y = n) = qn for all n = 0, 1, 2 . . ., so

gX(s) =
∞∑
n=0

pns
n =

∞∑
n=0

qns
n = gY (s)

for all s where the series converge. In particular, gX(s) = gY (s) for all s ∈ [−1, 1].

Suppose that gX and gY are pgfs such that gX(s) = gY (s) for all s in some interval containing 0.
Then for each k = 0, 1, 2, . . .

k!pk =
dk

dsk
gX(s)

∣∣∣∣
s=0

=
dk

dsk
gY (s)

∣∣∣∣
s=0

= k!qk.

Thus, pn = P (X = n) = P (Y = n) = qn for all n = 0, 1, 2 . . ., so X
d
= Y .

It turns out that similar to moment generating functions, we can also use a pgf to easily calculate
certain moments of X. To prove this, we will need to recall a result concerning convergence of deriva-
tives.

Proposition 2. Let {fn : [a, b] 7→ R, n ≥ 1} be differentiable on [a, b] and suppose {fn(x0)}n con-
verges for some x0 ∈ [a, b]. If (f ′

n)n converges uniformly on [a, b], then fn → f uniformly on [a, b] for
some function f and

f ′(x) = lim
n→∞

f ′
n(x), x ∈ [a, b].

Proposition 3. Let X be a nonnegative integer valued random variable with pmf P (X = n) = pn,
n = 0, 1, 2, . . .. If X has pgf

gX(s) =
∞∑
n=0

pns
n,

then for each k = 1, 2, . . .,

E[X(X − 1) · · · (X − k + 1)] exists and is finite if and only if
dk

dsk
gX(s)

∣∣∣∣
s=1

exists and is finite.

In such a case,

E[X(X − 1) · · · (X − k + 1)] =
dk

dsk
gX(s)

∣∣∣∣
s=1

.
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Proof. Let R be the radius of convergence of gX . Then R ≥ 1. Since gX is a power series, gX is in-
finitely differentiable on (−R,R) with

g
(k)
X (s) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)pns
n, |s| < R, k = 1, 2, . . .

If R > 1, then gX has derivatives of all orders at s = 1 and

g
(k)
X (1) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)pn = E[X(X − 1) · · · (X − k + 1)],

which exists and is finite, so the result is clear if R > 1

It remains to consider the case when R = 1. Let k ≥ 1. If

E[X(X − 1) · · · (X − k + 1)] =
∞∑
n=k

n(n− 1) · · · (n− k + 1)pn < ∞,

then for each 1 ≤ ℓ < k

E[X(X − 1) · · · (X − ℓ+ 1)] =
∞∑
n=ℓ

n(n− 1) · · · (n− ℓ+ 1)pn

≤
k−1∑
n=ℓ

n(n− 1) · · · (n− ℓ+ 1)pn +
∞∑
n=k

n(n− 1) · · · (n− k + 1)pn < ∞.

For each m ≥ 1, let f
(0)
m (s) =

∑m
n=0 pns

n, and let

f (j)
m (s) =

{∑m
n=j n(n− 1) · · · (n− j + 1)pns

n−j, j ≤ m

0, j > m

for each j = 1, . . . , k. Then for each j = 1, . . . , k,
∑

n=j n(n− 1) · · · (n− j + 1)pn < ∞ implies that

f (j)
m (s) →

∞∑
n=j

n(n− 1) · · · (n− j + 1)pns
n−j := f (j)(s) as m → ∞

uniformly on [−1, 1] by the M-test. Since
∑∞

n=1 pn = 1, we also have that f
(0)
m (s) → gX(s) := f (0)(s)

uniformly on [−1, 1]. Then for |s| ≤ 1 and each j = 1, . . . , k,

d

ds
f (j−1)(s) = lim

m→∞
f (j)
m (s) =

∞∑
n=j

n(n− 1) · · · (n− j + 1)pns
n−j = f (j)(s).

by Proposition 2. Since gX(s) = f (0)(s), we have just shown that g
(j)
X =

∑∞
n=j n(n − 1) · · · (n − j +

1)pns
n−j for each j = 1, 2, . . . , k. In particular,

g
(k)
X (1) =

∞∑
n=j

n(n− 1) · · · (n− j + 1)pn = E[X(X − 1) · · · (X − k + 1)] < ∞.
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Now, suppose that g
(k)
X (1) exists and is finite. Then g

(j)
X (1) exists for each j = 1, 2, . . . , k − 1 as well.

We will now show that for each j = 1, 2, . . . , k,

g
(j)
X (1) =

∑
n=j

n(n− 1) · · · (n− j + 1)pn.

Since g
(1)
X (1) exists and is finite, we have that

lim
m→∞

gX(1)− gX(sm)

1− sm

for every sequence (sm)m in the domain of gX such that sm ̸= 1 for all m ≥ 1 and sm → 1. Let (sm)m
be an increasing sequence in (0, 1) such that sm → 1. Then

gX(1)− gX(sm)

1− sm
=

1−
∑∞

n=0 pns
n
m

1− sm
=

∞∑
n=1

pn
(1− snm)

1− sm
=

∞∑
n=1

pn
(1− sm)

∑n−1
ℓ=0 s

ℓ
m

1− sm
=

∞∑
n=1

pn

n−1∑
ℓ=0

sℓm.

By assumption, limm→∞
∑∞

n=1 pn
∑n−1

ℓ=0 s
ℓ
m exists and is finite and is equal to g

(1)
X (s). We will show

that

lim
m→∞

∞∑
n=1

pn

n−1∑
ℓ=0

sℓm =
∞∑
n=1

npn.

Note that
∑∞

n=1 npn exists (possibly infinite). Let A <
∑∞

n=1 npn. Choose an M0 such that
∑M0

n=1 npn >
A. Since

∑∞
n=1 pn

∑n−1
ℓ=0 s

ℓ
m ≤

∑∞
n=1 npn for all m ≥ 1, we have

∞∑
n=1

npn ≥ lim
m→∞

∞∑
n=1

pn

n−1∑
ℓ=0

sℓm

= lim
m→∞

lim
M→∞

M∑
n=1

pn

n−1∑
ℓ=0

sℓm

≥ lim
m→∞

M0∑
n=1

pn

n−1∑
ℓ=0

sℓm ( since the partial sum sequence is increasing)

=

M0∑
n=1

pn

n−1∑
ℓ=0

(1)ℓ

=

M0∑
n=1

npn

> A

Since A <
∑∞

n=1 npn was arbitrary, g
(1)
X (1) = limm→∞

∑∞
n=1 pn

∑n−1
ℓ=0 s

ℓ
m =

∑∞
n=1 npn, which is finite

by assumption. Repeating the argument for each j = 2, . . . , k, we obtain that

g
(j)
X (1) =

∞∑
n=j

n(n− 1) · · · (n− j + 1)pn,

which exists and is finite. Thus,

E[X(X − 1) · · · (X − k + 1)] =
∞∑
n=j

n(n− 1) · · · (n− j + 1)pn < ∞.
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Corollary 2. Let X be a nonnegative integer valued random variable with pmf P (X = n) = pn,
n = 0, 1, 2, . . . and pgf

gX(s) =
∞∑
n=0

pns
n.

Then Var(X) = g
(2)
X (1) + g

(1)
X (1)−

[
g
(1)
X (1)

]2
.

Proof. Note that

g
(2)
X (1) + g

(1)
X (1)−

[
g
(1)
X (1)

]2
= E[X(X − 1)] + E[X]− (E[X])2

= EX2 − (E[X])2

= Var(X).

Example 1. Let X ∼ Bernoulli(p). Then

p0 = P (X = 0) = 1− p and p1 = P (X = 1) = p,

and pk = P (X = k) = 0 for all k ≥ 2. The pgf of X is then

gX(s) = E[sX ] =
1∑

n=0

pns
n = (1− p) + ps.

Note that
p0 = gX(0) = 1− p and p1 = g

(1)
X (0) = p,

and
EX = g

(1)
X (1) = p.

Example 2. Let X ∼ Poisson(λ). Then

pn = P (X = n) =
e−λλn

n!
, n = 0, 1, 2, . . .

The pgf is given by

gX(s) =
∞∑
n=0

e−λλn

n!
sn = e−λ(1−s)

∞∑
n=0

e−λs(λs)n

n!
= e−λ(1−s).

Note that
g
(k)
X (s) = λke−λ(1−s), k = 1, 2, . . . ,

so
g
(k)
X (0) = λke−λ = k!pk, k = 0, 1, 2, . . . ,

and
g
(1)
X (1) = λ = EX.
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2 Convolutions

Let X and Y be two independent nonnegative integer valued random variables with distributions

pn = P (X = n) and qn = P (Y = n), n = 0, 1, 2 . . . .

Then the joint pmf of (X, Y ) is

P (X = i, Y = j) = piqk, i, j = 0, 1, 2, . . . .

What is the distribution of Z = X + Y ? First, note that the support Z is also the nonnegative inte-
gers. Then for each n = 0, 1, 2, . . . ,

P (Z = n) = P (X + Y = n)

=
∞∑
j=0

P (X + Y = n, Y = j) (Law of Total Probability)

=
∞∑
j=0

P (X = n− Y, Y = j)

=
∞∑
j=0

P (X = n− j, Y = j)

=
n∑

j=0

P (X = n− j, Y = j) (Since P (X = n− j) = 0 for j > n)

=
n∑

j=0

P (X = n− j)P (Y = j) (By independence)

=
n∑

j=0

pn−jqj.

The distribution of Z is the convolution of the distribution of X with the distribution of Y . Let rn =
P (Z = n). The pgf of Z is then

gZ(s) =
∞∑
n=0

rns
n

=
∞∑
n=0

n∑
j=0

pn−jqjs
n

=
∞∑
j=0

qj

∞∑
n=j

pn−js
n

=
∞∑
j=0

qj

∞∑
n=0

pns
n+j

=
∞∑
j=0

qjs
j

∞∑
n=0

pns
n

= gX(s) · gY (s)

Thus, for a sum of two independent random variables, the pgf of the sum is the product of the two
pgfs. This, result generalizes to sums of more than two independent random variables as follows.
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Proposition 4. Let X1, X2, . . . , Xn be independent nonnegative integer valued random variables with
pgfs gXi

(s), i = 1, 2, . . . , n. Then the pgf of

Z = X1 +X2 + · · ·+Xn

is given by

gZ(s) = gX1(s) · · · gXn(s) =
n∏

i=1

gXi
(s).

Proof. For the general case, we will argue using properties of expectations of independent random
variables. Note that

gZ(s) = E[sZ ] = E[sX1+···+Xn ] = E

[
n∏

i=1

sXi

]
=

n∏
i=1

EsXi =
n∏

i=1

gXi
(s).

Corollary 3. Let X1, X2, . . . , Xn be i.i.d. nonnegative integer valued random variables with common
pgf gX(s), i = 1, 2, . . . , n. Then the pgf of

Z = X1 +X2 + · · ·+Xn

is given by
gZ(s) = [gX(s)]

n.

Example 3. Let Z ∼ Binomial(n, p). The we can represent Z as the sum of n i.i.d. Bernoulli(p)

random variables. Let X1, X2, . . . , Xn
i.i.d.∼ Bernoulli(p), then

Z
d
= X1 + · · ·+Xn,

and by the previous corollary, Z has pgf

gZ(s) = [1− p+ ps]n.

Example 4. Show that if X ∼ Poisson(λ) and Y ∼ Poisson(µ) with X and Y independent. Then
X + Y ∼ Poisson(λ+ µ).

Solution. Recall that the pgfs of X and Y are given by

gX(s) = e−λ(1−s) and gY (s) = e−µ(1−s).

Since X and Y are independent, the pgf of Z = X + Y is

gZ(s) = gX(s) · gY (s) = e−(λ+µ)(1−s)

which is the pgf of a Poisson(λ + µ) random variable. Since the pgf uniquely determines the distribu-
tion, we obtain the desired result.

In applications, we can run in to random sums of random variables. This is called a compound pro-
cess. Let N be a nonnegative integer valued random variable, and let X1, X2, . . . be a sequence of
i.i.d. nonnegative integer valued random variables. A quantity of interest in many applications is a
random sum of the form

ZN =
N∑
j=1

Xj = X1 + · · ·+XN .

Finding the distribution of such a compound process is difficult, but the pgf is simple as the following
proposition shows.
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Proposition 5. Let N be a nonnegative integer valued random variable with pgf h(s), and let X1, X2, . . .
be a sequence of i.i.d. nonnegative integer valued random variables with common pgf g(s), where N is
independent of X1, X2, . . .. Then the pgf of the compound process

ZN =
N∑
j=1

Xj = X1 + · · ·+XN

is given by
G(s) = h(g(s)).

Proof. The pgf of ZN is given by

G(s) = EsZN

=
∞∑
k=0

P (ZN = k)sk

=
∞∑
k=0

∞∑
ℓ=0

P (ZN = k,N = ℓ)sk (Law of total probability)

=
∞∑
k=0

∞∑
ℓ=0

P (ZN = k|N = ℓ)P (N = ℓ)sk (Conditional probability)

=
∞∑
k=0

∞∑
ℓ=0

P (X1 + · · ·+Xℓ = k|N = ℓ)P (N = ℓ)sk

=
∞∑
k=0

∞∑
ℓ=0

P (X1 + · · ·+Xℓ = k)P (N = ℓ)sk (Because N is independent of {Xi}∞i=1)

=
∞∑
ℓ=0

P (N = ℓ)
∞∑
k=0

P (X1 + · · ·+Xℓ = k)sk

=
∞∑
ℓ=0

P (N = ℓ)[g(s)]ℓ

= h(g(s)).

Example 5. Let N be a nonnegative integer valued random variable with pgf h(s), and let X1, X2, . . .
be a sequence of i.i.d. nonnegative integer valued random variables with common pgf g(s), where N
is independent of X1, X2, . . .. Show that

EZN = E[N ]E[X1].

Proof. Since the pgf of ZN is G(s) = h(g(s)), we have

EZN = G′(1) = h′(g(1))g′(1) = h′(1)g′(1) = E[N ]E[X1].



3 APPLICATION: GALTON-WATSON BRANCHING PROCESSES 9

3 Application: Galton-Watson Branching Processes

Let {Xi,j, i, j ≥ 1} be a collection of i.i.d. nonnegative integer valued random variables with common
distribution {pn, n ≥ 0}, where pn = P (X1,1 = n). A Galton-Watson branching process can be
constructed as follows. Define Z0 = 1 and for n ≥ 1 recursively define

Zn =

Zn−1∑
i=1

Xn,i.

The branching process {Zn, n ≥ 0} describes the following mechanism. An individual (the 0th gener-
ation) gives birth to X1,1 = j offspring with probability pj, j ≥ 0, which together constitute the first
generation. Then each of these j individuals give birth to some number of offspring X2,1, X2,2, . . . , X2,j,
which constitute the second generation. The reproduction continues until everyone in a generation
has no offspring and the population goes extinct. The random variables Zn, then represent the size
of generation n. Throughout, we will assume that the mean and variance of the offspring distribution
are finite.

Figure 1: A tree realization of the Galton-Watson process with a Binomial(3, 0.4) offspring distribu-
tion from Nils Berglund. Martingales and Stochastic Calculus. 2013.

As an application of a real world process that can be modeled by this branching prcoess, consider an
infectious disease process. There is initially Z0 = 1 infected individual. The ”offspring” of this indi-
vidual are the people who are infected by this individual, so Z1 represents the number of people in-
fected by generation zero, who then each infect some number of additional individuals to form gener-
ation 2 of Z2 infected individuals. If the discrete time points at which we measure the new infections
is large enough, so that the previous generation is no longer infectious, then the Zn individuals are
the only remaining infectious individuals at time n and all new infections can be attributed to them
(i.e. the new infections are their ”offspring”). In this process, one primary question of interest is will
the infection stop spreading and go extinct? In this branching process model, this happens as soon as
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Zn = 0 for some n. The probability of extinction is defined as

π0 = P (∪∞
n=1[Zn = 0]).

Let g(s) =
∑∞

n=0 pns
n be the pgf of the offspring distribution, and let gn(s) =

∑∞
k=0 P (Zn = k)sk be

the pgf of Zn for n = 1, 2, 3, . . .. Since P (Z0 = 1) = 1, note that the pgf of Z0 is g0(s) =
∑∞

k=0 P (Z0 =
k)sk = s. Since Zn is a compound process, it follows that for each n = 1, 2, . . .,

gn(s) = gn−1(g(s)).

Since g0(s) = s, we have

g1(s) = g0(g(s)) = g(s) =⇒ g2(s) = g1(g(s)) = g(g(s)) =⇒ g3(s) = g2(g(s)) = g(g(g(s))).

Continuing in this fashion, we get that for each n ≥ 1

gn(s) = (g ◦ g ◦ · · · ◦ g)︸ ︷︷ ︸
n times

(s) =⇒ gn = g(gn−1(s)).

The expected value of Zn, i.e. the expected size of generation n, is given by

E[Zn] = g′n(1) = g′(gn−1(1))g
′
n−1(1) = g′(1)g′n−1(1) = E[X]E[Zn−1],

where X is an i.i.d. copy of the offspring distribution. Repeating this argument, we obtain that for
each n ≥ 1.

E[Zn] = (E[X])n .

Let θ = EX. Note that

lim
n→∞

E[Zn] =


0, θ < 1

1, θ = 1

∞, θ > 1

,

and

Var(Zn) =

σ2θn−1

(
1− θn

1− θ

)
, θ ̸= 1

nσ2, θ = 1
.

The following result shows that in this model, extinction is guaranteed when θ ≤ 1, but even though
E[Zn] → ∞ for θ > 1, there is a non-zero chance of extinction.

Proposition 6. Suppose that p0 > 0 and p0 + p1 < 1. Then

a) π0 is the smallest nonnegative solution to the equation

s =
∞∑
k=0

pks
k = g(s),

and

b) π0 = 1 if and only if θ = EX = g′(1) ≤ 1. In the case, where θ > 1, 0 < π0 < 1.
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Proof. First, note that

π0 = P (∪∞
n=1[Zn = 0]) =

∞∑
k=0

P (∪∞
n=1[Zn = 0]|X1,1 = k)P (X1,1 = k) =

∞∑
k=0

P (∪∞
n=1[Zn = 0]|X1,1 = k)pk.

Now, given that X1,1 = k, i.e. there are k individuals in the first generation, the population with
die out if and only if each of the k families starting from these k individuals in the first generation
eventually die out. Since each of these k families are independent and evolve in the same way as the
original branching process, each of these k families defines and i.i.d. copy of the original branching
process. Thus, the probability that each individual family dies out is also π0 and by independence,
the probability that all k families die out eventually is πk

0 , i.e.

P (∪∞
n=1[Zn = 0]|X1,1 = k) = πk

0 .

Thus,

π0 =
∞∑
k=0

pkπ
k
0 ,

which shows that π0 is a solution to the equation s = g(s) on [0, 1]. To prove a), it remains to show
that π0 is the smallest such solution. Let π ≥ 0 be a solution to the equation s = g(s). We’ll first
show by induction that π ≥ P (Zn = 0) for all n ≥ 1. Now,

π =
∞∑
k=0

pkπ
k ≥ p0π

0 = p0 = P (Z1 = 0).

Next, assume that π ≥ P (Zn = 0) for some n ≥ 1. Then

P (Zn+1 = 0) =
∞∑
k=0

P (Zn+1 = 0|X1,1 = k)P (X1,1 = k)

=
∞∑
k=0

[P (Zn = 0)]kpk (k independent families go extinct after n generations)

≤
∞∑
k=0

πkpk (by induction hypothesis)

= π.

Hence, by induction, P (Zn = 0) ≤ π for all n ≥ 1. Note that [Zn = 0] ⊂ [Zn+1 = 0] for all n ≥ 1, so
∪∞

n=1[Zn = 0] = limn→∞[Zn = 0] and

π0 = P (∪∞
n=0[Zn = 0]) = lim

n→∞
P (Zn = 0) ≤ π.

To prove b), let g(s) =
∑∞

n=0 pks
k be the pgf of the offspring distribution. Since p0 + p1 < 1 and the

variance of the offspring distribution is finite,

g(2)(s) =
∞∑
n=2

n(n− 1)pns
n−2 > 0, ∀s ∈ (0, 1).

Thus, g′(s) is strictly increasing on [0, 1]. The following images, illustrate the two cases that can hap-
pen with the pgfs.
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Note that g′(0) = 0 and g′(1) = θ, that g is also strictly increasing on [0, 1] with g(0) = p0 > 0
and g(1) = 1. Suppose that π0 = 1, then g(s) > s for all s ∈ (0, 1), since by a), π0 is the smallest
nonnegative solution of g(s) = s and g(0) = p0 > 0. (Otherwise, if g(s0) ≤ s0 for some s0 ∈ (0, 1),
then either s0 is another smaller solution or by the IVT, ∃x ∈ (0, s0) such that g(x) = x.) Thus,

0 < s < 1 =⇒ g(s) > s =⇒ 1− g(s) < 1− s =⇒ g(1)− g(s)

1− s
< 1 =⇒ g′(1) lim

s↑1

g(s)− g(1)

s− 1
≤ 1.

Now, suppose that g′(1) ≤ 1, and suppose by contradiction that π0 < 1. Then g(π0) = π0 < 1. Thus,
by the MVT, ∃s0 ∈ (π0, 1) such that

g′(s0) =
g(1)− g(π0)

1− π0

= 1.

Since g(2)(s) > 0 for all s ∈ (0, 1), g′ is strictly increasing, so that g′(1) > g′(s0) = 1, which contra-
dicts our assumption that g′(1) ≤ 1.

Note that in the case where θ > 1, we know that π0 < 1, but since g is increasing and g(0) = p0 > 0,
we have

0 < p0 = g(0) ≤ g(π0) = π0.


