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Chapter 1

An Introduction to Set Theory and
the Real Line

1.1 Basics of Set Theory

Definition 1.1. A set is a collection of objects, which are called elements of the set. A
set is typically denoted by capital letters A, B, C,...

Definition 1.2. Let A and B be sets. A is said to be a subset of B iff every element of
A is an element of B, i.e. x ∈ A =⇒ x ∈ B. This is denoted by A ⊆ B.

Operations on Sets: Let A and B be sets

� Union: A ∪B = {x|x ∈ A or x ∈ B}

� Intersection: A ∩B = {x|x ∈ A and x ∈ B}

� Complementation: Ac = {x ∈ S|x ̸∈ A} (Ā is often used too), where A ⊆ S and S is
the largest set in consideration.

� Set difference: A \ B = {x ∈ A|x ̸∈ B} = A ∩ Bc. This is also sometimes written as
A−B.

Definition 1.3. Two sets A and B are equal if and only if A ⊆ B and B ⊆ A.

Commutativity: Let A and B be sets. Then

� A ∪B = B ∪A

� A ∩B = B ∩A

Associativity: Let A and B be sets. Then

� A ∪ (B ∪ C) = (A ∪B) ∪ C

� A ∩ (B ∩ C) = (A ∩B) ∩ C

Distributive Laws: Let A,B, and C be sets. Then

� A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

4



1.1. BASICS OF SET THEORY 5

� A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

We will prove the second of the distributive laws below. I leave the rest for you to prove
as an exercise.

Proof of A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(i) (A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C)). Let x ∈ A ∩ (B ∪ C). Then we have x ∈ A
and either x ∈ B or x ∈ C. Given x ∈ A, if x ∈ B, then x ∈ A ∩ B. Likewise, given
x ∈ A, if x ∈ C, then x ∈ A ∩ C. Thus, given x ∈ A, if either x ∈ B of x ∈ C, then
either x ∈ A ∩B or x ∈ A ∩ C. That is, x ∈ (A ∩B) ∪ (A ∩ C).

(ii) (A∩(B∪C) ⊇ (A∩B)∪(A∩C)). Let x ∈ (A∩B)∪(A∩C). Then we have x ∈ A∩B
or x ∈ A ∩ C. If x ∈ A ∩ B, then x ∈ A and x ∈ B. If x ∈ B then x ∈ B ∪ C.
Hence, x ∈ A∩ (B ∪C). Similarly, if x ∈ A∩C, then x ∈ A∩ (B ∪C). Consequently,
x ∈ A ∩ (B ∪ C).

DeMorgan’s Law: Let A and B be sets. Then

� (A ∪B)c = Ac ∩Bc

� (A ∩B)c = Ac ∪Bc

Definition 1.4. Two sets A and B are said to be disjoint (or mutally exclusive) if A ∩
B = ∅. Sets A1, A2, . . . are pairwise disjoint if Ai ∩Aj = ∅ for all i ̸= j.

In general, let {Ai, i ∈ I} be a collection of sets. The union and intersection of an arbi-
trary collection of sets is define as

∪i∈IAi = {x|x ∈ Ai for some i ∈ I}

and
∩i∈IAi = {x|x ∈ Ai for all i ∈ I}.

Example 1.1. Find following sets:

(a) (−∞, a)c

(b) ∩∞
n=1[a, b+ 1/n)

(c) ∪∞
n=1[a+ 1/n, b− 1/n]

(d) ∩∞
n=1[a− 1/n, a]

Definition 1.5. Let A and B be two sets. The Cartesian product of A and B, denoted
A×B, is the set of all ordered pairs (a, b) such that a ∈ A and b ∈ B. That is,

A×B = {(a, b)|a ∈ A and b ∈ B}.

The word ”ordered” means that if a, c ∈ A and b, d ∈ B then (a, b) = (c, d) if and only inf
a = c and b = d.



1.2. THE NATURAL NUMBERS AND THE PRINCIPLE OF MATHEMATICAL
INDUCTION 6

If Ai is a collection of sets for i ∈ {1, 2, . . . , n}, then the Cartesian product×n
i=1 Ai is

n

×
i=1

Ai = {(a1, . . . , an)|ai ∈ Ai, i = 1, . . . , n}.

If the sets Ai are all equal, then we write An for the Cartesian product. The following
results can be easily verified:

� A×B = ∅ if and only if A = ∅ or B∅.

� (A ∪B)× C = (A× C) ∪ (B × C)

� (A ∩B)× C = (A× C) ∩ (B × C)

� (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D)

Definition 1.6. Let A and B be sets and let f : A 7→ B be a mapping from A to B. A is
called the domain of f and the range of f is f(A) = {y ∈ B|y = f(x) for some x ∈ A}.
Given D ⊆ A, the image of D under f is f(D) = {y ∈ B|y = f(x) for some x ∈ D}. Given
a E ⊆ B, the pre-image of E under f is f−1(E) = {x ∈ A|f(x) ∈ E}.

Definition 1.7. A mapping f : A 7→ B is said to be one-to-one or injective if whenever
f(x) = f(y), then x = y. Equivalently, f is one-to-one if whenever x ̸= y, then f(x) ̸=
f(y).

Definition 1.8. A mapping f : A 7→ B is said to be onto or surjective if f(A) = B.
That is, ∀y ∈ B, ∃x ∈ A such that f(x) = y.

1.2 The Natural Numbers and the Principle of Mathematical
Induction

Definition 1.9. The natural numbers are the set of non-negative integers, denoted N.
That is,

N = {1, 2, 3, . . .}.

The natural numbers are a well ordered set. This means, that for all n,m ∈ N exactly one
of the following holds

(1) n < m

(2) n > m

(3) n = m

The natural numbers also has the following properties

(a) 1 is the smallest element of N.

(b) Every non-empty subset of N has a smallest element. That is, if A ⊆ N and A ̸= ∅,
then ∃a ∈ A such that a ≤ s for all s ∈ A.

(c) If n ∈ N, then n+ 1 ∈ N. Note that this implies that N has no greatest element.
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The last property is the basis of mathematical induction:

(i) Principle of mathematical induction: Let Pk be a property indexed by k. We say
that Pn is true if property Pk holds for k = n ∈ N. The principle of mathematical
induction is used to prove that the property holds for all n ∈ N as follows: if P1 is
true and for all k ∈ N, Pk =⇒ Pk+1, then Pn is true for all n ∈ N.

(ii) Strong induction: If P1 is true and for all k ∈ N , {P1, P2, . . . , Pk} =⇒ Pk+1, then
Pn is true for all n ∈ N.

Example 1.2. Use induction to prove that
∑n

k=1 k =
n(n+ 1)

2
for all n ∈ N.

Proof. Let Pn :
∑n

k=1 k =
n(n+ 1)

2
, and note that P1 is true since

1∑
k=1

k = 1 =
1(1 + 1)

2
.

Now, let n ≥ 1 and suppose that Pn is true. Then

n+1∑
k=1

k =

n∑
k=1

k + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1) (by the induction hypothesis)

=
n(n+ 1)

2
+

2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
.

Thus, if Pn is true, then Pn+1 is true, so by the principle of mathematical induction, the
formula holds for all n ∈ N.

1.3 Properties of Real Numbers

The absolute value function is defined as

|x| =

{
x, if x ≥ 0

−x, if x < 0
.

Proposition 1.1. Let a, x ∈ R with a ≥ 0. Then |x| ≤ a if and only if −a ≤ x ≤ a.

Proof. Let a, x ∈ R and a ≥ 0.
( =⇒ ) Suppose |x| ≤ a. If x ≥ 0, then −a ≤ 0 ≤ x = |x| ≤ a. If x < 0, then −x = |x| ≤
a =⇒ −a ≤ x < 0 ≤ a.
( ⇐= ) Suppose −a ≤ x ≤ a. If x ≥ 0, then −a ≤ 0 ≤ x = |x| ≤ a =⇒ |x| ≤ a. If x < 0,
then −a ≤ x ≤ a =⇒ −a ≤ x =⇒ a ≥ −x = |x|.

The absolute value function also satisfies the triangle inequality:
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Proposition 1.2. For all x, y ∈ R

|x+ y| ≤ |x|+ |y|.

Proof. Let x, y ∈ R. Note that

−|x| ≤ x ≤ |x| and − |y| ≤ y ≤ |y|.

Together, these imply that

−(|x|+ |y|) = −|x| − |y| ≤ x+ y ≤ |x|+ |y|.

Then by the previous proposition, |x+ y| ≤ |x|+ |y|.

Corollary 1.1 (Reverse Triangle Inequality). For all x, y ∈ R

||x| − |y|| ≤ |x− y|.

Proof. Exercise.

Definition 1.10. Let S ⊂ R.

(1) M ∈ R is said to be an upper bound of the set S if x ≤ M for all x ∈ S.

(2) L ∈ R is said to be an lower bound of the set S if x ≥ L for all x ∈ S.

(3) S is said to be bounded if it is both bounded above and below. That is, if there ex-
ists and M ∈ R such that |x| ≤ M for all x ∈ S.

Example 1.3. Determine if the following sets are bounded above, bounded below or nei-
ther.

(a) S = [0, 1)

� S is a bounded set.

� S is bounded above by 1

� S is bounded below by 0.

(b) S = N

� S is bounded below but not above.

� S is bounded below by 1

� S has no upper bound. If M is an upper bound, then x ≤ ⌊M⌋ for all x ∈ N, but
M < ⌊M + 1⌋ ∈ N, a contradiction.

Definition 1.11. Let S ⊆ R be bounded above. The supremum of S is the least upper
bound. That is β = supS ∈ R if

a) x ≤ β for all x ∈ S.

b) ∀ε > 0, ∃x ∈ S such that β − ε < x ≤ β.

If the set is not bounded above, then we define supS = ∞.
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Note 1.1. Part a) of the definition says that β is an uppper bound. While part b) says
that nothing smaller than β can be an upper bound for S.

Definition 1.12. Let S ⊆ R be bounded below. The infimum of S is the greatest lower
bound. That is α = inf S ∈ R if

a) x ≥ α for all x ∈ S.

b) ∀ε > 0, ∃x ∈ S such that α ≤ x < α+ ε.

If S is not bounded below, then we define inf S = −∞.

Note 1.2. Part a) of the definition says that α is a lower bound. While part b) says that
nothing bigger than α can be a lower bound for S.

The question now becomes whether a supremum or infimum even exist given a bounded
set? The completeness axiom guarantees their existence for bounded sets in the real line.

Proposition 1.3 (Completeness Axiom of R). Let S be a nonempty subset of R.

a) If S is bounded above, then S has a least upper bound.

b) If S is bounded below, then S has a greatest lower bound.

Example 1.4. What are the supremum and infimum of the following sets:

a) [0, 1)

� inf[0, 1) = 0

� sup[0, 1) = 1 (Note that the supremum is not part of S.)

b) N

� inf N = 1

� supN = ∞.

For a set A ⊂ R. Define −A = {−x|x ∈ A}.

Proposition 1.4 (Properties of sup and inf). Let A ⊆ B ⊆ R be nonempty sets. Then

a) sup(−A) = − inf A and inf(−A) = − supA

b) inf B ≤ inf A ≤ supA ≤ supB.

Proof.

a) Let β = supA. We will show that − supA = inf(−A). To show this, recall that we
need to prove two items:

(i) −β is a lower bound for −A.

(ii) ∀ε > 0, ∃y ∈ −A such that −β ≤ y < −β + ε.
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β = supA =⇒ x ≤ β ∀x ∈ A, so −β ≤ −x,∀x ∈ A. This implies that −β ≤ y,∀y ∈
−A. Let ε > 0. Then ∃x ∈ A such that β − ε < x ≤ β, so −β ≤ −x < −β + ε. Thus,
−β = inf(−A).

The proof of sup(−A) = − inf A is similar and is left as an exercise.

b) Homework.

A common fact that we will use frequently is that for every ε > 0 there exists an N ∈ N
such that

0 <
1

N
< ε.

This follows from the Archimedean property of the real line.

Proposition 1.5 (The Archimedean Property). If a, b ∈ R and a > 0 and b > 0, then
∃n ∈ N such that na > b.

Proof. We will argue by contradiction. Let a, b ∈ R, a > 0 and b > 0, and suppose that
∀n ∈ N, na ≤ b or equivalently, n ≤ b

a ,∀n ∈ N. This implies that N is bounded above by
b/a, so by the completeness axiom, β = supN exists and is finite. Then, there exists an
n ∈ N such that

β − 1 < n ≤ β =⇒ β < n+ 1 ≤ β + 1.

But β is an upper bound for N and n+ 1 ∈ N, a contradiction.

Corollary 1.2. ∀ε > 0, ∃n ∈ N such that 1/n < ε.

Proof. Let ε > 0. By the Archimedean property, ∃n ∈ N such that

nε > 1 =⇒ 1

n
< ε.

Corollary 1.3. Let S = { 1
n |n ∈ N}. Then maxS = supS = 1 and inf S = 0.

Proof. Exercise.

The rational numbers are Q =
{

m
n |m ∈ Z, n ∈ N

}
, and it is a very important subset of R.

The following are two important properties of Q that will be useful.

Proposition 1.6.

1) Q is a countable set. This means that there exists and one-to-one function f : N 7→ Q.

2) Q is dense in R. This means that ∀a, b ∈ R with a < b, ∃r ∈ Q such that a < r < b.
This also implies that ∀x ∈ R and ∀ε > 0, ∃r ∈ Q such that

|x− r| < ε.

This says that we can approximate any real number by a rational number.
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Proof. We will only prove 2). Let a, b ∈ R with a < b. Then b − a > 0, and by Corollary
1.2, ∃n ∈ N such that b − a > 1/n. Without loss of generality (WLOG) assume a > 0.
Then by the Archimedean property, ∃m ∈ N such that m(1/n) > a. Choose m0 ∈ N to be
the least such m (this exists due to the well ordering property of N). Then m0−1

n ≤ a <
m0

n . Together, this implies that

a <
m0

n
=

m0 − 1

n
+

1

n
≤ a+ (b− a) = b.

It may seem like Q is a sufficient number system for analysis. You are used to seeing so-
lutions approximated, e.g.

√
2 ≈ 1.414. We will see that

√
2 ̸∈ Q. We can approximate√

2 as well as we want by a rational number, but without the real line, an equation of the
form x2 − 2 = 0 has no solution. Before we can show that this equation has no rational
solution, we prove the following proposition that such an equation does indeed have some
solution:

Proposition 1.7. Let n ∈ N, n ≥ 2. Then ∀x > 0, ∃!y > 0 such that yn = x.

Proof. Let 0 ≤ s < t. Then (tn − sn) = (t− s)
∑n−1

k=0 t
ksn−1−k. This implies that

(t− s)nsn−1 ≤ tn − sn ≤ (t− s)ntn−1. (⋆⋆)

(Uniqueness) Let x > 0 and suppose that y1, y2 > 0 satisfy, yn1 = yn2 = x. WLOG assume
0 < y1 < y2. Then (⋆⋆) implies

0 ≤ (y2 − y1)ny
n−1
1 ≤ yn2 − yn1 = x− x = 0.

Since y2 > y1 > 0, this implies that y2 = y1. (Existence) Let x > 0. Define the following
two sets

L = {s ≥ 0|sn < x} and U = {t ≥ 0|tn > x}.
Note that L ̸= ∅ since 0 ∈ L. To see that U ̸= ∅, we consider three cases: 0 < x < 1,
x = 1, and x > 1. First suppose x > 1. Then

xn − x = x(xn−1 − 1n−1) = x(x− 1)

n−2∑
k=0

xk > x(x− 1) > 0 =⇒ xn > x.

Thus x > 1 implies x ∈ U . Similarly, if 0 < x < 1, then 1 ∈ U . If x = 1, then 2n > 1 and
2 ∈ U . Thus for any x > 0, U ̸= ∅. Now, note that ∀s ∈ L and ∀t ∈ U , sn < x < tn =⇒
s < t, since

0 < tn − sn = (t− s)

n−1∑
k=0

tksn−1−k

︸ ︷︷ ︸
≥0

=⇒ t− s > 0.

Thus, every s ∈ L is a lower bound for U , and every t ∈ U is an upper bound for L.
Then, by the completeness axiom, y = supL and z = inf U exist and are finite, and y ≤ z
(y ≤ t, ∀t ∈ U , since every t ∈ U is an upper bound for L and y is the least upper bound
of L. This means that y is a lower bound for U and hence y ≤ z, since z is the greatest
lower bound of U .)
We want to show that y = z and yn = x. We will prove this by establishing the following
claims:
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1. yn ≤ x

Proof. Suppose that yn > x. Then yn−x
nyn−1 > 0, and by definition of supL, ∃s ∈ L

such that

y − yn − x

nyn−1
< s ≤ y =⇒ y − s <

yn − x

nyn−1
.

Combining this with (⋆⋆), we have

yn − sn ≤ (y − s)nyn−1 <

(
yn − x

nyn−1

)
nyn−1 < yn − x.

This implies that −sn < −x, so sn > x. But this can’t happen, since s ∈ L =⇒
sn < x.

2. sn ≤ x ⇐⇒ s ≤ y

Proof. ( ⇐= ) Let s ≤ y. Then sn ≤ yn ≤ x by claim 1.

( =⇒ ) Let sn ≤ x. If sn < x, then s ∈ L =⇒ s ≤ y. If sn = x, then for all
0 ≤ w < s, wn < sn = x. Thus [0, s) ⊂ L, so s = sup[0, s) ≤ supL = y.

3. zn ≥ x

Proof. Suppose zn < x. Let ε = min
{
1, x−zn

n(1+z)n−1

}
> 0. Then by definition of inf,

there exists a t ∈ U such that

z ≤ t < z + ε ≤ z + 1.

Then by (⋆⋆)
tn − zn ≤ (t− z)ntn−1 < (t− z)n(1 + z)n−1.

Since t− z < ε, we have

tn − zn <

(
x− zn

n(1 + z)n−1

)
n(1 + z)n−1 = x− zn.

This implies that tn < x, but t ∈ U =⇒ tn > x, a contradiction.

4. tn ≥ x ⇐⇒ t ≥ z

Proof. ( ⇐= ) Let t ≥ z. Then tn ≥ zn ≥ x by claim 3.

( =⇒ ) Let tn ≥ x. If tn > x, then t ∈ U =⇒ t ≥ z = inf U . If tn = x, then wn > x
for all w > t. Thus (t,∞) ⊆ U =⇒ t = inf(t,∞) ≥ inf U = z.

We now claim that y = z. Suppose that y ̸= z, then y < z. Let u ∈ R be such that
y < u < z (we know we can always find such a u ∈ Q). Then y < u =⇒ un > x by claim
2. Then u ∈ U , so u ≥ inf U = z, a contradiction. Thus, y = z. Now, by claims 1 and 3,
yn ≤ x ≤ zn =⇒ yn = zn = x.

Now that we know that such an equation has a solution, we will show that not all such
equations can be solved by rational solutions.
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Definition 1.13. Let a, b ∈ Z. We say that a divides b if ∃m ∈ Z such that b = ma.

Theorem 1.1 (Rational Roots Theorem). Let a0, a1, . . . , an ∈ Z with an ̸= 0. If

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0

has a rational solution, x = p/q, where p ∈ Z, q ∈ N, and gcd(p, q) = 1, then

1. q divides an.

2. p divides a0.

Proof. Suppose x = p/q, where p ∈ Z, q ∈ N, and gcd(p, q) = 1 is a solution of

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0

where an ̸= 0. Then

an

(
p

q

)n

+ · · ·+ a1

(
p

q

)
+ a0 = 0.

Multiplying both sides by qn, we get

anp
n + · · ·+ a1pq

n−1 + a0q
n = 0,

so

−anp
n = q(an−1p

n−1 + · · ·+ a1pq
n−2 + a0q

n−1).

Then q divides either an or p. Since p and q share no common factors, q must divide an.
Similarly,

−a0q
n = p(anp

n−1 + · · ·+ a1q
n−1),

so p divides either a0 or q. Since gcd(p, q) = 1, p must divide a0.

Example 1.5. Consider the equation x2 − 2 = 0. a2 = 1 and a0 = 2, so if x = p/q with
gcd(p, q) = 1 is a solution of this equation, then p must divide 2, which means p must be
one of ±1 or ±2, and q must divide 1, which means q must be ±1. This means the only
possible rational solutions to this equation are x = ±2,±1. We can easily check that none
of these are solutions to this equation. Thus, the solution x =

√
2 must be a member of

the irrational numbers, R \Q.

Proposition 1.8. The irrationals are dense in R. ∀a, b ∈ R with a < b, ∃x ∈ R \ Q such
that a < x < b.

Proof. Let a, b ∈ R with a < b. Then a +
√
2 < b +

√
2. By the density of Q, ∃q ∈ Q such

that a+
√
2 < q < b+

√
2 =⇒ a < q−

√
2 < b. We now claim that q−

√
2 is an irrational

number. Suppose that r = q −
√
2 ∈ Q. Then

√
2 = q − r ∈ Q, but we know

√
2 ∈ R \Q, a

contradiction.

1.4 Applications in Probability and Statistics

1.4.1 Sigma Algebras

1.4.2 Measurable Mappings



Chapter 2

Sequences, Series, and Basic Topology

2.1 Sequences

Definition 2.1. A sequence in R is a function f : N 7→ R. We write xn = f(n) for
the nth term of the sequence and denote the whole sequence by {xn, n ≥ 1}, {xn}∞n=1,
or (xn)n. The range of the sequence is the set of values attained by the sequence: {x ∈
R|x = xn for some n ∈ N}.

Example 2.1. The following are examples of real sequences:

a) xn =
3n− 5

2n+ 3
, n ≥ 1. {xn, n ≥ 0} = {− 2

5 ,
1
2 ,

4
9 , . . .}

b) xn = (−1)n, n ≥ 1. {xn, n ≥ 1} = {−1, 1,−1, 1,−1, . . .}

c) xn = cos(nπ/3), n ≥ 0. {xn, n ≥ 0} = {1, 1/2,−1/2,−1.− 1/2, 1/2.1, . . .}.

Definition 2.2. A real sequence {xn, n ≥ 1} is said to converge to x ∈ R if ∀ε > 0,
∃N ∈ N such that

n ≥ N =⇒ |xn − x| < ε.

In such a case, we write lim
n→∞

xn = x, xn → x as n → ∞, or just xn → x when it is clear

that we are letting n → ∞..

Example 2.2. Prove that lim
n→∞

1
n = 0.

Solution. Let ε > 0. By the Archimedean property, ∃N ∈ N such that N > 1
ε ⇐⇒ 1

N <
ε. Then for n ≥ N

0 <
1

n
≤ 1

N
< ε.

Thus, n ≥ N =⇒ |1/n− 0| < ε.

Example 2.3. Prove that lim
n→∞

3n−5
2n+3 = 3

2 .

Before we write the formal argument, let’s work backwards to think about how it should
go. We need to show that for all ε < 0∣∣∣∣3n− 5

2n+ 3
− 3

2

∣∣∣∣ < ε

14
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for all large n. To see this, note that∣∣∣∣3n− 5

2n+ 3
− 3

2

∣∣∣∣ = ∣∣∣∣6n− 10− 6n− 9

2(2n+ 3)

∣∣∣∣
=

∣∣∣∣ −19

2(2n+ 3)

∣∣∣∣
≤ 20

2(2n+ 3)
=

10

2n+ 3

≤ 5

n

Now we are ready to write the formal proof.

Solution. Let ε > 0. By the Archimedean property, choose an N ∈ N such that 1
N < ε

5 .
Then by work above, n ≥ N implies∣∣∣∣3n− 5

2n+ 3
− 3

2

∣∣∣∣ ≤ 5

n
≤ 5

N
< 5 · ε

5
= ε.

We next prove that limits are unique.

Proposition 2.1. Let {xn, n ≥ 1} be a real sequence and let x, y ∈ R. If the xn → x and
xn → y as n → ∞, then x = y.

Proof. First, note that x = y ⇐⇒ |x− y| = 0 ⇐⇒ |x− y| < ε, ∀ε > 0. Let ε > 0. Since
xn → x, ∃N1 ∈ N such that n ≥ N1 =⇒ |xn − x| < ε/2, and since xn → y, ∃N2 ∈ N such
that n ≥ N2 =⇒ |xn − y| < ε/2. Let N = max{N1, N2}, then n ≥ N implies

|x− y| = |x− xn + xn − y| ≤ |xn − x|+ |xn − y| < ε

2
+

ε

2
= ε.

Example 2.4. Show that the sequence {(−1)n, n ≥ 1} does not converge.

Solution. Suppose that (−1)n → a for some a ∈ R. Let ε = 1. Then ∃N ∈ N such that
n ≥ N =⇒ | − (1)n − a| < 1. This implies that

|1− a| < 1 and | − 1− a| < 1.

Then
2 = |1 + 1| = |1− a+ a+ 1| ≤ |1− a|+ | − 1− a| < 1 + 1 = 2,

a contradiction. Thus (−1)n ̸→ a for any a ∈ R.

Proposition 2.2. Let {xn, n ≥ 1} be a real sequence and let x ∈ R:

a) If ∃N ∈ N such that xn ≥ 0 for all n ≥ N and xn → x, then x ≥ 0.

b) xn → x ⇐⇒ |xn − x| → 0.
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Proof. a) Suppose xn ≥ 0 for all n ≥ N and that xn → x. Suppose that x < 0. Let
ε = |x|. Then n ≥ N implies

|xn − x| = xn − x = xn + |x| ≥ |x| = ε.

Thus, xn ̸→ x, a contradiction.

b) ( =⇒ ) Let ε > 0. Choose N ∈ N such that n ≥ N =⇒ |xn − x| < ε. Then
||xn − x| − 0| = |xn − x| < ε for all n ≥ N . Since ε > 0 was arbitrary, |xn − x| → 0.

( ⇐= ) Same as the above argument.

Proposition 2.3 (Squeeze Theorem). Let {an, n ≥ 1} and {bn, n ≥ 1} be real sequences
such that an → 0 and |bn| ≤ |an| for all n ≥ N for some N ∈ N. Then bn → 0.

Proof. Let ε > 0. Choose N1 ≥ N such that |an| < ε. Then n ≥ N1 implies

|bn| ≤ |an| < ε.

Example 2.5. Show that lim
n→∞

2n+ 3

5n− 7
=

2

5
.

Solution. First note that, ∣∣∣∣2n+ 3

5n− 7
− 2

5

∣∣∣∣ = ∣∣∣∣10 + 15− 10 + 14

5(5n− 7)

∣∣∣∣
=

∣∣∣∣ 29

5(5n− 7)

∣∣∣∣ .
Now 5n− 7 > n ⇐⇒ 4n− 7 > 0 ⇐⇒ n > 7/4. Thus for n ≥ 2, 5n− 7 > n and∣∣∣∣2n+ 3

5n− 7
− 2

5

∣∣∣∣ = ∣∣∣∣ 29

5(5n− 7)

∣∣∣∣ < 30

5n
=

6

n
.

Since 6/n → 0, ∣∣∣∣2n+ 3

5n− 7
− 2

5

∣∣∣∣→ 0

by the squeeze theorem.

Definition 2.3. A sequence {xn, n ≥ 1} is said to be bounded if ∃M > 0 such that
|xn| ≤ M for all n ∈ N. That is −M ≤ xn ≤ M for all n ≥ 1. Otherwise, the sequence is
unbounded.

Example 2.6. Determine if the following sequences are bounded:

a) xn = 3n−5
2n+3 , n ≥ 1.
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Solution. Note that for all n ≥ 1

|xn| =
∣∣∣∣3n− 5

2n+ 3

∣∣∣∣ = ∣∣∣∣3− 5/n

2 + 3/n

∣∣∣∣
≤ |3|+ |5/n|

2 + 3/n
(by the triangle inequality)

≤ 3 + 5

2
= 4.

Thus, |xn| ≤ 4 for all n ≥ 1, so {xn, n ≥ 1} is a bounded sequence.

b) xn = n, n ≥ 1.

Solution. Let M > 0. By the Archimedean property, there exists and n ∈ N such that
|xn| = n > M . Since M was arbitrary, {xn}n is not a bounded sequence.

Proposition 2.4. Every real convergent sequence is bounded.

Proof. Let {xn, n ≥ 1} be a real sequence such that xn → x ∈ R. Let N ∈ N be such that
|xn − x| < 1. Then for n ≥ N

|xn| = |xn − x+ x| ≤ |xn − x|+ |x| < 1 + |x|.

Let M = max{|x| + 1, |x1|, |x2|, . . . , |xN−1|}. Then |xn| ≤ M for all n ≥ 1. That is
{xn, n ≥ 1} is bounded.

Proposition 2.5. If xn → 0 and (yn)n is a bounded sequence, then xnyn → 0.

Proof. Let ε > 0 and let M > 0 be such that |yn| ≤ M for all n ≥ 1. Choose N ∈ N such
that |xn| < ε/M . Then for n ≥ N

|xnyn| ≤ M |xn| < M · ε

M
= ε.

2.2 Limit Theorems for Sequences

Proposition 2.6. Let (xn)n and (yn)n be real sequences and let x, y ∈ R. Suppose xn →
x and yn → y. Then

a) xn + yn → x+ y

b) xnyn → xy

c) cxn → cx and xn + c → x+ c for all c ∈ R

d) 1/xn → 1/x provided xn ̸= 0 for all n ≥ 1 and x ̸= 0.
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Proof. a) Let ε > 0. Choose N1 ∈ N such that n ≥ N1 =⇒ |xn − x| < ε/2, and choose
N2 ∈ N such that n ≥ N2 =⇒ |yn − y| < ε/2. Let N = max{N1, N2}. Then n ≥ N
implies

|(xn + yn)− (x+ y)| = |xn − x+ yn − y| ≤ |xn − x|+ yn − y| < ε

2
+

ε

2
= ε.

b) Let ε > 0. Since yn → y, (yn)n is a bounded sequence. Let M > 0 be such that
|yn| ≤ M . Let N1 ∈ N be such that n ≥ N1 =⇒ |xn − x| < ε

2M , and let N2 ∈ N be
such that n ≥ N2 =⇒ |yn − y| < ε

2(|x|+1) . Then for n ≥ max{N1, N2}

|xnyn − xy| = |xnyn − xyn + xyn − xy|
≤ |yn||xn − x|+ |x||yn − y|

< M · ε

2M
+ |x| ε

2(|x|+ 1)

< ε.

c) Let zn = c for all n ≥ 1. Then zn → c and the results follow from parts a) and b).

d) Let ε > 0. Let N1 ∈ N be such that |xn − x| < |x|/2. Then |xn| > |x|/2 for all n ≥ N1.
To see this, suppose by contradiction that |xn| ≤ |x|/2 for n ≥ N1. Then

|x| = |x− xn + xn| ≤ |x− xn|+ |xn| <
|x|
2

+
|x|
2

= |x|

which cannot happen. Now, choose N2 ∈ N such that n ≥ N2 =⇒ |xn − x| < |x|2ε/2.
Then, for n ≥ max{N1, N2}, we have∣∣∣∣ 1xn

− 1

x

∣∣∣∣ = ∣∣∣∣xn − x

xn · x

∣∣∣∣ = |xn − x|
|xn||x|

<
2

|x|2
· |x|

2ε

2
= ε.

Corollary 2.1. Suppose xn ≤ yn for all n ≥ N for some N ∈ N and xn → x and yn → y.
Then x ≤ y.

Proof. Let zn = yn − xn. Then zn ≥ 0 for all n ≥ N and zn → y − x. Then by a previous
proposition, y − x ≥ 0, so y ≥ x.

Note 2.1. It is not true that xn < yn for all n ≥ 1 and xn → x and yn → y implies that
x < y. Consider xn = 0 for all n and yn = 1/n. Then xn = 0 < 1/n = yn for all n, but
lim
n→∞

xn = 0 = lim
n→∞

yn.

The following proposition contains some special limits.

Proposition 2.7.

a) lim
n→∞

1

np
= 0 for all p > 0.

b) lim
n→∞

an = 0 if |a| < 1.
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c) lim
n→∞

n1/n = 1.

d) lim
n→∞

a1/n = 1 for a > 0.

Proof. a) Let ε > 0. Let N ∈ N be such that N > 1/ε1/p (such an N exists by the
Archimedean property). Then n ≥ N implies∣∣∣∣ 1np

− 0

∣∣∣∣ = 1

np
≤ 1

Np
< ε.

b) If a = 0, then an = 0n = 0 for all n and clearly lim
n→∞

0 = 0. Suppose 0 < |a| < 1. Then

|a| = 1
1+b for some b > 0. (In particulare, b = 1

|a| − 1 > 0.) Then |a|n = 1/(1 + b)n. By

the Binomial theorem

(1 + b)n =

n∑
k=0

(
n

k

)
bk = 1 + nb+ · · ·+ bn ≥ nb.

Then

|an| =
∣∣∣∣ 1

(1 + b)n

∣∣∣∣ ≤ 1

nb
.

Since 1
nb → 0, the result follows by the squeeze theorem.

c) Let sn = n1/n − 1. Note that sn ≥ 0 for all n ≥ 1, since n1/n ≥ 1 ⇐⇒ n ≥ 1n = 1.
Then

n = (n1/n)n = (1 + sn)
n =

n∑
k=0

(
n

k

)
skn ≥ n(n− 1)

2
s2n,

so

0 ≤ sn ≤
√

2

n− 1
.

Let ε > 0. Choose N ∈ N such that N > 1 + (2/ε2). Then n ≥ N implies

|n1/n − 1| = sn < ε.

d) Let a > 1. Then for all n ≥ a, 1 < a ≤ n =⇒ 1 < a1/n ≤ n1/n, so that

0 ≤ a1/n − 1 ≤ n1/n − 1 → 0.

Thus by the squeeze theorem, a1/n → 1. If 0 < a < 1, then

lim
n→∞

a1/n = lim
n→∞

1

(1/a)1/n
=

1

limn→∞(1/a)1/n
= 1,

since 1/a > 1. The result is clear if a = 1.
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2.3 Infinite Limits

Definition 2.4. Let (xn)n be a real sequence. We say that lim
n→∞

xn = ∞ if ∀M > 0,

∃N ∈ N such that xn ≥ M for all n ≥ N . We say that lim
n→∞

xn = −∞ if ∀M < 0, ∃N ∈ N
such that xn ≤ M for all n ≥ N .

Note 2.2. We will now say that a sequence converges if it has a finite limit. We will say
that the limit exists if it either converges or diverges to +∞ or −∞. Otherwise, the limit
does not exist.

Example 2.7. Determine if the following sequences are bounded or unbounded and whether
or not the limit exists.

a) xn = n2. This sequence is unbounded and lim
n→∞

n2 = ∞.

b) xn = −n. This sequence is unbounded and lim
n→∞

(−n) = −∞.

c) xn = (−1)n. This sequence is bounded, but the limit does not exist.

d) xn = n cos2(nπ/2). This sequence is unbounded and the limit does not exist.

Example 2.8. Prove that lim
n→∞

(
√
n+ 7) = ∞.

Solution. Let 0 < M ≤ 8. Note that {xn =
√
n + 7, n ≥ 1} is bounded below by 8, so√

n+ 7 ≥ M for all n ≥ 1. For M > 8, note that

√
n+ 7 ≥ M ⇐⇒ n ≥ (M − 7)2.

Let M > 8. Choose N ∈ N such that N ≥ (M − 7)2. Then n ≥ N implies

√
n+ 7 ≥

√
N + 7 ≥

√
(M − 7)2 + 7 = M.

Proposition 2.8. Let {xn, n ≥ 1} and {yn, n ≥ 1} be a real sequences.

a) If xn > 0 and xn → ∞, then 1/xn → 0.

b) If xn > 0 and xn → 0, then 1/xn → ∞.

c) If xn → ∞ and (yn)n is bounded, then xn + yn → ∞.

d) If xn → ∞ and yn → y ̸= 0, then

xnyn →

{
∞, if y > 0

−∞, if y < 0.

Proof.

a) Let ε > 0. Since xn → ∞, there exists an N ∈ N such that n ≥ N =⇒ xn > 1/ε.
Then n ≥ N =⇒ 0 ≤ 1/xn < ε.
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b) Let M > 0. Since xn → 0, there exists an N ∈ N such that n ≥ N =⇒ 0 ≤ xn =
|xn| < 1/M . Thus n ≥ N =⇒ M < 1/xn.

c) Let K > 0 be such that |yn| ≤ K for all n ∈ N. Then yn ≥ −K for all n ≥ 1. Let
M > 0. Since xn → ∞, we can choose an N ∈ N such that n ≥ N =⇒ xn ≥ M +K.
Then n ≥ N implies

xn + yn ≥ (M +K)−K = M.

d) First, suppose y > 0. Let M > 0 and choose N1 ∈ N such that n ≥ N implies

|yn − y| < y/2 ⇐⇒ y/2 < yn < 3y/2.

Let N2 ∈ N be such that n ≥ N2 =⇒ xn ≥ 2M/y. Then n ≥ max{N1, N2} implies

xnyn ≥ 2M

y
· y
2
= M.

The case where y < 0 is similar and left as an exercise.

2.4 Monotonic Sequences

Definition 2.5. A real sequence {xn, n ≥ 1} is said to be nondecreasing (or increasing)
provided xn ≤ xn+1 for all n ≥ 1, and (xn)n is said to be nonincreasing (or decreasing)
if xn ≥ xn+1 for all n ≥ 1. In either case, we call the sequence monotonic.

Example 2.9.

a) (1/n)n is a decreasing sequence.

b)
(

n
n+1

)
n
is an increasing sequence.

c)

(
n+

1

n

)
n

is an increasing sequence. To see this, let f(x) = x + 1/x, then f ′(x) =

1− 1/x2 > 0 for all x > 1.

d) (−1)n is not monotonic.

Proposition 2.9. Let (xn)n be a real sequence.

a) If (xn)n is increasing, then xn → supn≥1{xn}(≤ ∞).

b) If (xn)n is decreasing, then xn → infn≥1{xn}(≥ −∞).

c) If (xn)n is monotonic, then (xn)n is convergent if and only if (xn)n is bounded.

Proof. Let (xn)n be a real sequence.
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a) First suppose that (xn)n is bounded above so that c = supn≥1{xn} < ∞. Let ε > 0.
Then by definition of supremum, ∃N ∈ N such that

c− ε < xN ≤ c.

Since (xn)n is increasing, n ≥ N =⇒ c− ε < xN ≤ xn ≤ c, so

|xn − c| < ε for all n ≥ N.

Now suppose that (xn)n is not bounded above, so that supn≥1{xn} = ∞. Let M > 0
and let N ∈ N be such that xN ≥ M (such and xN exists since (xn)n is not bounded
above). Then for n ≥ N , xn ≥ xN ≥ M , since (xn)n is increasing. Thus xn → ∞ =
supn≥1{xn}.

b) The proof is similar to a) and left as an exercise.

c) Suppose (xn)n is monotonic. We proved earlier that if (xn)n is convergent, then it is
bounded. Suppose that (xn)n is bounded. Since (xn)n is monotonic, it is either in-
creasing or decreasing. If (xn)n is increasing, then by part a) xn → supn≥1{xn} < ∞.
If (xn)n is decreasing, then by part b) xn → infn≥1{xn} > −∞.

Example 2.10. Let x1 = 1 and define xn =
√
3xn−1 for n ≥ 2. Show that (xn)n con-

verges and find its limit.

Solution. Note that x2 =
√
3 ∗ 1 ≥ 1 = x1. Now suppose that xk ≤ xk+1 for some k ∈ N.

Then
xk+1 =

√
3xk ≤

√
3xk+1 = xk+2.

Then by the prinicple of mathematical induction, we have that xn ≤ xn+1 for all n ≥ 1.
That is (xn)n is an increasing sequence.
Next, we need to show that (xn)n is bounded above. Note that x1 = 1 < 10. Suppose that
xk < 10 for some k ∈ N. Then

xk+1 =
√
3xk <

√
3 ∗ 10 =

√
30 < 10.

So by induction xn < 10 for all n ∈ N.
Since (xn)n is increasing and bounded above, (xn)n is convergent and xn → supn≥1{xn}.
Let c = supn≥1{xn}. Then xn → c implies

√
3xn−1 →

√
3c. Since xn =

√
3xn−1 for all

n ≥ 2, we must have
c =

√
3c =⇒ c2 − 3c = c(c− 3) = 0,

so c = 0 or c = 3. Since x1 = 1 and (xn)n is increasing, c = 3.

Example 2.11. Let A > 0 and let x1 = 1. Define xn = 1
2

(
xn−1 +

A

xn−1

)
for all n ≥ 2.

Show that xn →
√
A.
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Solution. We will need to use the Cauchy inequality: If a, b > 0, then a + b ≥ 2
√
ab. We

will first show that xn is bounded below by
√
A for n ≥ 2. Note that for n ≥ 2

xn =
1

2

(
xn−1 +

A

xn−1

)
≥ 1

2
2

√
xn−1

A

xn−1
=

√
A.

Next, note that for n ≥ 2

xn − xn+1 = xn − 1

2

(
xn +

A

xn

)
=

x2
n −A

2xn
≥ 0.

Thus, (xn)n is a decreasing sequence that is bounded below, so limn→∞ xn = c exists and
is finite. Therefore,

lim
n→∞

xn =
1

2

(
lim

n→∞
xn−1 +

A

limn→∞ xn−1

)
=⇒ c =

1

2

(
c+

A

c

)
,

so we get the equation
c2 = A =⇒ c =

√
A,

since we know c ≥
√
A.

2.5 Limit Superior and Limit Inferior

Definition 2.6. Let (xn)n be a real sequence. The limit superior is defined by

lim
n→∞

xn = lim sup
n→∞

xn = lim
n→∞

sup
k≥n

xk.

The limit inferior is defined by

lim
n→∞

xn = lim inf
n→∞

xn = lim
n→∞

inf
k≥n

xk.

Note 2.3. The limit superior and inferior always exists. To see this, note that for all n ≥
1

sup
k≥n

xk ≥ sup
k≥n+1

xk and inf
k≥n

xk ≤ inf
k≥n+1

xk.

That is {supk≥n xk}∞n=1 is a decreasing sequence and {infk≥n xk}∞n=1 is an increasing se-
quence. Thus the limit superior and inferior always exist (possible infinite) by Proposition
2.9. Furthermore, since infk≥n xk ≤ supk≥n xk for all n ≥ 1. It is clear that

lim inf
n→∞

xn ≤ lim sup
n→∞

xn

is always true.

Example 2.12. Let xn = (−1)n+ 1
n for n ≥ 1. Then {xn, n ≥ 1} = {0, 3/2,−2/3, 5/4, . . .}.

Note that the terms with an even index are

x2k = 1 +
1

2k
=

2k + 1

2k



2.5. LIMIT SUPERIOR AND LIMIT INFERIOR 24

which are decreasing to 1, and the terms with an odd index are

x2k+1 = −1 +
1

2k + 1
=

−2k

2k + 1
,

which are decreasing to −1. Then

sup
k≥n

xk =

{
1 + 1

2n , if n is even

1 + 1
2(n+1) , if n is odd.

and inf
k≥n

xk = −1.

Thus limn→∞ xn = 1 and limn→∞ = −1.

Proposition 2.10. Let (xn)n be a bounded sequence in reals. Then

a) β = lim
n→∞

xn if and only if

(i) ∀ε > 0, ∃N ∈ N such that xn < β + ε, ∀n ≥ N .

(ii) ∀ε > 0 and ∀n ∈ N, ∃k ≥ n such that β − ε < xk.

b) α = lim
n→∞

xn if and only if

(i) ∀ε > 0, ∃N ∈ N such that α− ε < xk, ∀n ≥ N .

(ii) ∀ε > 0 and ∀n ∈ N, ∃k ≥ n such that xk < α+ ε.

Proof. Let tn = supk≥n xk, n ≥ 1. Note that (tn)n is a decreasing sequence, so tn →
infn≥1 tn = β. Then

β = inf
n≥1

tn ⇐⇒

{
∀ε > 0, ∃N ∈ N such that tN < β + ε

∀ε > 0, β − ε < tn, ∀n ∈ N

⇐⇒

{
∀ε > 0, ∃N ∈ N such that xk < β + ε ∀k ≥ N

∀ε > 0, ∃k ≥ n such that β − ε < xk, ∀n ∈ N

To see why, we can argue as follows. ( =⇒ ) To prove (i), let ε > 0. Choose N ∈ N such
that |tn − β| < ε for a all n ≥ N . This implies that for n ≥ N

xn ≤ sup
k≥N

xk = tN < β + ε.

To prove (ii), let ε > 0 and let n ∈ N. Then

β − ε < β = inf
k≥1

tk ≤ tn = sup
k≥n

xk.

By definition of supremum, ∃k ≥ n such that

β − ε < xk ≤ sup
j≥n

xj .

( ⇐= ) To see the reverse direction. Let ε > 0. Then by (i), we can choose N ∈ N such
that k ≥ N implies

xk < β +
ε

2
=⇒ tn ≤ tN = sup

k≥N
xk ≤ β +

ε

2
< β + ε, ∀n ≥ N.
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Note that by definition of supremum, xk ≤ supj≥n xj whenever k ≥ n, so (ii) implies that
β − ε < tn for all n ∈ N. Thus, we have for n ≥ N , |tn − β| < ε.
The proof of part b) is similar and is left as an exercise.

Theorem 2.1. Let (xn)n be a sequence in R. The limit of (xn)n exists if and only if
lim
n→∞

xn = lim
n→∞

xn. In such a case,

lim
n→∞

xn = lim
n→∞

xn = lim
n→∞

xn

Proof. ( =⇒ ) Suppose that limn→∞ xn exists. Then we need to consider three cases: (i)
xn → x ∈ R, (ii) xn → ∞ (iii) xn → −∞.
Let tn = supk≥n xk and sn = infk≥n xk for n ≥ 1.

Case i: Suppose xn → x ∈ R. Let ε > 0. Then by the definition of a limit, we can choose an
N ∈ N such that n ≥ N implies

|xn − x| < ε

2
⇐⇒ x− ε

2
< xn < x+

ε

2
.

Then
x− ε

2
≤ sN ≤ tN ≤ x+

ε

2
.

Since (sn)n is an increasing sequence and (tn)n is a decreasing sequence, we have

x− ε

2
≤ sN ≤ lim

n→∞
xn and lim

n→∞
xn ≤ tN ≤ x+

ε

2
.

Combining the previous two inequalities, we get

0 ≤ lim
n→∞

xn − lim
n→∞

xn ≤ (x+
ε

2
)− (x− ε

2
) = ε.

Since ε > 0 was arbitrary,
lim
n→∞

xn = lim
n→∞

xn.

Case ii: Suppose that xn → ∞. Let M > 0. Choose N ∈ N such that n ≥ N implies
M < xn. Then for all n ≥ N

M ≤ sN ≤ sn.

Thus limn→∞ sn = limn→∞ xn = ∞. Since

lim
n→∞

xn ≤ lim
n→∞

xn,

the result follows.

Case iii: Similar to case ii. I leave the proof as an exercise.

( ⇐= ). Again, we need to consider three cases.

Case i: Suppose limn→∞ = xn limn→∞ xn = x ∈ R. Let ε > 0. Then x = limn→∞ xn implies
∃N1 ∈ N such that xn < x + ε for all n ≥ N1, and x = limn→∞ xn implies ∃N2 ∈ N
such that xn > x− ε for all n ≥ N2. Thus for n ≥ max{N1, N2}

x− ε < xn < x+ ε ⇐⇒ |xn − x| < ε,

so xn → x.
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Case ii: Suppose limn→∞ xn = limn→∞ xn = ∞. Let M > 0. Then ∃N ∈ N such that n ≥ N
implies

M < sn =⇒ M < sN = inf
k≥N

xk ≤ xn, ∀n ≥ N.

Thus, xn → ∞.

Case iii: limn→∞ xn = limn→∞ xn = −∞. Similar to case ii. I leave the proof as an exercise

Proposition 2.11. Let (xn)n and (yn)n be real sequences.

a) If xn ≤ yn, then lim
n→∞

xn ≤ lim
n→∞

yn and lim
n→∞

xn ≤ lim
n→∞

yn.

b) lim
n→∞

−xn = − lim
n→∞

xn and lim
n→∞

−xn = − lim
n→∞

xn.

c) lim
n→∞

(xn + yn) ≤ lim
n→∞

xn + lim
n→∞

yn with equality if either sequence converges.

d) lim
n→∞

xn + lim
n→∞

yn ≤ lim
n→∞

(xn + yn) with equality if either sequence converges.

e) If xn, yn ≥ 0 for all n ≥ 1, then lim
n→∞

(xnyn) ≤ lim
n→∞

xn · lim
n→∞

yn with equality if either
sequence converges.

f) If xn, yn ≥ 0 for all n ≥ 1, then lim
n→∞

xn · lim
n→∞

yn ≤ lim
n→∞

(xnyn) with equality if either

sequence converges.

Proof. We leave the proof as an exercise.

Example 2.13. Consider the sequences xn = (−1)n and yn = (−1)n+1 · 2 for n ≥ 1. Then
xn + yn = (−1)n+1 for all n ≥ 1, and

lim
n→∞

xn = −1, lim
n→∞

yn = −2, lim
n→∞

xn = 1, and lim
n→∞

yn = 2.

Thus

−3 = lim
n→∞

xn+ lim
n→∞

yn < −1 = lim
n→∞

(xn+yn) < 1 = lim
n→∞

(xn+yn) < lim
n→∞

xn+ lim
n→∞

yn = 3.

The following theorem will be useful later for tests of convergence for series.

Theorem 2.2. Let {sn, n ≥ 1} be a real sequence with sn > 0 for all n ≥ 1. Then

lim
n→∞

sn+1

sn
≤ lim

n→∞
s1/nn ≤ lim

n→∞
s1/nn ≤ lim

n→∞

sn+1

sn
.

Proof. Let α = limn→∞ sn+1/sn and β = limn→∞ sn+1/sn. The first inequality clearly
holds if α = 0, and the third inequality clearly holds if β = ∞. WLOG, assume α > 0 and
β < ∞. Choose α1, β1 ∈ R such that

0 < α1 < α and β < β1 < ∞.
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Then by Proposition 2.10, we can choose and n ∈ N such that n ≥ N implies

α1 <
sn+1

sn
< β1.

Thus,
α1sN < sN+1 < β1sN and α1sN+1 < sN+2 < β1sN+1.

Together, these imply that
α2
1sN < sN+2 < β2

1sN .

We now proceed by induction. Suppose that

αk
1sN < sN+k < βk

1 sN

for some k ≥ 1. Then α1sN+k < sN+k+1 < β1sN+k with the induction hypothesis implies

αk+1
1 sN = α1(α

k
1sN ) < α1sN+k < sN+k+1 < β1sN+K < βk

1 sN+k = βk+1
1 sN .

Thus by induction, αk
1sN < sN+k < βk

1 sN for all k ≥ 1. So for n > N ,

αn−N
1 sN < sn < βn−N

1 sN ,

and

α1

(
sN
αN
1

)1/n

< s1/nn < β1

(
sN
αN
1

)1/n

.

Since sN/αN
1 > 0 and sN/βN

1 > 0, we have

lim
n→∞

(
sN
αN
1

)1/n

= lim
n→∞

(
sN
βN
1

)1/n

= 1,

so

α1 = lim
n→∞

α1

(
sN
αN
1

)1/n

≤ lim
n→∞

s1/nn ≤ lim
n→∞

s1/nn ≤ lim
n→∞

β1

(
sN
βN
1

)1/n

= β1.

Since 0 < α1 < α and β < β1 < ∞ were arbitrary, it follows that

α ≤ lim
n→∞

s1/nn ≤ lim
n→∞

s1/nn ≤ β.

Corollary 2.2. Suppose {sn, n ≥ 1} is a reals sequence with sn > 0 for all n ≥ 1. If

lim
n→∞

sn+1/sn exists, then lim
n→∞

s
1/n
n exists and both limits are the same.

Example 2.14. Find the limit of xn = (1/n!)1/n. Let sn = 1/n! and note that xn = s
1/n
n ,

and
sn+1

sn
=

1/(n+ 1)!

1/n!
=

1

n+ 1
→ 0,

so by the previous corrolary, limn→∞ xn = 0.
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2.6 Subsequences

Definition 2.7. If (xn)n is a sequence, then a subsequence of (xn)n is a sequence of the
form {xnk

, k ≥ 1} where nk < nk+1 for all k ∈ N. For this subsequence, we write (xnk
)k.

Note 2.4. Because (nk)k ⊆ N and nk < nk+1, we have nk ≥ k for all k ∈ N. Given any
sequence, there are infinitely many subsequences.

Example 2.15. The sequence of all evenly indexed elements of (xn)n, (x2k)k, and the
sequence of all oddly indexed elements of (xn)n, (x2k+1)k are subsequences.

Proposition 2.12. Let (xn)n be a real sequence. If the limit of (xn)n exists and (xnk
)k is

a subsequence, then the limit of (xnk
)k also exists and limn→∞ xn = limk→∞ xnk

.

Proof. We need to consider three cases: (i) xn → x ∈ R, (ii) xn → ∞, and (iii) xn → −∞.

Case i: Suppose xn → x ∈ R. Let ε > 0. Since xn → x, ∃N ∈ N such that n ≥ N =⇒
|xn − x| < ε. Then k ≥ N =⇒ nk ≥ k ≥ N , so that |xnk

− x| < ε for all k ≥ N .

Case ii: Suppose xn → ∞. Let M > 0. Since xn → ∞, ∃N ∈ N such that n ≥ N =⇒
xn ≥ M . Let k0 ∈ N be such that k ≥ k0 =⇒ nk ≥ N . Then k ≥ k0 =⇒ xnk

≥ M .

Case iii: Similar to case ii. The proof is left as an exercise.

Proposition 2.13. If xn ̸→ x ∈ R, then ∃ε > 0 and a subsequence (xnk
)k ⊆ (xn)n such

that |xnk
− x| ≥ ε for all k ≥ 1.

Proof. Note that xn ̸→ x ∈ R if and only if ∃ε > 0 such that ∀N ∈ N ∃n ≥ N such that
|xn − x| ≥ ε. We will construct a subsequence inductively. Choose ε > 0 such that this
holds. Let N = 1. Then ∃n1 ≥ 1 such that |xn1

− x| ≥ ε. Suppose that k ≥ 1 and that
n1 < n2 < · · · < nk have been chosen so that |xnj

− x| ≥ ε for 1 ≤ j ≤ k. By hypothesis,
∃nk+1 > nk such that |xnk+1

− x| ≥ ε. Then by induction, ∃ a subsequence (xnk
)k such

that |xnk
− x| ≥ ε for all k ≥ 1.

Definition 2.8. Let (xn)n be a sequence in R. Then x ∈ R ∪ {−∞,∞} is said to be a
subsequential limit point of (xn)n if ∃ a subsequence (xnk

)k of (xn)n such that xnk
→

x.

Note 2.5. By Proposition 2.12, if xn → x ∈ R, then x is the only subsequential limit
point.

Example 2.16. Let xn = (−1)n. Then the only subsequential limit points of (xn)n are
{−1, 1}. Note that x2k = (−1)2k = 1 → 1 and x2k+1 = (−1)2k+1 = −1 → −1.

Theorem 2.3. A point x ∈ R is a subsequential limit point of the real sequence (xn)n if
and only if ∀ε > 0 and ∀N ∈ N, ∃n ≥ N such that |xn − x| < ε.

Proof. ( =⇒ ) Suppose that x ∈ R is a subsequential limit point of (xn)n. Then ∃ a
subsequence (xnk

)k ⊆ (xn)n such that xnk
→ x as k → ∞. Let ε > 0, and let N ∈ N.

Since xnk
→ x, ∃K ∈ N such that k ≥ K =⇒ |xnk

− x| < ε. Let k ≥ max{K,N}. Then
nk ≥ k ≥ N and |xnk

− x| < ε.

( ⇐= ) Suppose that ∀ε > 0 and ∀N ∈ N, ∃n ≥ N such that |xn − x| < ε. We will
construct a subsequence (xnk

)k such that xnk
→ x. Let ε = 1 and N = 1. Then by
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hypothesis, ∃n1 ≥ N = 1 such that |xn1 − x| < 1. Suppose that k ≥ 1 and that n1 <
n2 < · · · < nk have been chosen so that |xnj − x| < 1/j for all 1 ≤ j ≤ k. Then by
hypothesis, ∃nk+1 ≥ nk + 1 > nk such that |xnk+1

− x| < 1/(k + 1). Thus by the principle
of mathematical induction, ∃ a subsequence (xnk

)k of (xn)n such that |xnk
− x| < 1/k for

all k ≥ 1, and by the squeeze theorem xnk
→ x.

Corollary 2.3. x ∈ R is a subsequential limit point of (xn)n if and only if ∀ε > 0, (x −
ε, x+ ε) contains infinitely many terms of (xn)n.

Theorem 2.4 (Bolzano-Weierstrass). Every bounded sequence in R has a convergent sub-
sequence.

Proof. Let (xn)n be a bounded sequence in R. Then limn→∞ xn = α ∈ R and limn→∞ xn =
β ∈. We now claim that α and β are subsequential limit points of (xn)n. Let ε > 0. Then
by Proposition 2.10., α = limn→∞ xn if and only if

(i) ∃N ∈ N such that α− ε < xk, ∀n ≥ N

(ii) ∀n ∈ N, ∃k ≥ n such that xk < α+ ε.

This implies that ∀n ≥ N , ∃k ≥ N such that α − ε < xk < α + ε =⇒ |xk − α| < ε. Thus
by Theorem 2.16, α is a subsequential limit point of (xn)n. A similar argument also shows
that β is a subsequential limit point of (xn)n. The proof is left as an exercise.

We proved the following corollary for the case where (xn)n is a bounded real sequence
in the proof of the Bolzano-Weierstrass theorem, but it remains true if either the limit
superior or limit inferior are +∞ or −∞. We omit the proof of the infinit limit cases here
but it can be found in Ross.

Corollary 2.4. Let (xn)n be a sequence in R. Then limn→∞ xn and limn→∞ xn are sub-
sequential limit points of (xn)n.

Theorem 2.5. Let (xn)n be a sequence in R, and let

S = {x ∈ R ∪ {−∞,∞}|x is a subsequential limit point of (xn)n}.

Then

a) inf S = limn→∞ xn and supS = limn→∞ xn.

b) limn→∞ xn = x if and only if S = {x}.

Proof.

a) By Corollary 2.4, limn→∞ xn = α ∈ S and limn→∞ xn = β ∈ S. Let t ∈ S. Then ∃
a subsequence (xnk

)k of (xn)n such that xnk
→ t as k → ∞. Note that infn≥N xn ≤

infk≥N xnk
since nk ≥ k =⇒ {xnk

, k ≥ N} ⊆ {xn, n ≥ N}. Thus α = limn→∞ xn ≤
limk→∞ xnk

= t. A similar argument shows that t = limk→∞ xnk
≤ limn→∞ xn = β.

Thus ∀t ∈ S, α ≤ t ≤ β. Since α, β ∈ S, the result follows.

b) By part a), S = {x} ⇐⇒ limn→∞ xn = limn→∞ xn = x ⇐⇒ xn → x.
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2.7 Basics of Topology in Metric Spaces

Definition 2.9. Let S be a nonempty set. A metric is a function d : S × S 7→ R such
that

a) d(x, y) ≥ 0 for all x, y ∈ S and d(x, y) = 0 if and only if x = y.

b) d(x, y) = d(y, x) for all x, y ∈ S.

c) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ S.

A nonempty set S together with a metric, (S, d), is called a metric space.

Example 2.17. The distance function d(x, y) = |x − y| is a metric on the real line. Thus
(R, d) is a metric space.

Note 2.6. Though we will continue to prove theorems in the case of R, most theorems in
this section apply to general metric spaces. In fact, the only theorem in this section that
is specific to R or Rk is the Heine-Borel theorem. All other results will hold more gener-
ally in a metric space. Indeed, many of the results for sequences that we have seen so far
hold for a general metric space, and the proofs are similar with the only modification of
the proof needed to generalize it to a metric space is to replace |x− y| by d(x, y).

Definition 2.10. A sequence (xn)n in R is said to be Cauchy if ∀ε > 0, ∃N ≥ N such
that m > n ≥ N implies

|xm − xn| < ε.

Proposition 2.14. Let (xn)n be a seqeuence in R. Then

a) If (xn)n is converges, then it is Cauchy.

b) If (xn)n is Cauchy, then it is bounded.

c) If (xn)n is Cauchy and xnk
→ x ∈ R for some subsequence of (xnk

)k of (xn)n, then
xn → x.

Proof.

a) Let ε > 0. Since xn → x ∈ R, ∃N ∈ N such that n ≥ N =⇒ |xn − x| < ε/2. Then for
m > n ≥ N

|xm − xn| = |xm − x+ x− xn| ≤ |xm − x|+ |xn − x| < ε

2
+

ε

2
= ε.

b) Let ε = 1. We can choose N ∈ N such that |xm − xn| < 1 whenever m > n ≥ N . Then
for n ≥ N

|xn| = |xn − xN + xN | ≤ |xn − xN |+ |xN | < 1 + |xN |.
Let M = max{1 + |xN |, |x1|, |x2|, . . . , |xN−1|}. Then |xn| ≤ M for all n ≥ 1.

c) Let (xn)n be a Cauchy sequence in R and let (xnk
)k be a subsequence of (xn)n such

that that xnk
→ x ∈ R. Let ε > 0. Choose K ∈ N such that k ≥ K =⇒ |xnk

− x| <
ε/2. Let N ∈ N be such that m > n ≥ N =⇒ |xm−xn| < ε/2. Fix a k0 ≥ max{K,N}.
Then nk0

≥ k0 ≥ max{K,N} and n ≥ N implies

|xn − x| = |xn − xnk0
+ xnk0

− x| ≤ |xn − xnk0
|+ |xnk0

− x| < ε

2
+

ε

2
= ε.
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Definition 2.11. A metric space (S, d) is said to be complete if every Cauchy sequence
in S converges to an element in S.

Theorem 2.6. R is complete.

Note 2.7. Completeness is a nice property when exploring convergence. If a metric space
is complete, then we can show that a sequence converges, without knowing what it con-
verges to, by showing that it is Cauchy.

Proof. To show that R is complete, we need to show that if a sequence is convergent that
it is Cauchy, and if a sequence is Cauchy, then it converges to some element of R. The
first half was proven in Proposition 2.14. It remains to show that if (xn)n is a Cauchy se-
quence in R, then ∃x ∈ R such that xn → x.

Let (xn)n be a Cauchy sequence in R. Then by Proposition 2.14(a), (xn)n is bounded,
so by the Bolzano-Weierstrass theorem, (xn)n has a convergent subsequence (xnk

)k. Let
x ∈ R be such that xnk

→ x. Then by Proposition 2.14(c), xn → x.

Definition 2.12. An ε-neighborhood of a point x ∈ R is {y ∈ R : |x − y| < ε} =
(x− ε, x+ ε). This is also called an open ball of radius ε and is denoted B(x, ε).

Definition 2.13. A set A ⊆ R is said to be open if ∀x ∈ A, ∃ε > 0 such that

B(x, ε) = (x− ε, x+ ε) ⊂ A.

Example 2.18. Determine if the following sets are open in R.

a) A = (0, 1). Yes

b) A = [0, 1). No, because of 0.

c) A = [1, 2]. No, because of {1, 2}.

d) A = Q. No. Recall the irrationals are dense in R, so ∀r ∈ Q and ∀ε > 0, ∃q ∈ R \ Q
such that r − ε < q < r < r + ε. Thus B(r, ε) ̸⊂ Q.

Note 2.8. The sets ∅ and R are both open in R.

Proposition 2.15. An open ball is an open set.

Proof. Let B(x, ε) = (x − ε, x + ε) be an open ball of radius ε > 0, and let y ∈ B(x, ε).
Then |x− y| < ε. Let ρ = ε− |x− y| > 0, and let z ∈ B(y, ρ). Then

|x− z| = |x− y + y − z| ≤ |x− y|+ |y − z| < |x− y|+ ρ = ε.

Thus B(y, ρ) ⊆ B(x, ε).

Definition 2.14. The interior of a set A is

A◦ = {x ∈ A|∃ε > 0 such that B(x, ε) ⊂ A}

Proposition 2.16. A is open if and only if A = A◦.
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Proof. ( =⇒ ). Suppose that A is an open set. Then ∀x ∈ A, ∃ε > 0 such that B(x, ε) ⊂
A. Thus A ⊆ A◦. It is clear that A◦ ⊂ A. Thus A = A◦.

( ⇐= ) Suppose that A = A◦. Let x ∈ A. Then x ∈ A◦, so ∃ε > 0 such that B(x, ε) ⊂ A.
Since x ∈ A was arbitrary, A is open.

Example 2.19. Find A◦

a) A = [0, 2]. Then A◦ = (0, 2)

b) A = (0, 3] ∪ {6}. Then A◦ = (0, 3).

c) Q◦ = ∅

d) A = {1/n : n ∈ N}. Then A◦ = ∅.

Proposition 2.17. A◦ is the largest open set contained in A.

Proof. Let x ∈ A◦. Then ∃ε > 0 such that B(x, ε) ⊂ A. Since B(x, ε) is open, ∀y ∈
B(x, ε), ∃r > 0 such that B(y, r) ⊂ B(x, ε). Thus B(x, ε) ⊂ A◦, so A◦ is open. Now, let
B be an open set such that B ⊂ A. Then ∀x ∈ B, ∃ε > 0 such that B(x, r) ⊂ B ⊂ A, so
x ∈ A◦. Thus B ⊂ A◦.

Proposition 2.18.

a) The union of an arbitrary collection of open sets is open.

b) The intersection of a finite number of open sets is open.

Note 2.9. The intersection of an arbitrary collection of open sets may not be open as the
following example shows.

Example 2.20. Let An = (−1/n, 1/n) for n ≥ 1. Then each An is open buy

∩∞
n=1An = ∩∞

n=1

(
− 1

n
,
1

n

)
= {0},

which is not open.

Proof.

a) Let (Ai)i∈I be a collection of open sets, and let A = ∪i∈IAi. Let x ∈ A. Then x ∈ Ai

for some i ∈ I. Ai open implies ∃ε > 0 such that B(x, ε) ⊂ Ai ⊂ A. Thus A is open.

b) Let Ai, i = 1, . . . , n be open and let A = ∩n
i=1Ai. Let x ∈ A. Then x ∈ Ai for all

i = 1, 2, . . . , n, so ∃ri, i = 1, 2, . . . , n such that B(x, ri) ⊂ Ai, i = 1, 2, . . . , n. Let
ε = min{r1, r2, . . . , rn}. Then B(x, ε) ⊂ Ai for all i = 1, 2, . . . , n, so B(x, r) ⊂ A.

Definition 2.15. A set A ⊆ R is said to be closed if Ac = R \A is open.

Example 2.21. Determine if the following sets are closed.

a) A = [1, 5]. Yes since R \A = (−∞, 1) ∪ (5,∞) is open.
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b) A = [1, 6). No, since R \A = (−∞, 1) ∪ [6,∞) is not open due to the point {6}.

c) A = {1/n : n ∈ N}. No. R \ A is not open since 0 ∈ R \ A, but every interval around 0
contains a point in A, i.e. ∀ε > 0, ∃x ∈ A such that x ∈ B(0, ε). So R \A is not open.

Proposition 2.19. Let A ⊆ R. Then A is closed if and only if ∀(xn)n ⊂ A and xn → x ∈
R implies x ∈ A.

Before we prove this result, let’s look at a few application.

Example 2.22. Determine if the following sets are closed.

a) A = {1/n : n ∈ N} is not closed because (1/n)n ⊂ A and 1/n → 0 but 0 ̸∈ A.

b) A = [0, 2) is not closed because (2− 1/n)n ⊂ A and 2− 1/n → 2 but 2 ̸∈ A. Note that
A is neither closed nor open.

c) A = {x ∈ R|x5 + 3x4 ≤ 2}. This set is closed. Let (xn)n ⊂ A and suppose that xn →
x ∈ R. Then x5

n + 3x4
n ≤ 2 for all n ≥ 1. This implies that x5

n + 3x4
n → x5 + 3x4 ≤ 2, so

x ∈ A.

Proof. ( =⇒ ) Suppose A is closed and let (xn)n ⊂ A be a convergent sequence with limit
x ∈ R. Suppose that x ̸∈ A. Then x ∈ R \ A which is open. Then ∃ε > 0 such that
B(x, ε) ⊂ R \ A. Since xn → x, ∃N ∈ N such that n ≥ N =⇒ |xn − x| < ε =⇒ xn ∈
B(x, ε), a contradiction with xn ∈ A.

( ⇐= ) Suppose that whenever (xn)n ⊂ A and xn → x then x ∈ A. Suppose that A is not
closed. Then R \ A is not open, so ∃x ∈ R \ A such that ∀ε > 0, B(x, ε) ̸⊂ R \ A. This
implies that B(x, ε) ∩ A ̸= ∅ for all ε > 0. Let ε = 1/n and choose xn ∈ B(x, 1/n) ∩ A for
each n ≥ 1. Then (xn)n ⊂ A and |xn − x| < 1/n → 0 =⇒ xn → x. Thus by assumption
x ∈ A but this contradicts x ∈ R \A, so A must be closed.

Proposition 2.20.

a) The intersection of an arbitrary collection of closed sets is closed.

b) The union of a finite collection of closed sets is closed.

Proof.

a) Let (Ai)i∈I be a collection of closed sets and let A = ∩i∈IAi. Then

Ac = (∩i∈IAi)
c
= ∪i∈IA

c
i

which is open since Ac
i is open for all i ∈ I.

b) Let A1, . . . , An be closed sets and let A = ∪n
i=1Ai. Then

Ac = ∩n
i=1A

c
i

is open since Ac
i is open for all i = 1, 2, . . . , n.
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Definition 2.16. The closure of A, denoted Ā, is the intersection of all closed sets con-
taining A, i.e.

Ā = ∩{B|A ⊆ B and B is closed}.

Note 2.10.

� Ā is closed and is the smallest closed set containing A.

� A is closed if and only if A = Ā.

Proposition 2.21. The following are equivalent:

a) x ∈ Ā

b) ∀ε > 0, B(x, ε) ∩A ̸= ∅.

c) ∃(xn)n ⊂ A such that xn → x.

Proof. (a) =⇒ b)). Let x ∈ Ā. Suppose b) is not true. Then ∃ε > 0 such that B(x, ε) ∩
A = ∅ =⇒ A ⊂ R \ B(x, ε) = B. Since B is closed and A ⊂ B, Ā ⊂ B, but x ̸∈ B and
x ∈ Ā, a contradiction.

(b) =⇒ c)). Let ε = 1/n. Choose xn ∈ B(x, 1/n) ∩ A. Then (xn)n ⊂ A and |xn − x| <
1/n → 0 =⇒ xn → x.

(c) =⇒ a)) Suppose (xn)n ⊂ A such that xn → x, but x ̸∈ Ā. Then x ∈ R \ Ā
which is open, so ∃ε > 0 such that B(x, ε) ⊂ R \ Ā. Since xn → x, ∃N ∈ N such that
n ≥ N =⇒ |xn − x| < ε. This implies that xn ∈ B(x, ε) ⊂ R \ Ā for n ≥ N , but
xn ∈ A ⊂ Ā for all n ≥ 1, a contradiction. Thus, c) =⇒ a).

Example 2.23. Find Ā.

a) A = (0, 1). Then Ā = [0, 1].

b) A = (−1, 2) ∪ {3}. Then Ā = [−1,−2] ∪ {3}.

c) A = N. Then Ā = N

d) A = (−2, 2) ∪ (3, 5]. Then Ā = [−2, 2] ∪ [−3, 5]

e) A = {1/n : n ∈ N}. Then Ā = A ∪ {0}.

f) A = {n/(n+ 1)|n ∈ N}. Then Ā = A ∪ {1}.

Definition 2.17. A point x ∈ R is said to be an accumulation point of A ⊂ R if
∀ε > 0, B(x, ε) contains a point in A different from x. The set of all accumulation points
is denoted A′.

Proposition 2.22. x ∈ A′ if and only if ∀ε > 0, B(x, ε) ∩ A contains infinitely many
points.

Proof. ( ⇐= ) Clear.

( =⇒ ) Let x ∈ A′. Suppose that B(x, ε) ∩ A is finite for some ε > 0. Let {x1, x2, . . . , xn}
be the distinct points in B(x, ε) ∩ A different from x (since x ∈ A′, there is at least one
such xi). Let ρ = min{|x − x1|, . . . , |x − xn|} > 0. Then B(x, ρ) ∩ A is either empty or
contains only x, a contradiction with x ∈ A′.
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Proposition 2.23. x ∈ A′ if and only if ∃(xn)n ⊂ A \ {x} of distinct elements such that
xn ̸= x and xn → x.

Proof. ( ⇐= ) Suppose that (xn)n is a sequence of distinct elements in A \ {x} such that
xn → x. Let ε > 0. Then ∃N ∈ N such that n ≥ N =⇒ |xn − x| < ε for n ≥ N . Thus

B(x, ε) ∩A ⊃ {xn, n ≥ N},

which contains infinitely many points, so x ∈ A′.

( =⇒ ) Let x ∈ A′. Choose and x1 ∈ B(x, 1) ∩ A such that x1 ̸= x. Now suppose that
for some k ≥ 1, x1, x2, . . . , xk have been chosen such that xi ̸= xj whenever i ̸= j, xi ̸= x
and xi ∈ B(x, 1/i) ∩ A, , i = 1, . . . , k. Then we can choose an xk+1 ∈ B(x, 1/(k + 1)) ∩ A
such that xk+1 ̸= xi for all i = 1, . . . , k, and xk+1 ̸= x, since B(x, 1/(k + 1)) ∩ A contains
infinitely many points. Thus, by induction we have a sequence of distinct elments (xn)n ⊂
A such that xn ̸= x and |xn − x| < 1/n → 0 =⇒ xn → x.

Proposition 2.24. Ā = A ∪A′.

Proof. Clearly A ⊂ Ā and A′ ⊂ Ā, so A ∪ A′ ⊂ Ā. Now, let x ∈ Ā. If x ∈ A, then
x ∈ A∪A′. Suppose x ̸∈ A. Then by Proposition 2.21(b), B(x, ε)∩A ̸= ∅ for all ε > 0 =⇒
B(x, ε) ∩A contains a point distinct from x for all ε > 0, since x ̸∈ A.

Definition 2.18. The boundary of a set A, denoted ∂A, is

∂A = Ā ∩ R \A.

That is x ∈ ∂A if ∀ε > 0, B(x, ε) contains a point in A and a point not in A.

Example 2.24. Find ∂A.

a) A = (0, 1). Then ∂A = {0, 1}.

b) A = {1/n : n ∈ N}. Then ∂A = A ∪ {0}.

c) A = Q. Then Ā = R and R \Q = R, so ∂Q = R.

d) A = N. Then ∂A = N.

Definition 2.19. A point x ∈ A is said to be an isolated point if ∃ε > 0 such that
B(x, ε) ∩A = {x}.

Example 2.25. Find the isolated points of A.

a) A = (0, 1) ∪ {8}. The only isolated point is 8.

b) A = {1/n : n ∈ N}. Every point of A is an isolated point.

c) A = N. Every point of N is an isolated point.

Definition 2.20. An open cover of a set A is a family of open sets, (Gi)i∈I such that

A ⊂ ∪i∈IGi.

Definition 2.21. A is said to be compact if every open cover of A has a finite subcover,
i.e. if (Gi)i∈I is an open cover of A, then ∃i1, i2, . . . , in ∈ I such that A ⊂ ∪n

k=1Gik .
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Proposition 2.25. A compact set is bounded.

Proof. Let A be compact and let x0 ∈ S. Then A ⊂ ∪∞
n=1B(x0, n), so (B(x0, n))

∞
n=1 is an

open cover of A. By compactness of A, there exists an n0 ∈ N such that A ⊂ ∪n0
n=1B(x0, n0) =

B(x0, n0). Thus for all x ∈ A

|x| = |x− x0 + x0| ≤ |x− x0|+ |x0| < n0 + |x0|,

so A is bounded.

The following theorem gives a nice characterization of compact sets of metric spaces in
terms of sequential compactness.

Theorem 2.7. The following are equivalent:

a) A is compact.

b) Every sequence in A has a subsequence that converges to a point in A.

Proof. We only prove the first half
(a) =⇒ b)). Suppose that A is compact. Let (xn)n be a sequence in A, and suppose that
for all x ∈ A, (xn)n has no subsequence which converges to an x ∈ A. Then for each x ∈
A, ∃εx > 0 such that xn ∈ B(x, εx) finitely often (otherwise a ∃(xnk

))k such that xnk
→ x

for some x ∈ A). Clearly A ⊂ ∪x∈AB(x, εx). Since A is compact, ∃y1, y2, . . . , yN ∈ A such
that (xn)n ⊂ A ⊂ ∪N

i=1B(yi, εyi). But (xn)n is infinite, so at least one of B(yi, εyi) must
contain infinitely many of (xn)n a contradiction.

(b) =⇒ a)) See Rudin Theorem 2.41, p.40, for the case of Rk or DePree and Schwartz
(1988) Theorem 6, p.299 for the general metric space case.

Proposition 2.26. If A is a compact set, then A is closed.

Proof. Let (xn)n be a sequence in A such that xn → x. Since A is compact, ∃ a sub-
seqeuence (xnk

)k of (xn)n such that xnk
→ x0 ∈ A. Since xn → x, xnk

→ x, and
x = x0 ∈ A. Thus, A is closed.

The following theorem not true in a general metric space, but it does hold in Rk for all
k ≥ 1. The Heine-Borel theorem gives a nice characterization of compact sets in Rk.

Theorem 2.8 (Heine-Borel). Let A ⊆ Rk. Then A is compact if and only if A is closed
and bounded.

Proof. We will prove this in the case of R, but the proof is exactly the same for general
Rk.

( =⇒ ) This implication is just Proposition 2.25 and 2.26.

( ⇐= ) Suppose that A is closed and bounded. Let (xn)n be a sequence in A. Then (xn)n
is bounded, so by the Bolzano-Weierstrass theorem (xn)n has a convergent subsequence
(xnk

)k such that xnk
→ x ∈ R. Since (xnk

)k ⊂ A and A is closed, x ∈ A. So every
sequence in A has a convergent subsequence that converges to a point in A, which implies
A is compact.

Proposition 2.27. Let A be a compact set and let B ⊂ A be closed. Then B is compact.
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Proof. Let (xn)n be a sequence in B. Then (xn)n is also a sequence in A. Since A is com-
pact, ∃ a subsequence (xnk

)k of (xn)n such that xnk
→ x ∈ A. Since B is closed, x ∈ B.

Therefore, B is compact.

Example 2.26. Determine if the following sets are compact.

a) A = Q. No, because Q is not closed.

b) A = {1/n : n ∈ N}. No, because A is not closed.

c) A = N. No, because A is not bounded.

d) A = [0, 7] ∪ {9}. Yes, because A is closed and bounded.

e) A = (0, 9]. No, because A is not closed.

f) A = {x : x2 > 1}. No, because it is neither closed nor bounded.

2.8 Series

Definition 2.22. Given a sequence (an)n in R, the nth partial sum is

sn =

n∑
k=1

ak = a1 + a2 + · · ·+ an.

We say that the infinite series
∑∞

k=1 ak converges with sum s ∈ R if sn → s. Otherwise,
we say the infinite series diverges.

Example 2.27 (Geomertic Series). Let a, r ∈ R. Show that the series
∑∞

k=1 ar
k−1 con-

verges for |r| < 1 and diverges otherwise.

Solution. Let sn =
∑n

k=1 ar
k−1 for n ≥ 1. For r ̸= 1,

(r − 1)sn = rsn − sn = a

(
n∑

k=1

rk −
n∑

k=1

rk−1

)
= a

(
n∑

k=1

rk −
n−1∑
k=0

rk

)
= a(rn − 1).

Then for r ̸= 1,

sn = a
rn − 1

r − 1
.

By Proposition 2.7, rn → 0 for |r| < 1. Thus,

∞∑
k=1

ark−1 =
−a

r − 1
=

a

1− r
.

For |r| > 1, then

|sn| = |a| · |r|
n − 1

|r| − 1
→ ∞.

If r = 1, then sn = na → ∞. If r = −1, then

sn =

n∑
k=1

a(−1)k−1 =

{
a, n odd

0, n even
,

so (sn)n does not converge.
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Proposition 2.28 (Algebra of Series).

a) If
∑∞

k=1 ak and
∑∞

k=1 bk converge, then
∑∞

k=1(ak + bk) converges and the sum is equal
to
∑∞

k=1 ak +
∑∞

k=1 bk.

b) If
∑∞

k=1 ak converges, then for any c ∈ R,
∑∞

k=1(cak) converges and
∑∞

k=1(cak) =
c
∑∞

k=1 ak.

Proof. Exercise.

Since R is complete and a series is just a limit of a sequence of partial sums, we can apply
convergence theorems about convergent sequences to series. In particular, we have the
following Cauchy criterion for convergence of a series.

Theorem 2.9 (Cauchy Criterion). Let (an)n be a sequence in R. Then
∑∞

k=1 ak con-
verges if and only if the seqeuence of partials sums (sn)n is Cauchy, that is, ∀ε > 0,
∃N ∈ N such that m > n ≥ N implies

|sm − sn| =

∣∣∣∣∣
m∑

k=n+1

xk

∣∣∣∣∣ < ε.

Proof. Since R is complete, the sequence of partial sums (sn)n converge if and only if
(sn)n is Cauchy.

Corollary 2.5. Let (an)n be a real sequence. If
∑∞

k=1 an converges, then an → 0.

Proof. Let ε > 0. Since
∑∞

k=1 ak converges, the sequence of partial sums (sn)n are Cauchy,
so ∃N ∈ N such that m > n ≥ N =⇒ |sm − sn| < ε. In particular for n ≥ N , we have

|an| = |sn+1 − sn| < ε.

Also recall that monotonic sequences converge if and only if the sequence is bounded.

Theorem 2.10. Let (an)n be a sequence in R such that an ≥ 0 for all n ≥ 1. Then∑∞
k=1 ak converges if and only if the sequence of partial sums is bounded.

Proof. Since an ≥ 0 for all n ≥ 1, sn ≤ sn+1 for all n ≥ 1, that is (sn)n is an increasing
sequence. Thus (sn)n converges if and only if it is bounded.

For the next corollary, we are going to need to rely on some of your prior knowledge of
Riemann integration from calculus. We will come back formally later to see why the fol-
lowing argument works, but for now we will rely on a picture.

Corollary 2.6. The series
∑∞

n=1
1
np converges if and only if p > 1.

Proof. Note that for p > 0 and for n ≥ 1, 1/np ≥ 0 and∫ n+1

1

1

xp
dx ≤

n∑
k=1

1

kp
≤ 1 +

∫ n

1

1

xp
dx.

Then
∑∞

n=1 1/n
p converges ⇐⇒ (sn)n are bounded ⇐⇒

∫∞
1

1/xp dx converges ⇐⇒
p > 1.
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Example 2.28. Determine if the following series converge.

a)
∑∞

n=1 1/n
2

Solution. Note that for each n ≥ 1

n∑
k=1

1

k2
≤ 1 +

∫ n

1

1

x2
dx = 1 + (1− 1/n) → 2,

so
∑∞

n=1 1/n
2 converges, since it is monotonic and bounded.

b)
∑∞

n=1 1/n (Harmonic series)

Solution. Note that for all n ≥ 1 ∫ n+1

1

1

x
dx ≤

n∑
k=1

1

k
.

Since
∫∞
1

(1/x) dx = limb→∞
∫ b

1
(1/x) dx = ∞,

∑∞
n=1 1/n diverges to ∞.

Proposition 2.29. If
∑∞

k=1 |ak| converges, then
∑∞

k=1 ak converges and |
∑∞

k=1 ak| ≤∑∞
k=1 |ak|.

Proof. Suppose that
∑∞

k=1 |ak| converges. We will apply the Cauchy criterion to show
that

∑∞
k=1 ak converges. Let ε > 0. Choose N ∈ N such that m > n ≥ N implies

m∑
k=n+1

|ak| < ε.

Then for m > n ≥ N , ∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| < ε.

Thus
∑∞

k=1 ak converges by the Cauchy criterion. Furthermore, since for all n ≥ 1∣∣∣∣∣
n∑

k=1

ak

∣∣∣∣∣ ≤
n∑

k=1

|ak|,

we have ∣∣∣∣∣
∞∑
k=1

ak

∣∣∣∣∣ ≤
∞∑
k=1

|ak|

Definition 2.23. A series
∑∞

k=1 ak is said to be absolutely convergent if
∑∞

k=1 |ak|
converges. If

∑∞
k=1 ak converges but

∑∞
k=1 |ak| = ∞, then the series is called condition-

ally convergent.
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Proposition 2.30. Given a sequence (an)n in R, let

pn =
|an|+ an

2
= max{an, 0} and qn =

|an| − an
2

= max{−an, 0}.

Then pn, qn ≥ 0, an = pn − qn, and |an| = pn + qn.

a)
∑∞

k=1 ak is absolutely convergent if and only if
∑∞

k=1 pk < ∞ and
∑∞

k=1 qk < ∞.

b) If
∑∞

k=1 ak is conditionally convergent, then
∑∞

k=1 pk =
∑∞

k=1 qk = ∞.

Proof.

a) ( =⇒ ) Suppose
∑∞

k=1 |ak| < ∞. Then for all n ≥ 1

n∑
k=1

pk ≤
n∑

k=1

|ak| ≤
∞∑
k=1

|ak| < ∞ and

n∑
k=1

qk ≤
n∑

k=1

|ak| ≤
∞∑
k=1

|ak| < ∞

Thus,
∑∞

k=1 pk < ∞ and
∑∞

k=1 qk < ∞.

( ⇐= ) Suppose
∑∞

k=1 pk < ∞ and
∑∞

k=1 qk < ∞. Then

∞∑
k=1

|ak| =
∞∑
k=1

(pk + qk) =

∞∑
k=1

pk +

∞∑
k=1

qk < ∞.

b) Suppose
∑∞

k=1 ak is convergent but
∑∞

k=1 |ak| = ∞. If
∑∞

k=1 pk < ∞, then
∑∞

k=1(pk −
ak) < ∞. Since pk − ak = pk − (pk − qk) = qk, this implies that

∑∞
k=1 qk < ∞,

so that
∑∞

k=1 |ak| < ∞ by part a), a contradiction. Similary,
∑∞

k=1 qk < ∞ =⇒∑∞
k=1 pk < ∞ =⇒

∑∞
k=1 |ak| < ∞, a contradiction. Thus it must be the case that∑∞

k=1 pk =
∑∞

k=1 qk = ∞.

A key difference between absolutely convergent and conditionally convergent series is
how rearrangements behave. A rearrangement of a series

∑∞
k=1 ak is a series of the form∑∞

k=1 bk where bk = ap(k) and p : N 7→ N is bijective function. This means that
∑∞

k=1 bk is
a series of the same terms as

∑∞
k=1 ak, but the sum of these elements occurs in a different

order.

Theorem 2.11. If
∑∞

k=1 ak is absolutely convergent, then every rearrangement
∑∞

k=1 bn
of
∑∞

k=1 ak is absolutely convergent and
∑∞

k=1 bk =
∑∞

k=1 ak.

Note 2.11. This theorem says the the sum of an absolutely convergent series indepen-
dent of the order of the terms in the sum. Consider the expected value of a discrete ran-
dom variable

EX =
∑
x∈X

xP (X = x).

It would be troublesome if the order in which these terms were summed changed the ex-
pected value. This is why we say the expected value exists if E|X| =

∑
x∈X |x|P (X =

x) < ∞. In this case, the sum is independent of the order.
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Proof. Suppose
∑∞

k=1 |ak| < ∞. Let p : N 7→ N be a bijective map and let bk = ap(k)
for k ≥ 1. Let sn =

∑n
k=1 ak, tn =

∑n
k=1 bk, and s =

∑∞
k=1 ak. Let ε > 0. Choose

N ∈ N such that m > n ≥ N =⇒
∑m

k=n+1 |ak| < ε =⇒
∑∞

k=N+1 |ak| ≤ ε.
Since p is bijective, ∃k1, k2, . . . kN such that {1, 2, . . . N} = {p(k1), p(k2), . . . , p(kN )}. Let
M = max{k1, k2, . . . , kN}. Then M ≥ N and {1, 2, . . . , N} ⊆ {p(1), p(2), . . . , p(M)}. Now,
for m ≥ M ≥ N

|sm − tm| =

∣∣∣∣∣
m∑

k=1

ak −
m∑

k=1

bk

∣∣∣∣∣ ≤
∞∑

k=N+1

|ak| ≤ ε.

The inequality is true since the terms a1, . . . , aN cancel as well as any other ak for k > N
that sm and tm share. Thus |sn − tn| → 0, and

lim
n→∞

tn = lim
n→∞

(tn − sn + sn) = lim
n→∞

(tn − sn) + lim
n→∞

sn = 0 + s = s.

Therefore,
∑∞

k=1 bk =
∑∞

k=1 ak and
∑∞

k=1 |bk| < ∞, since

∞∑
k=M+1

|bk| =
∞∑

k=M+1

|ap(k)| ≤
∞∑

k=N+1

|ak| ≤ ε

and {p(k)|k ≥ M + 1} ⊆ {n|n ≥ N + 1} by choice of M .

Theorem 2.12 (Riemann Theorem on Conditionally Convergent Series). Suppose
∑∞

k=1 ak
is a conditionally convergent real series. Let −∞ ≤ x ≤ y ≤ ∞. Then there exists a rear-
rangement

∑∞
k=1 bk of

∑∞
k=1 ak such that

lim
n→∞

n∑
k=1

bk = x and lim
n→∞

n∑
k=1

bk = y.

Note 2.12. Theorem 2.12 says that if a series is conditionally convergement, then for any
s ∈ R, it can be rearranged so that it converges to s.

Corollary 2.7.
∑∞

k=1 ak is absolutely convergent if and only if every rearrangement has
the same sum.

We now turn to some tests that we can use to determine if a series converges or not.

Proposition 2.31 (The Comparison Test). Let
∑∞

k=1 ak be a series where ak ≥ 0 for all
k ≥ 1.

a) If
∑∞

k=1 ak converges and |bk| ≤ ak for all k ≥ 1, then
∑∞

k=1 |bk| converges.

b) If
∑∞

k=1 ak = ∞ and ak ≤ bk for all k ≥ 1, then
∑∞

k=1 bk = ∞.

Proof.

a) Let ε > 0. Since
∑∞

k=1 ak converges, ∃N ∈ N such that m > n ≥ N implies∣∣∣∣∣
m∑

k=n+1

ak

∣∣∣∣∣ < ε.
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Since |bk| ≤ ak for all k ≥ 1, we have m > n ≥ N implies

m∑
k=n+1

|bk| ≤
m∑

k=n+1

ak < ε.

Thus by the Cauchy criterion,
∑∞

k=1 |bk| converges.

b) Suppose that ak ≤ bk for all k ≥ 1 and that
∑∞

k=1 ak = ∞. Let M > 0, and choose
N ∈ N such that n ≥ N implies

M <

n∑
k=1

ak.

Then ak ≤ bk for all k ≥ 1 implies

M <

n∑
k=1

ak ≤
n∑

k=1

bk

for all n ≥ N . Thus
∑∞

k=1 bk = ∞.

Theorem 2.13 (Root Test). Let
∑∞

k=1 ak be a series.

a)
∑∞

k=1 ak converges absolutely if limk→∞ |ak|1/k < 1.

b)
∑∞

k=1 ak does not converge if limk→∞ |ak|1/k > 1.

c) If limk→∞ |ak|1/k = 1, then the test gives no information about the convergence of∑∞
k=1 ak.

Proof. Let α = limk→∞ |ak|1/k.

a) Suppose that α < 1. Let ε > 0. Choose δ > 0 such that α+ δ < 1. Then ∃N1 ∈ N such
that

α− δ < sup
k≥N1

|ak|1/k < α+ δ.

Then for all k ≥ N1, |ak|1/k < α+ δ, so

|ak| < (α+ δ)k, ∀k ≥ N1.

Since 0 < α + δ < 1 and
∑∞

k=1(α + δ)k is a geometric series with a = 1 and r = α + δ,
it converges. Then ∃N2 ∈ N such that m > n ≥ N2 implies∣∣∣∣∣

m∑
k=n+1

(α+ δ)k

∣∣∣∣∣ < ε.

Then m > n ≥ max{N1, N2} =⇒
m∑

k=n+1

|ak| ≤
m∑

k=n+1

(α+ δ)k < ε.

Thus
∑∞

k=1 ak converges absolutely by the Cauchy criterion.
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b) If α > 1, then by Corollary 2.4, ∃ a subsequence (|ank
|1/nk)k of (|an|1/n)n such that

|ank
|1/nk → α as k → ∞. Let δ > 0 such that α − δ > 1, and choose K ∈ N such that

k ≥ K implies
α− δ < |ank

|1/nk < α+ δ.

Then for k ≥ K
1 < (α+ δ)1/nk < |ank

|.

Therefore, N ≥ nK ≥ K =⇒ supj≥N |aj | > 1 =⇒ limn→∞ |an| ≥ 1. Thus an ̸→ 0, so∑∞
k=1 ak does not converge by Corollary 2.5.

c) Recall that n1/n → 1. Then

lim
n→∞

(
1

n

)1/n

= lim
n→∞

(
1

n2

)1/n

= 1,

but
∑∞

n=1 1/n diverges and
∑∞

n=1 1/n
2 converges.

Theorem 2.14 (Ratio Test). Let
∑∞

k=1 ak be a series of non-zero terms.

a)
∑∞

k=1 ak converges absolutely if limk→∞ |ak+1/ak| < 1.

b)
∑∞

k=1 ak does not converge if limk→∞ |ak+1/ak| > 1.

c) If limk→∞ |ak+1/ak| ≤ 1 ≤ limk→∞ |ak+1/ak|, then the test gives no information.

Proof. Recall from Theorem 2.2

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ ≤ lim
k→∞

|ak|1/k ≤ lim
k→∞

|ak|1/k ≤ lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ .
a) If limk→∞ |ak+1/ak| < 1, then limk→∞ |ak|1/k < 1 and the series converges absolutely

by the root test.

b) If limk→∞ |ak+1/ak| > 1, then limk→∞ |ak|1/k > 1 and the series does not converge the
root test.

c) Again, consider the series
∑∞

n=1 1/n and
∑∞

n=1 1/n
2. The first series diverges and the

second series converges but

lim
n→∞

1/(n+ 1)

1/n
= lim

n→∞

1/(n+ 1)2

1/n2
= 1.

Note 2.13. The ratio test is frequently easier to apply than the root test, since it is
usually easier to compute ratios than nth roots. However, the root test has wider scope.
That is, whenever the ratio test shows convergence, then the root test does too, and when-
ever the root test is inconclusive, the ratio test is too. This can easily by seen using Theo-
rem 2.2.
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Theorem 2.15 (Integral Test). Suppose f : [1,∞) 7→ [0,∞) is decreasing and an = f(n)
for n ∈ N. Then

∑∞
k=1 ak < ∞ if and only if

∫∞
1

f(x) dx < ∞. If
∑∞

k=1 ak = s < ∞, then

|s−
∑n

k=1 ak| <
∫∞
n

f(x) dx.

Proof. Suppose f : [1,∞) 7→ [0,∞) is decreasing and an = f(n) for n ≥ 1. Then for k ≥ 1

k ≤ x ≤ k + 1 =⇒ ak+1 ≤ f(x) ≤ ak

so that

ak+1 = ak+1

∫ k+1

k

1 dx ≤
∫ k+1

k

f(x) dx ≤ ak

∫ k+1

k

1 dx = ak.

Thus
n+1∑
k=2

ak =

n∑
k=1

ak+1 ≤
n∑

k=1

∫ k+1

k

f(x) dx =

∫ n+1

1

f(x) dx ≤
n∑

k=1

ak.

Therefore for all n ≥ 1

n∑
k=1

ak ≤ a1 +

∫ n

1

f(x) dx and

∫ n+1

1

f(x) dx ≤
n∑

k=1

ak.

Since f(x) ≥ 0 for all x ≥ 1, we have for all n ≥ 1

n∑
k=1

ak ≤ a1 +

∫ ∞

1

f(x) dx and

∫ n+1

1

f(x) dx ≤
∞∑
k=1

ak,

so
∑∞

k=1 ak < ∞ ⇐⇒
∫∞
1

f(x) dx < ∞. Also,∣∣∣∣∣
∞∑
k=1

ak −
n∑

k=1

ak

∣∣∣∣∣ =
∞∑

k=n+1

ak =

∞∑
k=n

ak+1 ≤
∞∑

k=n

∫ k+1

k

f(x) dx =

∫ ∞

n

f(x) dx.

Example 2.29. Determine if the following series converge.

a)
∑∞

n=1

(
− 1

3

)n
.

b)
∑∞

n=1
n

n2+3

c)
∑∞

n=1
1

n2+1

d)
∑∞

n=1
n
3n

e)
∑∞

n=1

(
2

(−1)n−3

)n
.

The following test provides a criterion for convergence of an alternating series. Note that
unlike the other theorems, this test only guarantees convergence but not absolute conver-
gence.

Theorem 2.16 (Alternating Series Test). Let (an)n be a decreasing sequence such that
an → 0, then the series

∑∞
k=1(−1)kak converges.
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Proof. Define B0 = 0 and let Bn =
∑n

k=1(−1)n. Then

Bn =

{
−1, n odd

0, n even
.

In particular, |Bn| ≤ 1 for all n ≥ 1. Let ε > 0. Since an → 0, choose N ∈ N such that
n ≥ N =⇒ |an| < ε/2. Then for m > n ≥ N∣∣∣∣∣

m∑
k=n+1

(−1)kak

∣∣∣∣∣ =
∣∣∣∣∣

m∑
k=n+1

(Bk −Bk−1)ak

∣∣∣∣∣
=

∣∣∣∣∣
m∑

k=n+1

Bkak −
m∑

k=n+1

Bk−1ak

∣∣∣∣∣
=

∣∣∣∣∣
m∑

k=n+1

Bkak −
m−1∑
k=n

Bkak+1

∣∣∣∣∣
=

∣∣∣∣∣
m−1∑

k=n+1

Bk(ak − ak+1) +Bmam −Bnan+1

∣∣∣∣∣
≤

m−1∑
k=n+1

(ak − ak+1) + am + an+1

= [(an+1 − an+2) + (an+2 − an+3) + · · ·+ (am−1 − am)] + am + an+1

= an+1 − am + am + an+1

= 2an+1 < 2 · ε
2
= ε.

Thus,
∑∞

k=1(−1)kak converges by the Cauchy criterion.

2.9 Applications in Probability and Statistics

� Continuity of Probability Measure

� Borel-Cantelli

� Equivalent conditions for almost sure convergence

� Subsequences of random variables that converge in probability



Chapter 3

Continuity

3.1 Limits of Functions

Definition 3.1. Let f : S ⊂ R 7→ R and let a be an accumulation point of S. Then
limx→a f(x) = L ∈ R if ∀ε > 0, ∃δ > 0 such that for x ∈ S,

0 < |x− a| < δ =⇒ |f(x)− f(a)| < ε.

Note 3.1. Note that f may not even be defined at a, but limx→a f(x) can still exist. In-
deed, consider the function f : (−∞, 2) ∪ (2,∞) defined by

f(x) =
x2 − 4

x− 2
=

(x− 2)(x+ 2)

x− 2
.

Then f(x) = x+ 2 for all x ̸= 2 and is not defined at x = 2, but limx→2 f(x) = 2 + 2 = 4.

Proposition 3.1. Let f : S ⊆ R → R and let a be an accumulation point of S. Then
limx→a f(x) = L if and only if f(xn) → L whenever (xn)n ⊂ S \ {a} and xn → a.

Proof. ( =⇒ ) Suppose that limx→a f(x) = L, and let (xn)n be a sequence in S \ {a} such
that xn → a. Let ε > 0. Choose δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)− L| < ε.

Since xn → a, ∃N ∈ N such that n ≥ N implies |xn − a| < δ. Then n ≥ N =⇒ 0 <
|xn − a| < δ =⇒ |f(xn)− L| < ε.

( ⇐= ) (Proof by contrapositive) Suppose limx→a f(x) ̸= L. Then ∃ε > 0 such that
∀δ > 0, ∃x ∈ S \ {a} such that 0 < |x − a| < δ and |f(x) − L| ≥ ε. Let δ = 1. Choose
x1 ∈ S \ {a} such that 0 < |x1 − a| < 1 and |f(x1) − L| ≥ ε. Suppose for some k ≥ 1, we
have for 1 ≤ j ≤ k, xj ∈ S \ {a} such that

0 < |xj − a| < 1/j and |f(xj)− L| ≥ ε.

Let δ = 1/(k + 1). Since limx→a f(x) ̸= L, we can choose an xk+1 ∈ S \ {a} such that

0 < |xk+1 − a| < 1

k + 1
and |f(xk+1)− L| ≥ ε.

46
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Then by induction ∃(xn)n ⊂ S \ {a} such that for all n ≥ 1

0 < |xn − a| < 1

n
and |f(xn)− L| ≥ ε,

so xn → a but f(xn) ̸→ L.

Proposition 3.2 (Algebra of Limits). Let f, g : S ⊂ R 7→ R, let a be an accumulation
point of S, and suppose that

lim
x→a

f(x) = L and lim
x→a

g(x) = M.

Then

a) limx→a(f + g)(x) = L+M

b) limx→a(fg)(x) = LM

c) limx→a(f/g)(x) = L/M if M ̸= 0.

Proof. These properties follow immediately from the analogous properties of sequences.
We prove a) as an example. Let (xn)n ⊂ S \ {a} be such that xn → a. Then

f(xn) → L and g(xn) → M =⇒ f(xn) + g(xn) → L+M.

Thus by Proposition 3.1, limx→a[f(x) + g(x)] = L+M .

Example 3.1. Find lim
t→1

√
t− 1

t− 1
.

Solution. Let f(t) =

√
t− 1

t− 1
. Then f : (0,∞) \ {1} 7→ R. Note that f(1) is undefined, but

1 is an accumulation point of (0,∞) \ {1} and for t ̸= 1

√
t− 1

t− 1
=

√
t− 1

t− 1
·
√
t+ 1√
t+ 1

=
t− 1

(t− 1)
√
t+ 1

=
1√
t+ 1

→ 1

2
as t → 1.

Definition 3.2. Let f : S → R. If a is an accumulation point of S ∩ (−∞, a), then
the onesided limit as x approaches a from below (or from the left) is L, written f(a−) =
lim

x→a−
f(x) = L, if ∀ε > 0, ∃δ > 0 such that for x ∈ S

a− δ < x < a =⇒ |f(x)− L| < ε.

Similarly, if a is an accumulation point of S ∩ (a,∞), then the onesided limit as x ap-
proaches a from above (or from the right) is L, written f(a+) = lim

x→a+
f(x) = L, if ∀ε > 0,

∃δ > 0 such that for x ∈ S

a < x < a+ δ =⇒ |f(x)− L| < ε.
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Example 3.2. Consider the signum function

f(x) = sgn(x) =


1, x > 0

0, x = 0

−1, x < 0

.

Then
lim

x→0−
sgn(x) = −1 lim

x→0+
sgn(x) = 1 lim

x→0
sgn(x) = DNE.

Proposition 3.3 (Sequential Characterization of one sided limits).

1. Let a be an accumulation point of S ∩ (−∞, a). Then, lim
x→a−

f(x) = L if and only if

f(xn) → L whenever (xn)n ⊂ S such that xn < a and xn → a.

2. Let a be an accumulation point of S ∩ (a,∞). Then, lim
x→a+

f(x) = L if and only if

f(xn) → L whenever (xn)n ⊂ S such that xn > a and xn → a.

Proof. The proof is nearly identical to the proof of Proposition 3.1.

Note 3.2. The algebra of one sided limits is the same as in the limit case.

Proposition 3.4. Let f : S 7→ R and let a be an accumulation point of both S ∩ (−∞, a)
and S ∩ (a,∞). Then, limx→a f(x) exists if and only if f(a−) and f(a+) exist and are
equal. In this case, limx→a f(x) = limx→a− f(x) = limx→a+ f(x).

Proof. Exercise.

Example 3.3. Consider the step function f(x) = ⌊x⌋. That is for any n ∈ Z and n ≥ x <
n+ 1, f(x) = n. Then for n ∈ Z

lim
x→n−

f(x) = n− 1 and lim
x→n+

f(x) = n =⇒ lim
x→n

f(x) = DNE.

3.2 Continuous Functions

Definition 3.3. A function f : S ⊆ R 7→ R is said to be continuous at x0 ∈ S if ∀ε > 0,
∃δ > 0 such that for x ∈ S

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

If f is continuous at every x ∈ S, then we say f is continuous.

Note 3.3. Note that for all x0 ∈ S, x is either an accumulation point of S or an isolated
point of S. If x0 is an accumulation point of S, then f is continuous at x0 if and only if
limx→x0

f(x) = f(x0). That is, the limit of f as x → x0 exists and is equal to the value of
the function at f(x0). If x0 is an isolated point, then f is always continuous at x0, since
∃δ > 0 such that B(x0, δ) ∩ S = {x0}. Thus, x ∈ S and |x − x0| < δ =⇒ x = x0, so
|f(x)− f(x0)| = 0, so this δ works for any ε > 0.

Theorem 3.1. Let f : S ⊆ R 7→ R be a function. Then f is continuous at x0 ∈ S if and
only if f(xn) → f(x0) whenever (xn)n ⊂ S and xn → x0.
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Proof. The proof is nearly identical to Proposition 3.1.

Corollary 3.1. Let f : S 7→ R. If (xn)n ⊂ S such that xn → x0 ∈ S, but (f(xn))n is
divergent (no real limit), then f is discontinuous at x0.

Example 3.4. Let a ∈ R. Show that

f(x) =

{
sin(1/x), x ̸= 0

a, x = 0

is not continuous at x = 0.

Solution. Let xn = 1/(nπ/2) for n ≥ 1. Then xn → 0, but

f(xn) = {1, 0,−1, 0, 1, 0,−1, . . .}

which is divergent. Thus f is not continuous at x = 0.

Example 3.5. Prove that f : R 7→ R where f(x) = x2 is continuous.

Solution. We will demonstrate this two ways. 1) Using the ε − δ definition of continuity
and 2) By using the sequential characterization of continuity.

1) Let x0 ∈ R and let ε > 0. Note that

|f(x)− f(x0)| = |x2 − x2
0| = |(x− x0)(x+ x0)|

≤ |x− x0|(|x|+ |x0|)
= |x− x0|(|x− x0 + x0|+ |x0|)
≤ |x− x0|(|x− x0|+ 2|x0|).

Let δ = min{1, ε/(1 + 2|x0|)}. Then |x− x0| < δ implies

|f(x)− f(x0)| ≤ |x− x0|(|x− x0|+ 2|x0|) < δ(1 + 2|x0|) ≤
ε

1 + 2|x0|
(1 + 2|x0|) = ε.

2) Let x0 ∈ R and let (xn)n ⊂ R be such that xn → x0. Then by the algebra of limits

f(xn) = x2
n → x2

0 = f(x0).

Since x0 and (xn)n were arbitrary, f is continuous at all x0, and hence continuous.

Note 3.4. Note that in the ε−δ definition, δ depends on both x0 and ε. It is very helpful
in some cases to be able to choose a delta that does not depend on x0. This can be done
for uniformly continuous functions that we will cover later, but not in general.

Proposition 3.5 (Algebra of Continuity). Suppose f, g : S → R are each continuous at
x0 ∈ S. Then

a) f ± g is continuous at x0.
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b) fg is continuous at x0.

c) f/g is continuous at x0 provided g(x0) ̸= 0.

Proof. This follows immediatly from the sequential characterization of continuity and
properties of limits.

Recall the composition of two functions is written g ◦ f where

(g ◦ f)(x) = g(f(x)).

Theorem 3.2 (Composition of Continuous Funtions are Continuous). Let f : S → S′ ⊂ R
and g : S′ 7→ R. If f is continuous at x0 ∈ S and g is continuous at f(x0) ∈ S′, then g ◦ f
is continuous at x0.

Proof. Again, we provide two proofs: 1) Using the ε − δ definition of continuity at x0 and
2) using the sequential characterization of continuity at x0.

1) Let ε > 0. (We need to find a δ such that for x ∈ S |x − x0| < δ =⇒ |g(f(x)) −
g(f(x0))| < ε.) Since g is continuous at f(x0), we can choose a δ1 > 0 such that for
y ∈ S′

|y − f(x0)| < δ1 =⇒ |g(y)− g(f(x0))| < ε.

f continuous at x0 implies ∃δ > 0 such that for x ∈ S,

|x− x0| < δ =⇒ |f(x)− f(x0)| < δ1.

Thus for x ∈ S

|x− x0| < δ =⇒ | f(x)︸︷︷︸
∈S′

−f(x0)| < δ1 =⇒ |g(f(x))− g(f(x0))| < ε.

2) Let (xn)n ⊂ S be a sequence such that xn → x0. Since f is continuous at x0, f(xn) →
f(x0). Since (f(xn))n ⊂ S′, f(xn) → f(x0) and g is continuous at f(x0), we have
g(f(xn)) → g(f(x0)). Thus (xn)n ⊂ S and xn → x0 implies

(g ◦ f)(xn) → (g ◦ f)(x0).

Recall that the pre-image of a mapping f : S 7→ R is defined by

f−1(V ) = {x ∈ S|f(x) ∈ V }.

Theorem 3.3. Let f : S 7→ R. The following are equivalent:

a) f is continuous.

b) f−1(C) ⊆ S is closed whenever C ⊆ R is closed.

c) f−1(V ) ⊆ S is open whenever V ⊆ R is open.



3.3. PROPERTIES OF CONTINUOUS FUNCTIONS 51

Proof. (a) =⇒ b)). Let C ⊆ R be closed, and let (xn)n ⊂ f−1(C) be a sequence such
that xn → x ∈ S. Then (f(xn))n ⊂ C, and since f is continuous and xn → x, f(xn) →
f(x). Because C is closed, f(x) ∈ C, so that x ∈ f−1(C). Thus f−1(C) is closed.

(b) =⇒ c)) Let V ⊂ R be open. Then V c is closed, and by b) f−1(V c) is closed in S.
Note that

f−1(V c) = {x ∈ S|f(x) ̸∈ V } = {x ∈ S|f(x) ∈ V }c = [f−1(V )]c.

Since [f−1(V )]c is closed, f−1(V ) is open.

(c) =⇒ a)) Let ε > 0 and let x0 ∈ S. Since B(f(x0), ε) is open in R, f−1(B(f(x0), ε)) is
open in S. Note that x0 ∈ f−1(B(f(x0), ε))), so ∃δ > 0 such that B(x0, δ) ⊂ f−1(B(f(x0), ε))).
Thus, for x ∈ S

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε,

so f is continuous at x0. Since x0 was arbitrary, f is continuous on S.

3.3 Properties of Continuous Functions

We will need to recall a couple of facts from topology in metric spaces and R:

a) (Heine-Borel) A set K ⊂ R is compact if and only if K is closed and bounded.

b) A set K is compact if and only if every sequence (xn)n in K has a convergent subse-
quence that converges to a point in K.

c) A set C is closed if and only if C contains all its accumulation points.

Proposition 3.6. Suppose f : S 7→ R is continuous. If K ⊆ S is compact, then f(K) is a
compact subset of R.

Proof. Suppose K ⊆ S is compact. Let (yn)n be a sequence in f(K) = {f(x) : x ∈ K}.
Then for each n ≥ 1, yn = f(xn) for some xn ∈ K. Since K is compact, ∃ a subsequence
(xnk

)k of (xn)n such that xnk
→ x0 for some x0 ∈ K. Since f is continuous and (xnk

)k ⊆
K ⊆ S,

xnk
→ x0 =⇒ ynk

= f(xnk
) → f(x0) = y0 ∈ f(K).

Thus (yn)n has a convergent subsequence (ynk
)k that converges to a point in K, so f(K)

is compact.

Corollary 3.2. If K is compact and f : K 7→ R is continuous, then f has an absolute
maximum and minimum on K.

Proof. Since K is compact and f is continuous, f(K) is compact, so f(K) is closed and
bounded. Let α = infx∈K f(x) and β = supx∈K f(x). Since f(K) is bounded, α and β
exists and are finite. Since α and β are limit points of f(K) and f(K) is closed, α, β ∈
f(K). Thus, ∃a, b ∈ K such that f(a) = α and f(b) = β.

Theorem 3.4 (Intermediate Value Theorem). Suppose f : [a, b] 7→ R is continuous. If y
is between f(a) and f(b), then ∃x0 ∈ (a, b) such that f(x0) = y.
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Proof. Suppose f : [a, b] 7→ R is continuous and let y be between f(a) and f(b). WLOG,
suppose f(a) < y < f(b). Let S = {t ∈ [a, b]|f(t) ≤ y}. Then a ∈ S, so S ̸= ∅ and
is bounded. Thus supS exists and is finite. Let x0 = supS. By definition of supremum,
∀n ∈ N, ∃xn ∈ S such that x0 − 1/n < xn ≤ x0. Thus, ∃ a sequence (xn)n ⊂ S such that
|xn − x0| < 1/n, so xn → x0. Since xn ∈ S, ∀n ≥ 1, f(xn) ≤ y for all n ≥ 1. By continuity
of f at x0,

xn → x0 =⇒ f(xn) → f(x0).

Since f(xn) ≤ y for all n ≥ 1, f(x0) ≤ y. If we can show that f(x0) ≥ y, then we would
have y ≤ f(x0) ≤ y =⇒ f(x0) = y. Suppose, by contradiction, that f(x0) < y. Let
ε = y − f(x0) > 0. Since f is continuous at x0, ∃δ > 0 such that for x ∈ [a, b]

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε.

Thus for x ∈ [a, b]

x0 − δ < x < x0 + δ =⇒ 2f(x0)− y < f(x) < y,

which implies (x0 − δ, x0 + δ) ⊂ S. But x0 = supS, so (x0, x0 + δ) ̸⊂ S. Thus f(x0) ≥ y,
and we are done.

3.4 Monotonic Functions

Definition 3.4. f : S 7→ R is said to be left continuous at x0 ∈ S if f(x0−) = f(x0).
Similarly, f is said to be right continuous at x0 if f(x0+) = f(x0).

Note 3.5. If f(x−) and f(x+) both exist, then the jump of f at x is

j(x) = |f(x+)− f(x−)|.

The jump of f at x is 0 if and only if f(x+) = f(x−) if and only if limt→x f(t) exists, and
j(x) > 0 if and only if limt→x f(t) DNE.

Definition 3.5. A function f : S 7→ R is said to be increasing if x ≤ y implies f(x) ≤
f(y). f is said to be decreasing if x ≤ y implies f(y) ≤ f(x). In either case, f is said
to be monotonic. f is said to be strictly monontonic if it is either strictly increasing
(x < y =⇒ f(x) < f(y)) or strictly decreasing (x < y =⇒ f(y) < f(x)).

Proposition 3.7.

1) Let f : [a, b] 7→ R be an increasing function. Then

a) f(x−) = supt<x f(t), ∀a < x ≤ b.

b) f(x+) = inft>x f(t), ∀a ≤ x < b.

That is for all a < x < b, f(x−) and f(x+) exist and

sup
t<x

f(t) = f(x−) ≤ f(x) ≤ f(x+) = inf
t>x

f(t).

2) Let f : [a, b] 7→ R be a decreasing function. Then
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a) f(x−) = inft<x f(t), ∀a < x ≤ b.

b) f(x+) = supt>x f(t), ∀a ≤ x < b.

That is for all a < x < b, f(x−) and f(x+) exist and

sup
t>x

f(t) = f(x+) ≤ f(x) ≤ f(x−) = inf
t<x

f(t).

3) If f is monotonic, then f is continuous at x if and only if j(x) = 0.

Note 3.6. For f : [a, b] 7→ R, we define

j(a) = |f(a+)− f(a)| and j(b) = |f(b)− f(b−)|.

Note 3.7. If f is monotonic, then the only possible discontinuity is a jump discontinuity.

Proof. 1) Suppose f : [a, b] 7→ R is increasing and let a < x ≤ b. Then for all a ≤ t < x,
f(t) ≤ f(x), so supt<x f(t) ≤ f(x). Let ε > 0. Then by definition of supremum,
∃a ≤ t0 < x such that

sup
s<x

f(s)− ε < f(t0) ≤ sup
s<x

f(s).

Let δ = x− t0. Then for t0 = x− δ < t < x

sup
s<x

f(s)− ε < f(t0) ≤ f(t) ≤ sup
s<x

f(x).

Thus x− δ < t < x implies |f(t)− sups<x f(s)| < ε. That is

lim
t→x−

f(t) = sup
s<x

f(s).

Similarly, for x < t ≤ b, f(x) ≤ f(t) =⇒ f(x) ≤ inft>x f(t). Let ε > 0. By definition
of infimum, ∃x < t0 ≤ b such that

inf
s>x

f(s) ≤ f(t0) < inf
s>x

f(s) + ε.

Take δ = t0 − x. Then x < t < x+ δ = t0 implies

inf
s>x

f(s) ≤ f(t) ≤ f(t0) < inf
s>x

f(s) + ε.

Thus limt→x+ f(t) = inft>x f(t).

2) Similar to 1).

3) Exercise.

Corollary 3.3. If f : [a, b] 7→ R is monotonic, then f has at most countably many discon-
tinuities.
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Proof. Suppose that f is increasing, then f(a) ≤ f(x) ≤ f(b) for a ≤ x ≤ b. By Proposi-
tion 3.7 (3),

D = {x ∈ [a, b]|f is discontinuous at x} = {x ∈ [a, b]|j(x) > 0}.

Note that j(x) > 0 if and only if j(x) > 1/n for some n ≥ 1. Thus

D = ∪∞
n=1{x ∈ [a, b]|j(x) > 1/n}.

Let Dn = {x ∈ [a, b]|j(x) > 1/n}. Then

|Dn| ·
1

n
<
∑
x∈Dn

j(x) ≤ f(b)− f(a),

where |Dn| = cardinality of Dn. Then

|Dn| ≤ n(f(b)− f(a)),

so Dn is finite. Thus D is countable, since it is a countable union of countable sets.

3.5 Uniform Continuity

Definition 3.6. A function f : S 7→ R is said to be uniformly continuous on S if
∀ε > 0, ∃δ > 0 such that for x, y ∈ S

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

Note 3.8. Note that δ depends on ε but not on x or y, whereas in the definition of conti-
nuity, δ depended on both ε and x0.

Theorem 3.5. f : S 7→ R is uniformly continuous if and only if ∀(xn)n, (yn)n ⊂ S such
that |xn − yn| → 0, then |f(xn)− f(yn)| → 0.

Proof. ( =⇒ ) Suppose that f is uniformly continuous. Let (xn)n, (yn)n ⊂ S be sequences
such that |xn − yn| → 0. Let ε > 0. Choose δ > 0 such that for x, y ∈ S

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

Choose N ∈ N such that n ≥ N implies |xn − yn| < δ. Then for n ≥ N

|f(xn)− f(yn)| < ε.

( ⇐= ) (Contrapositive) Suppose f is not uniformly continuous. Then

∃ε > 0 ∀δ > 0 ∃x, y ∈ S such that |x− y| < δ but |f(x)− f(y)| ≥ ε.

Take ε > 0 such that the previous statement holds. Then for each δn = 1/n, we can
choose an xn, yn ∈ S such that |xn − yn| < 1/n but |f(xn) − f(yn)| ≥ ε. Thus, we can
construct sequences (xn)n, (yn)n ⊂ S such that |xn − yn| → 0 but |f(xn) − f(yn)| ≥ ε for
all n ≥ 1, i.e. |f(xn)− f(yn)| ̸→ 0.

Example 3.6. Show that f(x) = x2 is not uniformly continuous.
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Solution. Let xn = n+ 1/n and yn = n. Then

|xn − yn| = |(n+
1

n
)− n| = 1

n
→ 0,

but

|f(xn)− f(yn)| = |n2 + 2 +
1

n2
− n2| = 2 +

1

n2
→ 2 ̸= 0.

Thus f(x) = x2 is not uniformly continuous.

Theorem 3.6. If f : S 7→ R is uniformly continuous, then (f(xn))n is Cauchy whenever
(xn)n ⊂ S is Cauchy.

Proof. Suppose f : S 7→ R is uniformly continuous, and let (xn)n ⊂ S be a Cauchy
sequence. Let ε > 0 and choose δ > 0 such that for x, y ∈ S

|x− y| < δ =⇒ |f(x)− f(y)| < ε.

Since (xn)n is Cauchy, ∃N ∈ N such that m > n ≥ N implies

|xm − xn| < δ.

Thus, for m > n ≥ N implies
|f(xm)− f(xn)| < ε,

so (f(xn))n is Cauchy.

Example 3.7. Show that f : (0, 1] 7→ [1,∞) defined by f(x) = 1/x is not uniformly
continuous.

Solution. Recall that a sequence in R is Cauchy if and only if it converges to a point in R.

Let xn = 1/n for all n ≥ 1. Then xn → 0, so (xn)n is Cauchy, but

f(xn) = n → ∞.

Therefore, (f(xn))n is not Cauchy, since it does not converge.

The following propositions provide some conditions on f that imply uniform continuity.

Definition 3.7. A function f : S 7→ R is said to be Lipschitz if ∃M > 0 such that for all
x, y ∈ S

|f(x)− f(y)| ≤ M |x− y|

Proposition 3.8. If f : S 7→ R is Lipschitz, then f is uniformly continuous.

Proof. Let ε > 0. Choose M > 0 such that for all x, y ∈ S

|f(x)− f(y)| ≤ M |x− y|.

Take δ = ε/M . Then for x, y ∈ S, |x− y| < δ implies

|f(x)− f(y)| ≤ M |x− y| < M · δ = M · ε

M
= ε.

Thus, f is uniformly continuous.



3.6. APPLICATIONS IN PROBABILITY AND STATISTICS 56

Proposition 3.9. If f : [a, b] 7→ R is continuous and differentiable on (a, b) with f ′

bounded on (a, b), then f is Lipschitz and thus uniformly continuous.

Proof. Let M > 0 be such that |f ′(t)| ≤ M for all t ∈ (a, b). Let x, y ∈ S. Then by the
Mean Value Theorem, ∃t = t(x, y) between x and y such that

f ′(t) =
f(y)− f(x)

y − x
=⇒ |f(y)− f(x)| = |f ′(t)||x− y| ≤ M |x− y|.

Thus f is Lipschitz, and so it is uniformly continous by the previous Proposition.

Proposition 3.10. If S is compact and f : S 7→ R is continuous, then f is uniformly
continuous on S.

Proof. Let f : S 7→ R be continuous and let S be compact. Suppose that f is not uni-
formly continuous. Then ∃ε > 0 and sequences (xn)n, (yn)n ⊂ S such that |xn − yn| → 0
but |f(xn)− f(yn)| ≥ ε for all n ≥ 1. Since S is compact, ∃ a subsequence (xnk

)k of (xn)n
such that xn → x ∈ S. Note that

|ynk
− x| ≤ |ynk

− xnk
|+ |xnk

− x| → 0,

so ynk
→ x also. Since f is continuous, |f(xnk

) − f(x)| → 0 and |f(ynk
) − f(x)| → 0 as

k → ∞. Therefore,

|f(xnk
)− f(ynk

)| ≤ |f(xnk
)− f(x)|+ |f(x)− f(ynk

)| → 0,

but for all k ≥ 1
|f(xnk

)− f(ynk
)| ≥ ε,

a contradiction. Hence, f is uniformly continuous.

3.6 Applications in Probability and Statistics

� Continuous mapping theorems and common mistakes with convergence in probabil-
ity.



Chapter 4

Sequences and Series of Functions

4.1 Power Series

Definition 4.1. Give a sequence (an)n ⊂ R, then

f(x) =

∞∑
n=0

an(x− x0)
n

is called a power series centered at x0. The domain is given by {x ∈ R|f(x) converges}.

Theorem 4.1. Given the power series
∑∞

n=0 an(x− x0)
n, let

α = lim
n→∞

|an|1/n

and set R = 1/α, where R = ∞ if α = 0 and R = 0 if α = ∞. Then
∑∞

n=0 an(x − x0)
n

converges for |x− x0| < R and diverges if |x− x0| > R.

Proof. Fix x ∈ R. Then by the Root Test
∑∞

n=0 an(x− x0)
n converges absolutely if

lim
n→∞

|an(x− x0)
n|1/n = |x− x0| lim

n→∞
|an|1/n = |x− x0|α < 1,

which happens

a) if α = 0, so the series converges for all x ∈ R.

b) if 0 < α < ∞ whenever |x − x0| < 1/α = R, so that the series converges for x ∈
(x0 −R, x0 +R).

c) if α = ∞ only for |x− x0| = 0.

Similarly, by the root test, the series diverges if |x− x0|α > 1 ⇐⇒ |x− x0| > R.

Definition 4.2. For the power series
∑∞

n=0 an(x − x0)
n, R = 1/ limn→∞ |an|1/n is called

the radius of convergence.

Example 4.1. Find the radius of convergence of the following power series.

a) f(x) =
∑∞

n=0 x
n

57
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Solution. Since
lim

n→∞
|1|1/n = 1,

the radius of convergence os R = 1, so the series converges for |x| < 1 and diverges
for |x| > 1. For the case |x| < 1, note that this is the geometric series, and we proved
earlier that f(x) = 1

1−x for |x| < 1. The series diverges for both x = 1 and x = −1, so
the series only converges for |x| < 1.

b) f(x) =
∑∞

n=2
1

n(n−1)x
n

Solution. Since

lim
n→∞

∣∣∣∣ 1

n1/n(n− 1)1/n

∣∣∣∣ = 1,

the radius of converges is R = 1, so the series converges for |x| < 1 and diverges for
|x| > 1. If |x| = 1, then the series converges since

∞∑
n=2

1

n(n− 1)

converges by the integral test. Thus, the series converges for |x| ≤ 1.

c) f(x) =
∑∞

n=1
xn

n

Solution. Since

lim
n→∞

∣∣∣∣ 1

n1/n

∣∣∣∣ = 1,

the series converges for |x| < 1 and diverges for |x| > 1. By the integral test, the series
diverges for x = 1, but it converges for x = −1 by the alternating series test. Thus, the
series converges for x ∈ [−1, 1).

d) f(x) =
∑∞

n=0
xn

n!

Solution. Since

lim
n→∞

∣∣∣∣ 1n!
∣∣∣∣1/n ≤ lim

n→∞

∣∣∣∣1/(n+ 1)!

1/n!

∣∣∣∣ = lim
n→∞

1

n+ 1
= 0,

the radius of converges is R = ∞, so the series converges for all x ∈ R.

e) f(x) =
∑∞

n=0 n!x
n

Solution. Since
lim
n→∞

|n!|1/n = ∞,

the radius of convergence is R = 0, and the series converges only for x = 0.
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4.2 Uniform Convergence

Definition 4.3. Let fn : S ⊆ R 7→ R. We say that the sequence of functions (fn)n
converges pointwise to a function f : S 7→ R if

fn(x) → f(x)

for each x ∈ S.

Example 4.2. Consider the power series f(x) =
∑∞

n=0 an(x − x0)
n. If R is its radius of

convergence, then we showed that the sequence of partial sum functions

sn(x) =

n∑
k=0

ak(x− x0)
k

converges pointwise to f(x) for each x ∈ R such that |x− x0| < R.

The questions that we might now ask is do the properties of our sequence of functions
carry over to the limit function. For examples,

a) If {fn, n ≥ 1} are continuous and fn → f , is f also continuous?

b) If {fn, n ≥ 1} are differentiable and fn → f , is f also differentiable?

c) If {fn, n ≥ 1} are integrable and fn → f , is f also integrable?

Pointwise convergence turns out to be insufficient for these properties to carry over to the
limit function in general.

Example 4.3. Consider the sequence of functions fn : R 7→ R defined by

fn(x) =

n∑
k=0

x2

(1 + x2)k

and its limit function

f(x) =

∞∑
n=0

x2

(1 + x2)k
.

Note that fn(0) = 0 → 0 = f(0). For each x ̸= 0, the series is a geometric series, which
converges to

∞∑
n=0

x2

(1 + x2)n
= x2 · 1

1− 1
1+x2

= 1 + x2.

Thus fn → f pointwise where

f(x) =

{
0, x = 0

1 + x2, x ̸= 0.
.

Note that fn(x) is continuous but f is not continuous at 0. Thus, we have a sequence of
continuous function that converge pointwise, but the limit function is not continuous.
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The problem here becomes one of interchanging limts. For example, consider a sequence
of continuous functions fn that converge pointwise to f . For f to be continuous at x ∈ R,
we would need

f(x) = lim
t→x

f(t) = lim
t→x

lim
n→∞

fn(t).

Since fn are continuous at x and converge pointwise to f , it is also true that

f(x) = lim
n→∞

fn(x) = lim
n→∞

lim
t→x

fn(t).

Thus, it becomes a question of when can we interchange the two limit operations and say
that

f(x) = lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t)?

The following example shows that we cannot always interchange limits freely.

Example 4.4. Consider the double array {xm,n,m ≥ 1, n ≥ 1} defined by

xm,n =
m

m+ n
.

Then for each n ≥ 1,
lim

m→∞
xm,n = 1,

so that
lim
n→∞

lim
m→∞

xm,n = 1.

However, for each fixed m ≥ 1,
lim
n→∞

xm,n = 0,

so that
lim

m→∞
lim
n→∞

xm,n = 0.

Thus
lim

m→∞
lim
n→∞

xm,n ̸= lim
n→∞

lim
m→∞

xm,n.

We illustrate with one more example that pointwise convergence of functions is not strong
enough to guarantee convergence of integrals.

Example 4.5 (Witch’s Hat). Consider the functions fn : [0, 2] 7→ R defined by

fn(x) =


n2x, 0 ≤ x ≤ 1/n

−n2(x− 1/n) + n, 1/n ≤ x ≤ 2/n

0, 2/n ≤ x ≤ 2

.

Then fn(x) → 0 (pointwise) for each each x ∈ [0, 2], but for all n ≥ 1∫ 2

0

fn(x) dx = 1.

Thus

1 =

∫ 2

0

fn(x) dx ̸→
∫ 2

0

f(x) dx = 0,

so that pointwise convergence of integrable functions does not imply the convergence of
their integrals.
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We will now introduce a stronger mode of convergence, that will allow us to establish con-
ditions where these properties can carry over from the sequence of functions to the limit.

Definition 4.4. Let fn : S 7→ R and f : S 7→ R be functions. We say that fn converges
uniformly to f if ∀ε > 0, ∃N ∈ N such that n ≥ N implies

|fn(x)− f(x)| < ε

for all x ∈ S.

Note 4.1. In the definition of uniform convergence, N depends on ε but not x, whereas
in pointwise convergence N would depend on both ε and x. It should also be clear that if
a series of functions converges uniformly then it also converges pointwise.

Proposition 4.1 (Cauchy Criterion for Uniform Convergence). The sequence of functions
fn : S 7→ R converges uniformly to f : S 7→ R if and only if ∀ε > 0, ∃N ∈ N such that
m > n ≥ N implies

|fm(x)− fn(x)| < ε

for all x ∈ S.

Proof. ( =⇒ ) Suppse fn → f uniformly in S. Let ε > 0, and choose N ∈ N such that for
all x ∈ S,

n ≥ N =⇒ |fn(x)− f(x)| < ε

2
.

Then for all x ∈ S, m > n ≥ N implies

|fm(x)− fn(x)| ≤ |fm(x)− f(x)|+ |f(x)− fn(x)| <
ε

2
+

ε

2
= ε.

( ⇐= ) Suppse (fn)n is uniformly Cauchy. Then for each x ∈ R, (fn(x))n is a Cauchy
sequence in R, so it converges to some point ax ∈ R. Define f : S 7→ R by f(x) =
limn→∞ fn(x) = ax (pointwise). Let ε > 0. Choose N ∈ N such that for all x ∈ S,
m > n ≥ N implies

|fm(x)− fn(x)| < ε.

Then for n ≥ N , we have for all x ∈ S

|f(x)− fn(x)| = lim
m→∞

|fm(x)− fn(x)| ≤ ε,

so fn → f uniformly.

Proposition 4.2. Suppose that fn, f : S 7→ R are functions such that fn → f pointwise.
Let

Mn = sup
x∈S

|fn(x)− f(x)|.

Then fn → f uniformly on S if and only if Mn → 0.

Proof. ( =⇒ ) Suppose fn → f uniformly on S. Let ε > 0. Choose N ∈ N such that for all
x ∈ S and for all n ≥ N

|fn(x)− f(x)| < ε,
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then for n ≥ N
Mn = sup

x∈S
|fn(x)− f(x)| ≤ ε.

( ⇐= ) Suppose Mn → 0. Let ε > 0. Choose N ∈ N such that n ≥ N implies

Mn = sup
x∈S

|fn(x)− f(x)| < ε.

Then for all x ∈ S and for all n ≥ N

|fn(x)− f(x)| ≤ Mn < ε.

Note that all the results for sequences of functions carry over to series of functions

f(x) =

∞∑
n=1

fn(x)

since the series is defined by the limit of the seqeuence of partial sum functions

sn(x) =

n∑
k=1

fk(x).

The following theorem provides conditions for which a series of functions converges uni-
formly on a set S.

Theorem 4.2 (Weierstrass M-test). Let (Mn)n be a a sequence of positive real numbers
such that

∑∞
n=1 Mn < ∞. If fn : S 7→ R is a sequence of functions such that for each

n ≥ 1, |fn(x)| ≤ Mn for all x ∈ S, then the series
∑∞

n=1 fn(x) converges uniformly on S.

Proof. We will prove uniform convergence by showing that the Cauchy criterion for uni-
form convergence holds. Let ε > 0 and let sn(x) =

∑n
k=1 fk(x). Since

∑∞
n=1 Mk < ∞, we

can choose an N ∈ N such that m > n ≥ N implies

m∑
k=n+1

Mk < ε.

Then for m > n ≥ N and for all x ∈ S∣∣∣∣∣
m∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
m∑

k=n+1

|fk(x)| ≤
m∑

k=n+1

Mk < ε.

Example 4.6. Show that
∑∞

n=1
xn

n3+nxn converges uniformly on [0, 1].



4.3. UNIFORM CONVERGENCE AND CONTINUITY 63

Solution. Let

fn(x) =
xn

n3 + nxn
, 0 ≤ x ≤ 1.

Then

f ′
n(x) =

nxn−1

n3 + nxn
− xn · n2xn−1

(n3 + nxn)2
=

n4xn−1

(n3 + nxn)2
≥ 0, 0 ≤ x ≤ 1,

so each fn is an increasing function and

|fn(x)| ≤
1

n3 + n
:= Mn, for all 0 ≤ x ≤ 1.

Since
∞∑

n=1

Mn ≤
∞∑

n=1

1

n3
,

and
∑∞

n=1 1/n
3 converges by the integral test,

∑∞
n=1 Mn converges by the comparison

test. Therefore,
∞∑

n=1

fn(x) =

∞∑
n=1

xn

n3 + nxn

converges uniformly on [0, 1] by the M-test.

4.3 Uniform Convergence and Continuity

We will come back to conditions under which a limit function is differentiable or inte-
grable if the sequence of functions is differentiable or integrable, respectively. For now,
we provide some conditions under which the limit of a sequence of continuous functions is
continuous. First, we state a more general result about a uniformly converging sequence
of functions and interchanging limits.

Theorem 4.3. Let fn, f : S 7→ R be functions and suppose that fn → f uniformly on
S. Let x be an accumulation point of S, and suppose that limt→x fn(t) = An. Then (An)n
converges and

lim
t→x

f(t) = lim
n→∞

An.

Note 4.2. The previous theorem states that for a sequence of uniformly convergent func-
tions we have for an accumulation point x such that limt→x fn(x) exists for each n ≥ 1

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t).

Proof. Let ε > 0. Since fn → f uniformly on S, there exists an N ∈ N such that m > n ≥
N implies for all t ∈ S

|fm(t)− fn(t)| < ε.

Thus for m > n ≥ N ,

|Am −An| =
∣∣∣lim
t→x

fm(t)− lim
t→x

fn(t)
∣∣∣ = lim

t→x
|fm(t)− fn(t)| ≤ ε.

Hence, (An)n is a Cauchy sequence in R, so it is convergent. Let A = limn→∞ An. Next,
note that for any n ≥ 1

|f(t)−A| ≤ |f(t)− fn(t)|+ |fn(t)−An|+ |An −A|.
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Let N1 ∈ N be such that n ≥ N1 implies

|fn(t)− f(t)| < ε

3
, for all t ∈ S,

and let N2 ∈ N be such that n ≥ N2 implies

|An −A| < ε

3
.

Now, let N = max{N1, N2} and fix n0 ≥ N . Since limt→x fn0(t) = An0 , there exists a
δ > 0 such that 0 < |t− x| < δ implies

|fn0(t)−An0 | <
ε

3
.

Hence for 0 < |t− x| < δ, we have

|f(t)−A| ≤ |f(t)− fn0(t)|+ |fn0(t)−An0 |+ |An0 −A| < ε

3
+

ε

3
+

ε

3
= ε.

Corollary 4.1. If fn : S 7→ R are continuous functions on S and fn → f uniformly on S,
then f is continuous.

Proof. Let x be an accumulation point of S. Then by continuity of fn

lim
t→x

fn(t) = fn(x), ∀n ≥ 1.

Since fn → f uniformly on S, we have limn→∞ fn(x) = f(x), and by Theorem 4.3 that

lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t).

Together these imply

lim
t→x

f(t) = lim
t→x

lim
n→∞

fn(t) = lim
n→∞

lim
t→x

fn(t) = lim
n→∞

fn(x) = f(x).

Example 4.7. Show that f(x) =
∑∞

n=1
xn

n3+nxn is continuous on [0, 1].

Example 4.8. We showed previously that the series converges uniformly on [0, 1] by the
M-test. Since for each n ≥ 1

sn(x) =

n∑
k=1

xn

n3 + nxn

is continuous, we have that f is also continuous on [0, 1] by our Corollary 4.1.

We now return to power series. Recall that power series are series of the form

∞∑
n=0

anx
n

which is a limit of polynomial functions. Since polynomial functions are continuous on
their domain, we might expect power series to be continuous as well. This is the topic of
the next few results.
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Proposition 4.3. Let
∑∞

n=0 anx
n be a power series with radius of convergence 0 < R ≤

∞. If 0 < ρ < R, then the power series converges uniformly on [−ρ, ρ].

Proof. Let R > 0 be the radius of convergence of
∑∞

n=0 anx
n, and let 0 < ρ < R. Then

the series converges absolutely for all x ∈ (−R,R), so it also converges absolutely for x ∈
[−ρ, ρ]. Note that for each n ≥ 0,

|anxn| ≤ |an|ρn(:= Mn), for all x ∈ [−ρ, ρ],

and
∑∞

n=1 |an|ρn converges. Then by the M-test,
∑∞

n=0 anx
n converges uniformly on [−ρ, ρ].

Corollary 4.2. The power series
∑∞

n=0 anx
n with radius of convergence R > 0 is a con-

tinuous function on (−R,R).

Proof. Let x0 ∈ (−R,R). Then ∃ρ > 0 such that x0 ∈ [−ρ, ρ] ⊂ (−R,R). Since∑∞
n=0 anx

n converges uniformly on [−ρ, ρ] and sn(x) =
∑n

k=0 akx
k are continuous on

[−ρ, ρ] for each n ≥ 0,
∑∞

n=0 anx
n is continuous on [−ρ, ρ]. In particular, since x0 ∈

[−ρ, ρ],
∑∞

n=0 anx
n is continuous at x0. Therefore the series is continuous on (−R,R)

since x0 ∈ (−R,R) was arbitrary.

Note 4.3. Though it might, the power series need not converge uniformly over (−R,R)
itself, even though it converges uniformly for every [−ρ, ρ] ⊂ (−R,R). Regardless, the
conclusion that the series converges to a continuous function over (−R,R) holds.

Example 4.9. Show that
∑∞

n=0 x
n/2n is continuous on (−2, 2) but does not converge

uniformly on (−2, 2).

Solution. Note that this is a power series with an = 2−n. The radius of convergence is
given by

R = 1/ lim
n→∞

|1/2n|1/n = 2.

Then we immediately have that
∑∞

n=0 2
−nxn is continuous on (−2, 2), but for m > n,

sup
x∈(−2,2)

∣∣∣∣∣
m∑

k=n+1

2−kxk

∣∣∣∣∣ =
m∑

k=n+1

2−k2k = m− n.

This shows that the sequence of partial sums is not uniformly Cauchy and hence does not
converge uniformly on (−2, 2).

The next result addresses when we can further conclude continuity at x = R and x = −R.

Proposition 4.4 (Abel’s Theorem). Let f(x) =
∑∞

n=0 anx
n be a power series with finite

radius of convergence 0 < R < ∞. If the series converges at x = R, then f is continuous
at x = R. If the series converges at x = −R, then f is continuous at x = −R.

Proof. Case 1: First, suppose f(x) =
∑∞

n=0 anx
n has radius of convergence R = 1, and

that it converges at x = 1. Let sn(x) =
∑n

k=0 akx
k and let dn =

∑n
k=0 ak = sn(1) for

n = 0, 1, 2, . . .. Let d =
∑∞

k=0 ak = f(1). For 0 < x < 1, we have

sn(x) =

n∑
k=0

akx
k = d0 +

n∑
k=1

(dk − dk−1)x
k
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= d0 +

n∑
k=1

dkx
k − x

n∑
k=1

dk−1x
k−1

= d0 +

n∑
k=1

dkx
k − x

n−1∑
k=0

dkx
k

= d0 + dnx
n +

n−1∑
k=1

dk(1− x)xk − xd0

=

n−1∑
k=0

dk(1− x)xk + dnx
n

Letting n → ∞, we have for 0 < x < 1

f(x) = lim
n→∞

sn(x) =
∞∑
k=0

dk(1− x)xk + d · 0 =

∞∑
n=0

dn(1− x)xn.

Since for any 0 < x < 1,
∑∞

n=0 x
n = 1

1−x , we have 1 =
∑∞

n=0(1 − x)xn for any 0 < x < 1,
and

f(1) = d = d

∞∑
n=0

(1− x)xn =

∞∑
n=0

d(1− x)xn, 0 < x < 1.

Hence we have for 0 < x < 1

f(1)− f(x) =

∞∑
n=0

(d− dn)(1− x)xn.

Let ε > 0. Since dn → d, there exists an N ∈ N such that n ≥ N implies |dn − d| < ε/2.

Let gN (x) =
∑N

n=0 |d− dn|(1− x)xn. Then for 0 < x < 1, we obtain

|f(1)− f(x)| ≤ gN (x) +

∞∑
k=N+1

|d− dk|(1− x)xk

≤ gN (x) +

∞∑
k=N+1

ε

2
(1− x)xk < gN (x) +

ε

2
.

Note that gN (x) is continuous and gN (1) = 0. Thus, there exists a δ > 0 such that 1− δ <
x < 1 implies gN (x) < ε/2. Then, for 1− δ < x < 1

|f(1)− f(x)| < gN (x) +
ε

2
<

ε

2
+

ε

2
= ε,

so f is continuous at x = 1.

Case 2: Now, suppose that f(x) =
∑∞

n=0 anx
n has radius of convergence 0 < R < ∞, and

that the series converges at x = R. Let g(x) = f(Rx), and note that

g(x) =

∞∑
n=0

anR
nxn,
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which has radius of convergence 1, and it converges at x = 1. Then g(x) is continuous at
x = 1 by case 1. Since f(x) = g(x/R), it follows that f is cotinuous at x = R.

Case 3: Suppose f(x) =
∑∞

n=0 anx
n has radius of convergence 0 < R < ∞, and that the

series converges at x = −R. Let h(x) = f(−x) and note that

h(x) =

∞∑
n=0

(−1)nanx
n

which has radius of convergence R and converges at R, so h is continuous at x = R by
case 2. If follows that f(x) = h(−x) is continuous at x = −R.

4.4 Applications in Probability and Statistics

� Convergence in distribution and Polya’s theorem.



Chapter 5

Differentiation

5.1 Basic Properties of Derivatives

Definition 5.1. A function f : (a, b) 7→ R is said to be differentiable at a point c ∈
(a, b) if

lim
x→c

f(x)− f(c)

x− c

exists and is finite. In such a case, we write f ′(c) for the derivative of f at c. If f is dif-
ferentiable at all x ∈ D ⊆ (a, b), then we say f is differentiable on D and write f ′ : D ⊆

(a, b) 7→ R for the derivative of f and denote this function f ′ or
d

dx
f(x).

Note 5.1. Note that
f(x)− f(x)

x− c

is the slope of the secant line through the points (x, f(x)) and (c, f(c)). As x → c, if f is
differentiable at c, then this approaches the slope of the tangent line to f at (c, f(c)) given
by

L(x) = f(c) +m(c)(x− c).

Thus, f is differentiable at c if and only if there exists a linear function L(x) = f(c) +
m(x− c) such that ∣∣∣∣f(x)− L(c)

x− c

∣∣∣∣→ 0 as x → c.

In this case, f ′(c) = m and∣∣∣∣f(x)− L(x)

x− c

∣∣∣∣ = ∣∣∣∣f(x)− f(c)

x− c
−m

∣∣∣∣→ 0 as x → c,

and f ′(c) = m. L(x) is a linear approximation of f at c when |x− c| is small.

Note 5.2. An equivalent definition of the derivative of f at c is

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

provided the limit exists and is finite.

68
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Example 5.1. Show that f : R 7→ R defined by f(x) = xn, n ∈ N is differentiable
everywhere and that f ′(c) = ncn−1.

Solution. Note that for n ∈ N

xn − cn = (x− c)

n−1∑
k=0

xkcn−k−1.

Then

lim
x→c

f(x)− f(c)

x− c
= lim

x→c

n−1∑
k=0

xkcn−k−1 =

n−1∑
k=0

cn−1 = ncn−1.

Theorem 5.1. If f : (a, b) 7→ R is differentiable at c ∈ (a, b), then f is continuous at c.

Proof. Let ε > 0. Choose δ1 > 0 such that x ∈ (a, b) and 0 < |x− c| < δ1 implies∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < √
ε

2
.

Let δ = min{δ1,
√
ε, ε/(2|f ′(c)|)}, where we define ε/0 = ∞. Then for x ∈ (a, b), 0 <

|x− c| < δ implies

|f(x)− f(c)| =
∣∣∣∣f(x)− f(c)

x− c

∣∣∣∣ |x− c|

≤
∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ |x− c|+ |f ′(c)||x− c|

<

√
ε

2
·
√
ε+ |f ′(c)|δ ≤ ε.

Note 5.3. Alternatively, we can prove that differentiability implies continuity using the
properties of limits of functions. Since c is an accumulation point of (a, b), recall that f is
continuous at c if

lim
x→c

f(x) = f(c),

or equivalently,
|f(x)− f(c)| → 0 as x → c.

Note that f differentiable at c implies

lim
x→c

∣∣∣∣f(x)− f(c)

x− c

∣∣∣∣ = |f ′(c)|,

so for x ̸= c

|f(x)− f(c)| =
∣∣∣∣f(x)− f(c)

x− c

∣∣∣∣ |x− c| → |f ′(c)| · 0 = 0 as x → c.
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Definition 5.2. For a function f : [a, b] 7→ R, the right hand derivative of f at c for
a ≤ c < b is

f ′(c+) = lim
x→c+

f(x)− f(c)

x− c

exists and is finite. The left hand derivative of f at c, a < c ≤ b is

f ′(c−) = lim
x→c−

f(x)− f(c)

x− c

exist and is finite. We say that f is differentiable in [a, b] if f is differentiable on (a, b) and
f has a left hand derivative at b and right hand derivative at a.

Note 5.4. For c ∈ (a, b), f ′(c) exists if and only if f ′(c+) and f ′(c−) both exists, are
finite, and equal.

Definition 5.3. For f : (a, b) 7→ R, if for c ∈ (a, b)

lim
x→c

f(x)− f(c)

x− c
= ∞,

then we write f ′(c) = ∞. We define similarly f ′(c) = −∞, f ′(c+) = ±∞ and f ′(c−) =
±∞. When we say that f is differentiable at c, we allow for the derivative to be infinite.
In cases where we require the derivative to be finite, we will say differentiable and finite.

Example 5.2. Define f : R 7→ R by f(x) = x1/3. Then for x ̸= 0

f(x)− f(0)

x− 0
=

x1/3 − 0

x− 0
= x−2/3,

so
f ′(0) = lim

x→0
x−2/3 = ∞.

If we let g(x) = x−2/3, then

g′(0−) = −∞ and g′(0+) = ∞.

Proposition 5.1. Suppose that f, g : (a, b) 7→ R are differentiable at x ∈ (a, b). Then

a) (f + g)′(x) = f ′(x) + g′(x).

b) (fg)′(x) = f ′(x)g(x) + f(x)g′(x).

c) (f/g)′(x) =
f ′(x)g(x)− f(x)g′(x)

[g(x)]2
provided g(x) ̸= 0

Proof. a) Suppose that f and g are differentiable at x ∈ (a, b). Then, for h ̸= 0

(f + g)(x+ h)− (f + g)(x)

h
=

f(x+ h)− f(x)

h
+

g(x+ h)− g(x)

h
→ f ′(x) + g′(x)

as h → 0.
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b) Suppose that f and g are differentiable at x ∈ (a, b). Then f and g are continuous at
x, so for h ̸= 0

(fg)(x+ h)− (fg)(x)

h
=

(fg)(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− (fg)(x)

h

=
f(x+ h)− f(x)

h
· g(x+ h) + f(x) · g(x+ h)− g(x)

h
→ f ′(x)g(x) + f(x)g′(x) as h → 0.

c) Suppose that f and g are differentiable at x ∈ (a, b) and that g(x) ̸= 0. Since g is
continuous at x and g(x) ̸= 0, ∃δ > 0 such that for |x − t| < δ, g(t) ̸= 0. Thus for
−δ < h < δ,

1
g(x+h) −

1
g(x)

h
=

g(x)− g(x+ h)

hg(x)g(x+ h)

= −g(x+ h)− g(x)

h
· 1

g(x)g(x+ h)

→ − g′(x)

[g(x)]2
as h → 0.

The result follows by applying part b).

Note 5.5. By part b), if g(x) = c for some c ∈ R and for all x ∈ (a, b) (i.e. g is a constant
function), then (cf)′(x) = cf ′(x). Furthermore, combining parts a) and b), differentiation
is linear, i.e.

(af + bg)′(x) = af ′(x) + bg′(x).

Theorem 5.2 (Chain Rule). Suppose f : (a, b) 7→ R is differentiable at c ∈ (a, b), and
g : (m,M) 7→ R is differentiable at f(c) ∈ (m,M), then g ◦ f is differentiable at c and

(g ◦ f)′(c) = g′(f(c)) · f ′(c).

Proof. Define h : dom(g) 7→ R by

h(x) =


g(x)− g(f(c))

x− f(c)
, x ̸= f(c)

g′(f(c)), x = f(c)
.

Since g is differentiable at f(c),

lim
x→f(c)

h(x) = lim
x→f(c)

g(x)− g(f(c))

x− f(c)
= g′(f(c)),

so h is continuous at x = f(c). Note that for all x ∈ dom(g)

g(x)− g(f(c)) = h(x)(x− f(c)).

Since f is differentiable at c, f is continuous at c, so that h ◦ f is continuous at c and

lim
x→c

h(f(x)) = h(f(c)) = lim
x→f(c)

h(x) = g′(f(c)).
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Then for t ̸= c such that f(t) ∈ dom(g)

(g ◦ f)(t)− (g ◦ f)(c)
t− c

= h(f(t)) · f(t)− f(c)

t− c

→ h(f(c))f ′(c) = g′(f(c))f ′(c) as t → c.

Note 5.6. It is tempting in the proof of the chain rule to write for t ̸= c

(g ◦ f)(t)− (g ◦ f)(c)
t− c

=
(g ◦ f)(t)− (g ◦ f)(c)

f(t)− f(c)
· f(t)− f(c)

t− c
,

but this is only true if t ̸= c implies f(t) ̸= f(c), which is not true in general. The other
subtle point is that it is essential that h is continuous at f(c) and f is continuous at c in
order to conclude

lim
x→c

h(f(x)) = lim
x→f(c)

h(x)

as the following example shows.

Let

h(x) =

{
4, x ̸= 1

−4, x = 1
and f(x) =

{
1 + x sin(π/x), x ̸= 0

1, x = 0
.

Note that limx→0 f(x) = 1, and limx→1 h(x) = 4. Recall that limx→0 h(f(x)) = h(f(0)) if
and only if ∀(xn)n ⊂ dom(h ◦ f) such that xn ̸= 0 and xn → 0, h(f(xn)) → h(f(0)). Let
xn = 2/n for n ∈ N. Then clearly xn → 0, but

f(xn) = 1 +
2

n
sin
(nπ

2

)
=

{
1, n even

1 + (−1)(n−1)/2) 2
n ( ̸= 1), n odd

Then

h(f(xn)) =

{
−4, n even

4, n odd
,

so limx→0(h ◦ f)(x) does not exists, even though

lim
x→0

f(x) = 1 and lim
x→1

h(x) = 4.

5.2 The Mean Value Theorem

Definition 5.4. A function f : S 7→ R has a local max at c ∈ S if ∃δ > 0 such that for
x ∈ S,

|x− c| < δ =⇒ f(x) ≤ f(c).

Similarly, f has a local min at c ∈ S if ∃δ > 0 such that for x ∈ S,

|x− c| < δ =⇒ f(x) ≥ f(c).

Proposition 5.2. If f : (a, b) 7→ R has a local extremum at c ∈ (a, b) and f ′(c) exists,
then f ′(c) = 0.
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Proof. We consider two cases: 0 < f ′(c) ≤ ∞ and −∞ ≤ f ′(c) < 0.

Case 1: 0 < f ′(c) ≤ ∞. Then by the definition of the derivative, ∃δ > 0 such that

0 < |x− c| < δ =⇒ f(x)− f(c)

x− c
> 0.

Then for c−δ < x < c, x−c < 0, so f(x)−f(c) < 0. Similarly, for c < x < c+δ, x−c > 0,
so f(x)− f(c) > 0. Thus, c cannot be a local min or max.

Case 2: −∞ ≤ f ′(c) < 0. Similar to case 1.

Theorem 5.3 (Rolle’s Theorem). Suppose f : [a, b] 7→ R is continuous on [a, b] and
differentiable (finite or infinite) on (a, b). If f(a) = f(b), then ∃c ∈ (a, b) such that f ′(c) =
0.

Proof. Since [a, b] is a closed and bounded set in R, it is compact. Since f is continuous
on [a, b], by Corollary 3.2 ∃x1, x2 ∈ [a, b] such that

f(x1) = min{f(x) : x ∈ [a, b]} and f(x2) = max{f(x) : x ∈ [a, b]},

so f(x1) ≤ f(x) ≤ f(x2) for all x ∈ [a, b].

Case 1: Suppose {x1, x2} ⊆ {a, b}. Then f(a) = f(b) implies

f(a) = f(x1) = f(x2) = f(b).

Since f(x1) ≤ f(x) ≤ f(x2) for all x ∈ [a, b], f is constant on [a, b], so f ′(c) = 0 for all
c ∈ (a, b).

Case 2: Suppose x1 ∈ (a, b). Since f(x) ≥ f(x1) for all x ∈ [a, b], x1 is a local minimum.
Because f is differentiable at x1, f

′(x1) = 0 by Proposition 5.2.

Case 3: Suppose x2 ∈ (a, b). Similar to case 2.

Theorem 5.4 (Generalized Mean Value Theorem (Cauchy’s MVT)). If f, g : [a, b] 7→ R
are continuous on [a, b] and differentiable on (a, b) with at least one of f ′ or g′ finite for
all x ∈ (a, b), then ∃c ∈ (a, b) such that

f ′(c)[g(b)− g(a)] = g′(c)[f(b)− f(a)].

Proof. Define h : [a, b] 7→ R by

h(x) = f(x)[g(b)− g(a)]− g(x)[f(b)− f(a)].

Since f and g are continuous on [a, b], h is also continuous on [a, b]. Furthermore, h is dif-
ferentiable on (a, b) (possibly infinite). Note that

h(a) = f(a)[g(b)− g(a)]− g(a)[f(b)− f(a)] = f(a)g(b)− g(a)f(b),

and
h(b) = f(b)[g(b)− g(a)]− g(b)[f(b)− f(a)] = g(b)f(a)− f(b)g(a).

Thus h(a) = h(b), so by Rolle’s theorem, ∃c ∈ (a, b) such that

0 = h′(c) = f ′(c)[g(b)− g(a)]− g′(c)[f(b)− f(a)].
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Corollary 5.1 (Mean Value Theorem). If f : [a, b] 7→ R is continuous and differentiable
(possible infinite) on (a, b), then ∃c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Take g(x) = x and apply the Generalized MVT.

Proposition 5.3. Suppose f : [a, b] 7→ R is continuous and differentiable (possibly infi-
nite) on (a, b).

a) If f ′(x) > 0 ∀x ∈ (a, b), then f is strictly increasing on [a, b].

b) If f ′(x) < 0 ∀x ∈ (a, b), then f is strictly decreasing on [a, b].

c) If f ′(x) = 0 ∀x ∈ (a, b), then f is constant.

Proof. Let s, t be such that a ≤ s < t ≤ b. Then by the MVT applied to f : [s, t] 7→ R,

f ′(x) =
f(t)− f(s)

t− s

for some x ∈ (s, t), so f(t)− f(s) = f ′(x)(t− s).

a) If f ′(x) > 0 for all x ∈ (a, b), then f(t) − f(s) > 0 for all a ≤ s < t ≤ b. Thus,
a ≤ s < t ≤ b =⇒ f(s) < f(t).

b) If f ′(x) < 0 for all x ∈ (a, b), then f(t) − f(s) < 0 for all a ≤ s < t ≤ b. Thus,
a ≤ s < t ≤ b =⇒ f(s) > f(t).

c) If f ′(x) = 0 for all x ∈ (a, b), then f(t) − f(s) = 0 for all a ≤ s < t ≤ b. Thus,
f(a) = f(t) for all t ∈ [a, b].

Theorem 5.5 (Intermediate Value Theorem for Derivatives). Suppose f : [a, b] 7→ R is
differentiable on [a, b] (possibly infinite). If m lies between f ′(a+) and f ′(b−), then ∃c ∈
(a, b) such that f ′(c) = m.

Proof. WLOG assume −∞ ≤ f ′(a+) < m < f ′(b−) ≤ ∞ (otherwise use −f). Define

g(x) =
f(x)− f(a)

x− a
for a < x ≤ b

and

h(x) =
f(x)− f(b)

x− b
for a ≤ x < b.

Note that

g(b) =
f(b)− f(a)

b− a
=

f(a)− f(b)

a− b
= h(a)

and limx→a+ g(x) = f ′(a+) and limx→b− h(x) = f ′(b−).
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Case 1: Suppose that m = f(b)−f(a)
b−a . By the MVT, ∃c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
= m.

Case 2: Suppose m < f(b)−f(a)
b−a = g(b). By assumption

lim
x→a+

g(x) = f ′(a+) < m,

so ∃x1 such that a < x1 < b and g(x1) < m. Since g is continuous on [x1, b] and g(x1) <
m < g(b), by the IVT, ∃x2 ∈ (x1, b) such that

m = g(x2) =
f(x2)− f(a)

x2 − a
.

Now, by applying the MVT to f on [a, x2], ∃c ∈ (a, x2) such that

f ′(c) =
f(x2)− f(a)

x2 − a
= m.

Case 3: Suppose m > f(b)−f(a)
b−a = h(a). By assumption

m < lim
x→b−

h(x) = f ′(b−),

so ∃x1 such that a < x1 < b and h(x1) > m. Since h is continuous on [a, x1] and h(a) <
m < h(x1), by the IVT, ∃x2 ∈ (a, x1) such that

m = h(x2) =
f(x2)− f(b)

x2 − b
.

Now, by applying the MVT to f on [x2, b], ∃c ∈ (x2, b) such that

f ′(c) =
f(x2)− f(b)

x2 − b
= m.

Corollary 5.2. If f : (a, b) 7→ R is differentiable and f ′ is monotonic on (a, b), then f ′ is
continuous on (a, b).

Proof. Since f ′ is monotonic, the only type of discontinuities possible are jump disconti-
nuities. Suppose that f ′ has a jump discontinuity at x ∈ (c, d) ⊂ (a, b). WLOG assume
f ′ is increasing. Then f(c) ≤ f(x−) < f(x+) ≤ f(d), so by the IVT for derivatives,
∃t ∈ (c, d) such that

f ′(x−) < f ′(t) < f ′(x+),

but this can’t happen, since f ′ is increasing.

Corollary 5.3. If f : [a, b] 7→ R is continuous and differentiable (possible infinite) on
(a, b) with f ′(x) ̸= 0 ∀x ∈ (a, b), then f is either strictly increasing on [a, b] or f is strictly
decreasing on [a, b].

Proof. If f ′(x) ̸= 0 ∀x ∈ (a, b), then f ′(x) > 0 for all x ∈ (a, b) or f ′(x) < 0 for all x ∈
(a, b). If not, then by the IVT for derivatives, ∃c ∈ (a, b) such that f ′(c) = 0, contradicting
our assumption. The result then follows from Proposition 5.3.
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5.3 Uniform Convergence and Differentiation

A question we might now ask is ”If fn → f and and each fn is differentiable is f differ-
entiable and does f ′(x) = limn→∞ f ′

n(x)?” This is not true in general as the following
example illustrates.

Example 5.3. Let fn : R 7→ R be defined by fn(x) =
1√
n
sin(nx). Then

lim
n→∞

fn(x) = 0 := f(x).

However, f ′
n(x) =

√
n cos(nx) and f ′(x) = 0, but for x ̸= (2k+1)π

2 , k ∈ Z,

fn(x) ̸→ f(x).

For example, fn(0) =
√
n → ∞ ≠ 0 = f ′(x).

Proposition 5.4. Let {fn : [a, b] 7→ R, n ≥ 1} be differentiable on [a, b] and suppose
{fn(x0)}n converges for some x0 ∈ [a, b]. If (f ′

n)n converges uniformly on [a, b], then fn →
f uniformly on [a, b] for some function f and

f ′(x) = lim
n→∞

f ′
n(x), x ∈ [a, b].

Proof. Let ε > 0. Choose N ∈ N such that m > n ≥ N implies

|fn(x0)− fm(x0)| <
ε

2

and
|f ′

n(t)− f ′
m(t)| < ε

2(b− a)

for all t ∈ [a, b]. Let x, t ∈ [a, b]. Then by the MVT applied to fn − fm, we have for some c
between x and t and for m > n ≥ N ,

|fn(x)− fm(x)− fn(t) + fm(t)| ≤ |f ′
n(c)− f ′

m(c)||x− t| ≤ ε|x− t|
2(b− a)

≤ ε

2
.

Thus, for all x ∈ [a, b], m > n ≥ N implies

|fn(x)− fm(x)| ≤ |fn(x)− fm(x)− fn(x0) + fm(x0)|+ |fn(x0)− fm(x0)|

<
ε

2
+

ε

2
= ε,

so (fn)n is uniformly Cauchy on [a, b]. By Cauchy convergence criterion for uniform con-
vergence, fn → f uniformly on [a, b] to a function f , where

f(x) = lim
n→∞

fn(x), x ∈ [a, b].

Now, fix an x ∈ [a, b] and define

ϕn(t) =
fn(t)− fn(x)

t− x
and ϕ(t) =

f(t)− f(x)

t− x
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for all t ∈ [a, b], t ̸= x. Then for each n = 1, 2, 3, . . .,

lim
t→x

ϕn(t) = f ′
n(x)

where the limit it understood to be a right hand limit at x = a and a left hand limit at
x = b. For m > n ≥ N

|ϕn(t)− ϕm(t)| =
∣∣∣∣fn(t)− fm(t)− fn(x) + fm(x)

t− x

∣∣∣∣ ≤ ε|t− x|
2(b− a)|t− x|

=
ε

2(b− a)
,

so (ϕn)n is uniformly Cauchy and hence uniformly convergent for t ∈ [a, b], t ̸= x. Thus,
we have ϕn → ϕ uniformly on [a, b] \ {x} and limt→x ϕn(t) = f ′

n(x), so by Theorem 4.3

f ′(x) = lim
t→x

ϕ(t) = lim
t→x

lim
n→∞

ϕn(t) = lim
n→∞

lim
t→x

ϕn(t) = lim
n→∞

f ′
n(x).

We now return to a power series. If a function f(x) =
∑∞

n=0 anx
n has radius of con-

vergence R > 0, then what can we say about f ′(x)? It seems reasonable that since the
derivative is linear that

f ′(x) =
d

dx

∞∑
n=0

anx
n =

∞∑
n=0

d

dx
anx

n =

∞∑
n=1

nanx
n−1.

This turns out to be true a we will now show.

Proposition 5.5. If f(x) =
∑∞

n=0 anx
n has radius of convergence R > 0, then f is

differentiable on (−R,R) and for |x| < R,

f ′(x) =

∞∑
n=1

nanx
n−1.

Proof. Let f(x) =
∑∞

k=0 akx
k be a power series with radius of convergence 0 < R ≤ ∞.

Let 0 < ρ < R and define fn(x) =
∑n

k=0 akx
k, n = 1, 2, 3, . . ., on [−ρ, ρ]. Then fn is

differentiable on [−ρ, ρ] and fn → f uniformly on [−ρ, ρ].

Consider the power series
∑∞

k=1 kakx
k−1, and note that this series converges at x if and

only if

x

∞∑
k=1

kakx
k−1 =

∞∑
k=1

kakx
k

converges, i.e. these two power series have the same radius of convergence. The radius of
convergence is

1

limn→∞ |nan|1/n
=

1

limn→∞ |an|1/n
= R,

since limn→∞ n1/n = 1. Thus,

f ′
n(x) =

n∑
k=1

kakx
k−1 →

∞∑
k=1

kakx
k−1



5.4. TAYLOR’S THEOREM 78

uniformly on [−ρ, ρ]. Hence by Proposition 5.4

f ′(x) = lim
n→∞

f ′
n(x) =

∞∑
k=1

kakx
k−1.

Definition 5.5 (Higher Order Derivatives). Let f : (a, b) 7→ R and set f (0) = f and
f (1) = f ′. The nth derivative of f at x is defined recursively by

f (n)(x) =
d

dx
f (n−1)(x) = lim

t→x

f (n−1)(t)− f (n−1)(x)

t− x

provided f (n−1)(x) exists and is finite for t ∈ (x − δ, x + δ) for some δ > 0 and the limit
exists.

Note 5.7. For f (n)(x) to exists, note that f (n−1) must exists in a neighborhood of x.

Corollary 5.4. If f(x) =
∑∞

n=0 anx
n has radius of convergence R > 0, then f is in-

finitely differentiable on (−R,R) and for |x| < R,

f (k)(x) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)anx
n−k, k = 0, 1, 2, . . .

Proof. The proof follows by induction using that fact that for each k, f (k−1)) is a power
series with radius of convergence (−R,R), and so is differentiable with derivative

f (k)(x) =

∞∑
n=k

n(n− 1) · · · (n− k + 1)anx
n−k.

5.4 Taylor’s Theorem

Lemma 5.1. Let p(x) = a0 + a1(x − c) + · · · + an(x − c)n =
∑n

k=0 ak(x − c)k. Then the
mth derivative of p for m ≤ n is

p(m)(x) =

n∑
k=m

akk!

(k −m)!
(x− c)k−m.

For m > n, p(m)(x) = 0.

Proof. For m = 0, p(0) =
∑n

k=0

akk!

k!
(x − c)k−0 =

∑n
k=0 ak(x − c)k, so the formula holds

for m = 0. Now, suppose that for 0 ≤ m < n

p(m)(x) =

n∑
k=m

akk!

(k −m)!
(x− c)k−m.
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Then

p(m+1)(x) =
d

dx

(
amm! +

n∑
k=m+1

akk!

(k −m)!
(x− c)k−m

)

= 0 +

n∑
k=m+1

ak
k!

(k −m)!
(k −m)(x− c)k−m−1

=
∑

k=m+1

ak
k!

(k − (m+ 1))!
(x− c)k−(m+1),

so the formula holds for m + 1, and the result follows by induction for 0 ≤ m ≤ n. Note
that p(n)(x) = ann!, so p(n+k)(x) = 0 for all k ≥ 1.

Corollary 5.5. Suppose that p(x) =
∑n

k=0 ak(x − c)k is a polynomial, then for all m ∈

{0, 1, 2, . . . , n}, am =
p(m)(c)

m!
.

Proof. For 0 ≤ m ≤ n,

p(m)(x) =

n∑
k=m

ak
k!

(k −m)!
(x− c)k−m,

so p(m)(c) = amm!.

Definition 5.6. If f : (a, b) 7→ R is n-times differentiable at c ∈ (a, b), then the n-th
order Taylor polynomial centered at c for f is

p(x) =

n∑
k=0

f (k)(c)

k!
(x− c)k.

Note 5.8. The n-th order Taylor polynomial is the unique polynomial of degree at most
n such that p(k)(c) = f (k)(c) ∀0 ≤ k ≤ n. The remainder in this approximation is

Rn(x) = f(x)−
n∑

k=0

f (k)(c)

k!
(x− c)k.

If f has derivatives of all orders and Rn(x) → 0, then we can write

f(x) =

∞∑
k=0

f (k)(c)

k!
(x− c)k,

which is called the Taylor series of f . Not every function has a Taylor series. In the
case, where c = 0, the n-th order polynomial (or series) is also referred to as a McLau-
ren polynomial (or series). If a function has derivative of all orders, then we need to
know if the remainder goes to zero to be able to write a function as its Taylor series.

Example 5.4. Find the McLauren series of f(x) = sin(x).
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Solution. Note that

f (0)(x) = sin(x) f (1)(x) = cos(x) f (2)(x) = − sin(x) f (3)(x) = − cos(x) f (4) = sin(x),

so we have

f (n)(0) =

{
0, n is even

(−1)(n−1)/2, n is odd
.

Then the McLauren series is
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1.

In order to write

sin(x) =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1

we need to show that Rn(x) → 0, but we need a useful form of the remainder. This is the
subject of Taylor’s theorem. Note that this series converges for all x ∈ R, but we cannot
say at this point whether or not it converges to sin(x).

Theorem 5.6 (Taylor’s Theorem). Suppose f : [a, b] 7→ R is n times differentiable on
(a, b). Let c ∈ (a, b) and let pn−1(x) be the Taylor polynomial of degree n− 1 of f given by

pn−1(x) =

n−1∑
k=0

f (k)(c)

k!
(x− c)k.

Then for each x ∈ [a, b] \ {c}, ∃ξ between x and c such that

f(x) = pn−1(x) +
f (n)(ξ)

n!
(x− c)n.

Example 5.5. Show that that for all x ∈ R,

sin(x) =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1.

Solution. We now apply Taylor’s theorem to show that the remainder term goes to zero.
Note that f(x) = sin(x) has derivatives at of all orders and ∀x ∈ R. Recall that

|f (n)(x)| =

{
| sin(x)|, n is even

| cos(x)|, n is odd
≤ 1, ∀x ∈ R.

Then by Taylor’s theorem for each x ∈ R, ∃t between x and 0 such that

|Rn(x)| =

∣∣∣∣∣sin(x)−
n−1∑
k=0

f (n)(0)

n!

∣∣∣∣∣ =
∣∣∣∣f (n+1)(t)

(n+ 1)!
xn+1

∣∣∣∣ ≤ |x|n+1

(n+ 1)!
→ 0,

so ∀x ∈ R

sin(x) =

∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1.
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Proof. Let c ∈ [a, b] and fix x ∈ [a, b] \ {c}. Define

F (t) =

n−1∑
k=0

f (k)(t)

k!
(x− t)k

and
G(t) = (x− c)n − (x− t)n

for t between x and c. Then for t between x and c

G′(t) = n(x− t)n−1,

and

F ′(t) =
d

dt

n−1∑
k=0

f (k)(t)

k!
(x− t)k

= f (1)(t) +

n−1∑
k=1

1

k!

(
f (k+1)(t)(x− t)k − kf (k)(t)(x− t)k−1

)
=

f (n)(t)

(n− 1)!
(x− t)n−1 +

n−2∑
k=0

f (k+1)(t)

k!
(x− t)k −

n−2∑
k=0

f (k+1)(t)

k!
(x− t)k

=
f (n)(t)

(n− 1)!
(x− t)n−1.

Since F and G are continuous on the closed interval between c and x and differentiable on
the open interval between c and x, by the generalized MVT ∃ a ξ between c and d such
that

F ′(ξ)[G(x)−G(c)] = G′(ξ)[F (x)− F (c)].

Note that
G(x)−G(c) = (x− c)n

and
F (x)− F (c) = f(x)− pn−1(x),

so that
f (n)(ξ)

(n− 1)!
(x− ξ)n−1[(x− c)n] = n(x− ξ)n−1[f(x)− pn−1(x)].

Rearranging terms we get

f (n)(ξ)

n!
(x− ξ)n = f(x)− pn−1(x).

5.5 Applications in Probability and Statistics

� Probability Generating Functions

� Delta Method



Chapter 6

Riemann-Stieltjes Integration

In this section, we seek to define the Riemann-Stieltjes integral. This will allow us to de-
fine the expectation of a random variable as an integral in both the discrete and continu-
ous cases. In particular, given a random variable with CDF F , we will see that

EX =

∫ ∞

−∞
x dF =

{∫∞
−∞ xf(x) dx, X is continuous with pdf f∑
x xp(x), X is discrete with pmf p.

Recall that in the continuous case f(x) = F ′(x) and in the discrete case p(x) = F (x+) −
F (x−).

6.1 Definition and Existence of the Integral

We begin with some notation. Suppose f : S 7→ R is a bounded function. Define

M(f, S) = sup{f(x) : x ∈ S} and m(f, S) = inf{f(x) : x ∈ S}.

Note that if S1 ⊆ S1 and f : S2 7→ R is bounded, then

M(f, S1) ≤ M(f, S2) and m(f, S1) ≥ m(f, S2).

Lemma 6.1. If f : S 7→ R is bounded, then

M(f, S)−m(f, S) = sup{f(s)− f(t) : s, t ∈ S}.

Proof. Recall that for A,B ⊂ R, inf A = − sup(−A) and sup(A + B) = sup(A) + sup(B).
Then

M(f, S)−m(f, S) = sup{f(s) : s ∈ S} − inf{f(t) : t ∈ S}
= sup{f(s) : s ∈ S}+ sup{−f(t) : t ∈ S}
= sup{f(s)− f(t) : s, t ∈ S}.

Definition 6.1. Given an interval [a, b] ⊂ R, a partition of [a, b] is an ordered set P =
{t0, t1, . . . , tn} where a = t0 < t1 < . . . < tn−1 < tn = b. Let ∆tk = tk − tk−1 be the length
of [tk−1, tk]. We define the mesh of P by mesh(P ) = max{∆tk : k = 1, 2, . . . , n}.

82
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Definition 6.2. Let f : [a, b] 7→ R be bounded. Given a partition P = {tk}nk=0 of [a, b],
we define the upper and lower Darboux sums

U(f, P ) =

n∑
k=1

M(f, [tk−1, tk])∆tk

and

L(f, P ) =

n∑
k=1

m(f, [tk−1, tk])∆tk.

The upper and lower Darboux integral of f are∫̄ b

a

f dx = U(f) = inf
P

U(f, P )

and

¯

∫ b

a

f dx = L(f) = sup
P

L(f, P )

where the sup and inf are taken over all partitions P of [a, b]. f is said to be Darboux
integrable on [a, b] if U(f) = L(f). In this case, we write∫ b

a

fdx or

∫ b

a

f(x) dx.

We will see later that the Darboux integral is equivalent to the Riemann integral, but we
want a more general integral for probability.

Definition 6.3. Let h : [a, b] 7→ R be a bounded function and let F : [a, b] 7→ R be
a monotonically increasing function with F (a) and F (b) finite. Given a partition P =
{tk}nk=0 of [a, b], we define the upper and lower Darboux-Stieltjes sums with respect
of F over [a, b] by

U(h, P, F ) =

n∑
k=1

M(h, [tk−1, tk])∆Fk

and

L(h, P, F ) =

n∑
k=1

m(h, [tk−1, tk])∆Fk.

where ∆Fk = F (tk) − F (tk−1). The upper and lower Darboux-Stieltjes integrals of
f are ∫̄ b

a

h dF = U(h, F ) = inf
P

U(h, P, F )

and

¯

∫ b

a

h dF = L(h, F ) = sup
P

L(h, P, F )

where the sup and inf are taken over all partitions P of [a, b]. h is said to be Darboux-
Stieltjes integrable with respect to F on [a, b] if U(h, F ) = L(h, F ). In this case, we
write ∫ b

a

h dF or

∫ b

a

h(x) dF (x).
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For ease of notation, we may write

Mk = Mk(h) = M(h, [tk−1, tk]) and mk = mk(h) = m(h, [tk−1, tk])

Note 6.1. First, note that when F (x) = x, the Darboux-Stieltjes integral reduces to the
Darboux integral over [a, b].

Note 6.2. If M = M(h, [a, b]) and m = m(h, [a, b]), then given a partition P = {tk}nk=0 of
[a, b], we have for all k = 1, 2, . . . , n

m ≤ mk(h) ≤ Mk(h) ≤ M.

So

m(F (b)− F (a)) = m

n∑
k=1

∆Fk ≤
n∑

k=1

mk∆Fk

≤
n∑

k=1

Mk∆Fk ≤ M

n∑
k=1

∆Fk

= M(F (b)− F (a)).

This implies that for any partition P of [a, b]

m(F (b)− F (a)) ≤ L(h, P, F ) ≤ U(h, P, F ) ≤ M(F (b)− F (a)),

so that the upper and lower Darboux-Stieltjes sums are bounded, which implies the upper
and lower Darboux-Stieltjes integrals exist. Furthermore, if t⋆k ∈ [tk−1, tk], then

L(h, P, F ) ≤
n∑

k=1

h(t⋆k)∆Fk︸ ︷︷ ︸
Riemann-Stieltjes sum

≤ U(h, P, F ).

Note 6.3. Throughout we will assume F (a) < F (b). If F (a) = F (b), then F (x) = F (a)
for all x ∈ [a, b] and for any partition P of [a, b], ∆Fk = 0 for all k = 1, 2, . . . , n and

n∑
k=1

Mk(h)∆Fk =

n∑
k=1

mk(h)∆Fk = 0.

Thus for any bounded h : [a, b] 7→ R, if F (a) = F (b), then∫ b

a

h dF = 0.

Definition 6.4. If P1 and P2 are partitions of [a, b], then P2 is a refinement of P1 if
P1 ⊂ P2.

Proposition 6.1. Let h : [a, b] 7→ R be bounded and let F : [a, b] 7→ R be monotonically
increasing with F (a) and F (b) finite. If P1, P2 are partitions of [a, b] such that P2 is a re-
finement of P1, then

U(h, P2, F ) ≤ U(h, P1, F )

and
L(h, P1, F ) ≤ L(h, P2, F ).
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Note 6.4. If P1 ⊂ P2 ⊂ · · · is a sequence of partitions of [a, b] such that Pi+1 is a refin-
ment of Pi, then this proposition implies that {U(h, Pn, F )}n is a decreasing sequence and
{L(h, Pn, F )}n is an increasing sequence.

Proof. Let P1 = {tk}nk=0 and let P2 = P1 ∪ {sj}mj=1. First, assume m = 1, so that P2 =
P1 ∪ {s1}. Let 1 ≤ j ≤ n be such that tj−1 < s1 < tj . Then

M(h, [tj−1, tj ])∆Fj = M(h, [tj−1, tj ])(F (s1)− F (tj−1)) +M(h, [tj−1, tj ])(F (tj)− F (s1))

≥ M(h, [tj−1, s1])(F (s1)− F (tj−1)) +M(h, [s1, tj ])(F (tj)− F (s1))

Thus,

U(h, P1, F ) =
∑
k ̸=j

Mk(f)∆Fk +Mj(h)∆Fj

≥
∑
k ̸=j

Mk(f)∆Fk +M(h, [tj−1, s1])(F (s1)− F (tj−1)) +M(h, [s1, tj ])(F (tj)− F (s1))

= U(h, P2, F ).

Repeating this argument m − 1 times, we obtain the result. The argument is the same to
show that L(h, P1, F ) ≤ L(h, P2, F ).

Corollary 6.1. Let h : [a, b] 7→ R be bounded, and let F : [a, b] 7→ R be monotonically
increasing with F (a) and F (b) finite. If P1 and P2 are any partitions of [a, b], then

L(h, P1, F ) ≤ U(h, P2, F ).

That is every upper Darboux-Stieltjes sum is an upper bound for the set of all lower Darboux-
Stieltjes sums, and every lower Darboux-Stieltjes sum is a lower bound for the set of all
upper Darboux-Stieltjes sums

Proof. Let Q = P1 ∪ P2, then Q is a refinement of both P1 and P2, so

L(h, P1, F ) ≤ L(h,Q, F ) ≤ U(h,Q, F ) ≤ U(h, P2, F ).

Proposition 6.2. Let h : [a, b] 7→ R be bounded, and let F : [a, b] 7→ R be monotonically
increasing with F (a) and F (b) finite. If P is any partition of [a, b] then

L(h, P, F ) ≤
¯

∫ b

a

h dF ≤
∫̄ b

a

h dF ≤ U(h, P, F ).

Proof. Let P,Q be partitions of [a, b]. Then

L(h, P, F ) ≤ U(h,Q, F ).

Since P was arbitrary, this implies that

¯

∫ b

a

h dF = sup
P

L(h, P, F ) ≤ U(h,Q, F ).
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Since Q was also arbitrary, this also implies that

¯

∫ b

a

h dF ≤ inf
Q

U(h,Q, F ) =

∫̄ b

a

h dF

Theorem 6.1 (Cauchy Critertion for Darbou-Stieltjes Integrability). Let h : [a, b] 7→ R
be bounded and let F : [a, b] 7→ R be monotonically increasing with F (a) and F (b) finite.
Then h is Darboux-Stieltjes integrable with respect to F over [a, b] if and only if ∀ε > 0, ∃
a partition P of [a, b] with

U(h, P, F )− L(h, P, F ) < ε.

Proof. ( =⇒ ) Suppose that h is integrable. Then∫ b

a

h dF = sup
P

L(h, P, F ) = inf
Q

U(h,Q, F ).

Let ε > 0. By definition of supremum and infimum, ∃ partitions P0 and Q0 of [a, b] such
that

sup
P

L(h, P, F )− ε

2
< L(h, P0, F ) ≤ sup

P
L(h, P, F )

and
inf
Q

U(h,Q, F ) ≤ U(j,Q0, F ) < inf
Q

U(h,Q, F ) +
ε

2
.

Let R = P0 ∪Q0 be the common refinement of P and Q. Then

L(h, P0, F ) ≤ L(h,R, F ) ≤ U(h,R, F ) ≤ U(h, P0, F ),

so
U(h,R, F )− L(h,R, F ) < inf

Q
U(h,Q, F ) +

ε

2
− sup

P
L(h, P, F ) +

ε

2
= ε.

( ⇐= ) Recall that ∀ partitions P of [a, b]

0 ≤
∫̄ b

a

h dF −
¯

∫ b

a

h dF ≤ U(h, P, F )− L(h, P, F ).

Let ε > 0. Then ∃ a partition Q of [a, b] such that

0 ≤
∫̄ b

a

h dF −
¯

∫ b

a

h dF ≤ U(h,Q, F )− L(h,Q, F ) < ε.

Since ε > 0 was arbitrary, this implies that∫̄ b

a

h dF =

¯

∫ b

a

h dF,

so h is Darboux-Stieltjes integrable with respect to F over [a, b].

We now turn to some sufficient conditions for h to be integrable over [a, b] with respect to
F .
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Theorem 6.2. Let F : [a, b] 7→ R be monotonically increasing with F (a) and F (b) finite.
If h : [a, b] 7→ R is continuous, then h is Darboux-Stieltjes integrable with respect to F over
[a, b].

Proof. Since h is continuous on [a, b] and [a, b] is compact, h is uniformly continuous on
[a, b], and h is bounded on [a, b]. Let ε > 0. Choose δ > 0 such that s, t ∈ [a, b] and
|s− t| < δ implies

|h(s)− h(t)| < ε

2(F (b)− F (a))
.

Now choose a partition P = {tk}nk=0 of [a, b] such that mesh(P ) < δ. (Note that such a
partition exists. We can choose the partition P = {a, a+ δ/2, a+ δ, . . . , b}.) Then

U(h, P, F )− L(h, P, F ) =

n∑
k=1

(Mk(h)−mk(h))∆Fk

=

n∑
k=1

sup
s,t∈[tk−1,tk]

|h(s)− h(t)|∆Fk

≤ ε

2(F (b)− F (a))

n∑
k=1

∆Fk

=
ε

2(F (b)− F (a))
(F (b)− F (a)) < ε.

Therefore, h is Darboux-Stieltjes integrable with respect to F over [a, b] by the Cauchy
criterion for integrability.

Theorem 6.3. Let h : [a, b] 7→ R be bounded and let F : [a, b] 7→ R be monotonically
increasing with F (a) and F (b) finite. If h is monotonic and F is continuous on [a, b], then
h is Darboux-Stieltjes integrable with respect to F over [a, b].

Proof. WLOG assume that h is monotonically increasing. If h(a) = h(b), then for any
partition P of [a, b], Mk(h) = mk(h) = h(a), so that

U(h, P, F )− L(h, P, F ) = 0.

Thus h is integrable. Now assume h(a) < h(b). Let ε > 0. Choose a partition P = {tk}nk=0

of [a, b] such that maxk∈{1,2,...,n} ∆Fk < ε/[h(b) − h(a)]. (Such a partition can be chosen
by the intermediate value theorem.) Note that, since h is increasing Mk(h) = h(tk) and
mk(h) = h(tk−1), so

U(h, P, F )− L(h, P, F ) =

n∑
k=1

(Mk(h)−mk(h))∆Fk

=

n∑
k=1

(h(tk)− h(tk−1))∆Fk

<
ε

h(b)− h(a)

n∑
k=1

(h(tk)− h(tk−1))

=
ε

h(b)− h(a)
[h(b)− h(a)]
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= ε.

Therefore, h is Darboux-Stieltjes integrable over [a, b] by the Cauchy criterion for integra-
bility.

Theorem 6.4. Let F : [a, b] 7→ R be monotonically increasing with F (a) and F (b) finite,
and let h : [a, b] 7→ R be Darboux-Stieltjes integrable with respect to F over [a, b]. If m ≤
h ≤ M and ϕ : [m,M ] 7→ R is continuous, then ϕ ◦ h is Darboux-Stieltjes integrable with
respect to F over [a, b].

Proof. Let ε > 0. Since ϕ is continuous on [m,M ], which is a compact set, ϕ is bounded.
Let K be such that supt∈[m,M ] |ϕ(t)| ≤ K. Furthermore, ϕ is uniformly continuous on
[m,M ], so ∃δ > 0 such that δ < ε/[F (b)−F (a)+2K] and for s, t ∈ [m,M ], |s− t| < δ =⇒
|ϕ(s)− ϕ(t)| < ε/[F (b)− F (a) + 2K].

Since h is Darboux-Stieltjes integrable with respect to F over [a, b], ∃ a partition P =
{tk}nk=0 of [a, b] such that

U(h, P, F )− L(h, P, F ) < δ2.

Define the set A = {k : Mk(h)−mk(h) < δ} and B = {k : Mk(h)−mk(h) ≥ δ}. For k ∈ A,
we have for all x, y ∈ [tk−1, tk], |h(x)− h(y)| ≤ Mk(h)−mk(h) < δ. Thus for k ∈ A,

Mk(ϕ ◦ h)−mk(ϕ ◦ h) = sup
x,y∈[tk−1,tk]

ϕ(h(x))− inf
y∈[tk−1,tk]

ϕ(h(y))

= sup
x,y∈[tk−1,tk]

ϕ(h(x))− ϕ(h(y))

≤ ε

F (b)− F (a) + 2K
,

and for k ∈ B, Mk(ϕ ◦ h)−mk(ϕ ◦ h) ≤ 2K. Then

0 ≤ δ
∑
k∈B

∆Fk ≤
∑
k∈B

(Mk(h)−mk(h))∆Fk ≤ U(h, P, F )− L(h, P, F ) < δ2,

so
∑

k∈B ∆Fk < δ. It follows that

U(ϕ ◦ h, P, F )− L(ϕ ◦ h, P, F ) =

n∑
k=1

(Mk(ϕ ◦ h)−mk(ϕ ◦ h))∆Fk

≤ ε

F (b)− F (a) + 2K

∑
k∈A

∆Fk + 2K
∑
k∈B

∆Fk

≤ ε

F (b)− F (a) + 2K
(F (b)− F (a)) + 2Kδ

<
ε

F (b)− F (a) + 2K
[F (b)− F (a) + 2K] = ε

So far we have discussed Darboux-Stieltjes integrals, but we now turn to show that this
integral is the same as the Riemann-Stieltjes integral. The following definition describes
the Riemann-Stieltjes integral in a way more familiar from calculus.
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Definition 6.5. Given a partition P = {tk}nk=0 of [a, b], an augmentation of P has the
form P ⋆ = P ∪ {t⋆k}nk=1 where t⋆k ∈ [tk−1, tk], k = 1, 2, . . . , n. Given a monotonically
increasing function F : [a, b] 7→ R such that F (a) and F (b) are finite, define the F-mesh
of P as

meshF (P ) = max{∆Fk = F (tk)− F (tk−1) : tk−1, tk ∈ P}.

Let h : [a, b] 7→ R be a bounded function, then Riemann-Stieltjes sum of h with
respect to F over [a, b] is

R(h, P ⋆, F ) =

n∑
k=1

h(t⋆k)∆Fk.

h is said to be Riemann-Stieltjes integrable with respect to F over [a, b] if ∃I ∈ R
such that ∀ε > 0, ∃δ > 0 and a partition P of [a, b] with meshF (P ) < δ implies

|I −R(h, P ⋆, F )| < ε

∀ augmentation P ⋆ of P . In such a case, we write

I =

∫ b

a

h dF.

Theorem 6.5. Let h : [a, b] 7→ R be bounded and let F : [a, b] 7→ R be monotonically
increasing with F (a) and F (b) finite. Then h is Darboux-Stieltjes integrable if and only if
h is Riemann-Stieltjes integrable. In this case, both integrals are equal.

Before we can prove this result, we need a few other preliminary results.

Lemma 6.2. Let h : [a, b] 7→ R be bounded and let F : [a, b] 7→ R be monotonically
increasing with F (a) and F (b) finite. Let M = supx∈[a,b] |h(x)|. Suppose that P and Q are
partitions of [a, b] such that P ⊂ Q, i.e. Q is a refinment of P . If Q has n more elements
than P , then

U(h,Q, F )−L(h,Q, F ) ≤ U(h, P, F )−L(h, P, F ) ≤ U(h,Q, F )−L(h,Q, F )+4MnmeshF (P ).

Proof. Suppose P = {tk}mk=0 and Q = P ∪ {s} with tj−1 < s < tj for some 0 < j ≤ m.
Then

U(h, P, F )− U(h,Q, F ) =

m∑
k=1

Mk(h)∆Fk − [
∑
k ̸=j

Mk∆Fk

+M(h, [tj−1, s])(F (s)− F (tj−1)) +M(h, [s, tj ])(F (tj)− F (s))]

= ( sup
x∈[tj−1,tj ]

h(x)− sup
x∈[tj−1,s]

h(x))(F (s)− F (tj−1))

+ ( sup
x∈[tj−1,tj ]

h(x)− sup
x∈[s,tj ]

h(x))(F (tj)− F (s))

≤ 2M(F (s)− F (tj−1)) + 2M(F (tj)− F (s))

= 2M(F (tj)− F (tj−1))

≤ 2MmeshF (P ).
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Similarly,
L(h,Q, F )− L(h, P, F ) ≤ 2MmeshF (P ).

Combining these two inequalities, we get

(U(h, P, F )− U(h,Q, F )) + (L(h,Q, F )− L(h, P, F )) ≤ 4MmeshF (P )

so that
U(h, P, F )− L(h, P, F ) ≤ U(h,Q, F )− L(h,Q, F ) + 4MmeshF (P )

Repeating this argument n− 1 more times, we obtain the result.

We omit the proof of the following lemma, but the proof is based on the fact that a mono-
tonic function can only have jump discontinuities. This means it is piecewise continuous.
Furthmore, for any ε > 0, there can be at most a finite number of jumps with size greater
than ε. Thus we can always constuct such a partition on the parts where F is continuous
and place points in P at the jumps that are too big, of which there are only finitely many.

Lemma 6.3. If F : [a, b] 7→ R is monotonically increasing with F (a) and F (b) finite, then
∀ε > 0, ∃ a partition P of [a, b] with meshF (P ) < ε.

Proposition 6.3 (Second Cauchy Criterion for Darboux-Stieltjes Integrability). Let h :
[a, b] 7→ R be bounded and let F : [a, b] 7→ R be monotonically increasing with F (a) and
F (b) finite. The h is Darboux-Stieltjes integrable with respect to F over [a, b] if and only if
∀ε > 0, ∃δ > 0 such that if P is a partition of [a, b] with meshF (P ) < δ, then

U(h, P, F )− L(h, P, F ) < ε.

Proof. ( ⇐= ) This clearly implies the Cauchy critertion for integrabilitiy.

( =⇒ ) Let ε > 0, and let M = supx∈[a,b] |h(x)|. If M = 0, then the result is trivial.
Assume M > 0. By the first Cauchy criterion, ∃ an partition P0 = {tk}nk=0 of [a, b] such
that

U(h, P0, F )− L(h, P0, F ) <
ε

2
.

Let δ = ε
8Mn and let P be a partition of [a, b] with meshF (P ) < δ. Then for Q = P ∪ P0

U(h,Q, F )− L(h,Q, F ) ≤ U(h, P0, F )− L(h, P0, F ) <
ε

2

and by the lemma

U(h, P, F )− L(h, P, F ) ≤ U(h,Q, F )− L(h,Q, F ) + 4MnmeshF (P )

≤ ε

2
+ 4Mn · ε

8Mn
= ε.

We are now ready to prove the equivalence of the Riemann-Stieltjes and Darboux-Stieltjes
integrals.
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Proof. ( =⇒ ) Suppose that h is Darboux-Stieltjes integrable with respect to F over [a, b].
Let ε > 0. By the second Cauchy criterion, ∃δ > 0 such that if P is a partition of [a, b]
with meshF (P ) < δ, then

U(h, P, F )− L(h, P, F ) < ε.

Choose such a δ > 0. Let P be a partition of [a, b] with meshF (P ) < δ, and let P ⋆ be
any augmentation of P , that is P ⋆ = {tk}nk=0 ∪ {t⋆k}nk=1, where t⋆k ∈ [tk−1, tk]. Then for
k = 1, 2 . . . , n,

mk(h) ≤ h(t⋆k) ≤ Mk(h),

which implies that
L(h, P, F ) ≤ R(h, P ⋆, F ) ≤ U(h, P, F ).

Thus ∣∣∣∣∣R(h, P ⋆, F )− (Darboux)

∫ b

a

h dF

∣∣∣∣∣ < U(h, P, F )− L(h, P, F ) < ε.

Thus, h is Riemann-Stieltjes integrable with I = (Darboux)
∫ b

a
h dF .

( ⇐= ) Suppose that h is Riemann-Stieltjes integrable with respect to F over [a, b] with
integral I ∈ R. Let ε > 0. Let δ > 0 be such that if P is a partition of [a, b], then
|R(h, P ⋆, F ) − I| < ε/4 for all augmentations P ⋆ of P . Let P = {tk}nk=0 be a partition
of [a, b] with meshF (P ) < δ, and let P ⋆

1 = P ∪ {t⋆k}nk=1 be an augmentation of P with t⋆k
chosen such that h(t⋆k) < mk(h) +

ε
4(F (b)−F (a)) . Let P

⋆
2 = P ∪ {sk}nk=1 be an augmentation

of P with s⋆k chosen such that h(s⋆k) > Mk(h)− ε
4(F (b)−F (a)) . Then

I − ε

4
< R(h, P ⋆

1 , F )

=

n∑
k=1

h(t⋆k)∆Fk

<

n∑
k=1

[
mk(h) +

ε

4(F (b)− F (a))

]
∆Fk

= L(h, P, F ) +
ε

4
,

which implies I − ε
2 < L(h, P, F ) ≤

∫̄ b

a
h dF . Similarly,

I +
ε

4
> R(h, P ⋆

2 , F )

=

n∑
k=1

h(s⋆k)∆Fk

>

n∑
k=1

[
Mk(h)−

ε

4(F (b)− F (a))

]
∆Fk

= U(h, P, F )− ε

4
,

which implies I − ε
2 > U(h, P, F ) ≥

∫̄ b

a
h dF . Thus,

I − ε

2
< L(h, P, F ) ≤

¯

∫ b

a

h dF ≤
∫̄ b

a

h dF ≤ U(h, P, F ) < I +
ε

2
.
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In particular,

0 ≤
∫̄ b

a

h dF −
¯

∫ b

a

h dF ≤ (I +
ε

2
)− (I − ε

2
) = ε,

which implies that h is Darboux-Stieltjes integrable with respect to F over [a, b]. Further-
more, ∣∣∣∣∣I − (Darboux)

∫ b

a

h dF

∣∣∣∣∣ < ε.

6.2 Properties of the Integral

We will now write h ∈ R(F, [a, b]) to mean that h is Riemann-Stieltjes integrable with
respect to F over [a, b].

Proposition 6.4. Let h, h1, h2 : [a, b] 7→ R be bounded, and let F,G : [a, b] 7→ R be
monotonically increasing with F (a), F (b), G(a), and G(b) finite.

a) (Linearity) If h1, h2 ∈ R(F, [a, b]), then c1h1 + c2h2 ∈ R(F, [a, b]) for any c1, c2 ∈ R
and ∫ b

a

(c1h1 + c2h2) dF = c1

∫ b

a

h1 dF + c2

∫ b

a

h2 dF.

b) (Order property) If h1, h2 ∈ R(F, [a, b]) and h1 ≤ h2, then∫ b

a

h1 dF ≤
∫ b

a

h2 dF.

c) (Additivity) If h ∈ R(F, [a, b]) and a < c < b, then h ∈ R(F, [a, c]) and h ∈
R(F, [c, b]). Moreover, ∫ b

a

h dF =

∫ c

a

h dF +

∫ b

c

h dF.

d) (Positive combination) If h ∈ R(F, [a, b]), h ∈ R(G, [a, b]) and k1, k2 are nonnega-
tive constants, then h ∈ R(k1F + k2G, [a, b]) and∫ b

a

h d(k1F + k2G) = k1

∫ b

a

h dF + k2

∫ b

a

h dG.

e) (Absolute integrability) If h ∈ R(F, [a, b]), then |h| ∈ R(F, [a, b]), and∣∣∣∣∣
∫ b

a

h dF

∣∣∣∣∣ ≤
∫ b

a

|h| dF.

Proof. a) First, note that for any partition P of [a, b] that

mk(h1) +mk(h2) ≤ mk(h1 + h2) ≤ Mk(h1 + h2) ≤ Mk(h1) +Mk(h2),
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which implies

L(h1, P, F ) + L(h2, P, F ) ≤ L(h1 + h2, P, F ) ≤ U(h1 + h2, P, F ) ≤ U(h1, P, F ) + U(h2, P, F ). (⋆)

Let ε > 0. Since h1, h2 ∈ R(F, [a, b]), ∃ partitions P1 and P2 of [a, b] such that

U(h1, P1, F )− L(h1, P1, F ) <
ε

2
and U(h2, P2, F )− L(h2, P2, F ) <

ε

2
.

Let P = P1 ∪ P2 be their common refinement. Then by (⋆)

U(h1 + h2, P, F )− L(h1 + h2, P, F ) ≤ (U(h1, P, F )− L(h1, P, F )) + (U(h2, P, F )− L(h2, P, F ))

<
ε

2
+

ε

2
= ε,

so h1 + h2 ∈ R(F, [a, b]) by the Cauchy criterion. Since (⋆) holds for any partition, we
have for all partitions P of [a, b]∫ b

a

(h1 + h2) dF ≤ U(h1, P, F ) + U(h2, P, F )

and

L(h1, P, F ) + L(h2, P, F ) ≤
∫ b

a

(h1 + h2) dF.

Since h1, h2 ∈ R(F, [a, b]), we can choose partitions P1, P2, P3, P4 such that∫ b

a

h1 dF − ε

2
< L(h1, P1, F ) and

∫ b

a

h2 dF − ε

2
< L(h2, P2, F )

and

U(h1, P3, F ) <

∫ b

a

h2 dF +
ε

2
and U(h2, P4, F ) <

∫ b

a

h2 dF +
ε

2
.

Let P = P1 ∪ P2 ∪ P3 ∪ P4. Then∫ b

a

h1 dF +

∫ b

a

h2 dF − ε

2
<

∫ b

a

(h1 + h2) dF <

∫ b

a

h1 dF +

∫ b

a

h2 dF +
ε

2
.

Since ε > 0 was abritrary,
∫ b

a
(h1 + h2) dF =

∫ b

a
h1 dF +

∫ b

a
h2 dF .

The proof that ch ∈ R(F, [a, b]) and
∫ b

a
ch dF = c

∫ b

a
h dF is similar and is left as an

exercise.

b) First, suppose that h ∈ R(F, [a, b]) and h ≥ 0. Let P be a partition of [a, b]. Then
mk(h) ≥ 0 for all k = 1, 2, . . . , n and∫ b

a

h dF ≥ L(h, P, F ) =

n∑
k=1

mk(h)∆Fk ≥ 0.

Now, suppose h1, h2 ∈ R(F, [a, b]) with h1 ≤ h2. Then h2 − h1 ∈ R(F, [a, b]) by part a)
and

0 ≤
∫ b

a

(h2 − h1) dF =

∫ b

a

h2 dF −
∫ b

a

h1 dF.
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c) Let h ∈ R(F, [a, b]) and let a < c < b. Let ε > 0. Choose a partition P0 of [a, b] such
that

U(h, P0, F )− L(h, P0, F ) < ε.

Let P = P0 ∪ {c}. Then, P ∩ [a, c] is a partition of [a, c], and

U(h, P ∩ [a, c], F )− L(h, P ∩ [a, c], F ) ≤ U(h, P, F )− L(h, P, F ) < ε.

Similarly, P ∩ [c, b] is a partition of [c, b], and

U(h, P ∩ [c, b], F )− L(h, P ∩ [c, b], F ) ≤ U(h, P, F )− L(h, P, F ) < ε.

Thus, h ∈ R(F, [a, c]) and h ∈ R(F, [c, b]). Now, let P be any partition of [a, b] and
define P0 = P ∪ {c}, P1 = P0 ∩ [a, c] and P2 = P0 ∩ [c, b]. Then P0 = P1 ∪ P2 and

U(h, P, F ) ≥ U(h, P0, F ) = U(h, P1, F ) + U(h, P2, F ) ≥
∫ c

a

h dF +

∫ b

c

h dF

and

L(h, P, F ) ≤ L(h, P0, F ) = L(h, P1, F ) + L(h, P2, F ) ≤
∫ c

a

h dF +

∫ b

c

h dF.

Since P was arbitrary, we have∫ c

a

h dF +

∫ b

c

h dF ≤
∫ b

a

h dF ≤
∫ c

a

h dF +

∫ b

c

h dF.

d) Left as an exercise.

e) Note that for all x, y ∈ S ⊆ [a, b]

|h(x)| − |h(y)| ≤ ||h(x)| − |h(y)|| ≤ |h(x)− h(y)| ≤ sup
x∈S

h(x)− inf
y∈S

h(y).

This implies that for any partition P of [a, b]

|h(x)| − |h(y)| ≤ Mk(h)−mk(h), ∀x, y ∈ [tk−1, tk], k = 1, 2, . . . , n.

so that
Mk(|h|)−mk(|h|) ≤ Mk(h)−mk(h), k = 1, 2, . . . , n,

which implies

U(|h|, P, F )− L(|h|, P, F ) ≤ U(h, P, F )− L(h, P, F ).

Thus, h ∈ R(F, [a, b]) implies |h| ∈ R(F, [a, b]) by the Cauchy criterion. Note that
|h| − h ≥ 0 and |h|+ h ≥ 0, so by the order property in part b) and linearity of part a)

0 ≤
∫ b

a

(|h| − h) dF =

∫ b

a

|h| dF −
∫ b

a

h dF

and

0 ≤
∫ b

a

(|h|+ h) dF =

∫ b

a

|h| dF +

∫ b

a

h dF.
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Therefore,

−
∫ b

a

|h| dF ≤
∫ b

a

h dF ≤
∫ b

a

|h| dF =⇒

∣∣∣∣∣
∫ b

a

h dF

∣∣∣∣∣ ≤
∫ b

a

|h| dF.

Example 6.1. Let h : [a, b] 7→ R be defined by

h(x) =

{
1, x ∈ Q
−1, x ∈ R \Q

.

Then for any partition P = {tk}nk=0, Mk(h) = 1 and mk(h) = −1 for all k = 1, 2, . . . n, so

L(h, P, F ) =

n∑
k=1

mk(h)∆Fk = −1[F (b)− F (a)] =⇒
¯

∫ b

a

h dF = F (a)− F (b)

and

U(h, P, F ) =

n∑
k=1

Mk(h)∆Fk = F (b)− F (a) =⇒
∫̄ b

a

h dF = F (b)− F (a).

Thus h is not integrable, but |h| = 1 for all x ∈ [a, b] so∫ b

a

h(x) dF = F (b)− F (a).

This example shows that |h| ∈ R(F, [a, b]) ̸ =⇒ h ∈ R(F, [a, b]).

Proposition 6.5. Let F : [a, b] 7→ R be monotonically increasing with F (a) and F (b)
finite, and let h, g : [a, b] 7→ R be bounded. If h, g ∈ R(F, [a, b]), then hg ∈ R(F, [a, b]).

Proof. Note that

hg =
(h+ g)2 − (h− g)2

4
.

h, g ∈ R(F, [a, b]) =⇒ h + g, h − g ∈ R(F, [a, b]) and with ϕ(t) = t2, (h + g)2, (h − g)2 ∈
R(F, [a, b]) by Theorem 6.4. Thus hg ∈ R(F, [a, b]).

We now turn to two special cases of the Riemann-Stieltjes integral relevant to expecta-
tions of discrete and continuous random variables. Let s be fixed. Recall the indicator
function

I(x ≥ s) =

{
1, x ≥ s

0, x < s.

Before proving the expectation formula in the discrete case, we will prove a special case.

Proposition 6.6. If a < s < b, h : [a, b] 7→ R is bounded, h is continuous at s, and
F (x) = I(x ≥ s), then ∫ b

a

h dF = h(s).
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Proof. Note that F (b) = 1, F (a) = 0, and F is increasing. Let P = {t0, t1, t2, t3} be a
partition of [a, b] with a = t0 < t1 < t2 = s < t3 = b. Then F (t2) = F (t3) = 1 and
F (t0) = F (t1) = 0, so

U(h, P, F ) =

3∑
k=1

Mk∆Fk = M2 and L(h, P, F ) =

3∑
k=1

mk∆Fk = m2.

Let ε > 0. Since h is continuous at s, ∃δ > 0 such that |s− t| < δ =⇒ |h(t)− h(s)| < ε/2.
Choose t1 = s− δ/2, then |t− s| < δ for all t ∈ [t1, s], which implies

|h(t)− h(s)| < ε

2
, ∀t ∈ [t1, s].

Therfore,

M2 −m2 = sup
t∈[t1,s]

h(t)− inf
t∈[t1,s]

h(t)

= sup
t∈[t1,s]

h(t) + sup
t∈[t1,s]

[−h(t)]

= sup
u,v∈[t1,s]

[h(u)− h(v)]

= sup
u,v∈[t1,s]

[h(u)− h(s) + h(s)− h(v)]

≤ sup
u∈[t1,s]

[h(u)− h(s)] + sup
v∈[t1,s]

[h(s)− h(v)]

≤ ε

2
+

ε

2
.

Thus h is integrable with respect to F over [a, b]. Moreover, for every choice of a < t1 < s

m2 ≤ h(s) ≤ M2,

so ∣∣∣∣∣
∫ b

a

h dF − h(s)

∣∣∣∣∣ ≤ M2 −m2 ≤ ε.

Thus, ∫ b

a

h dF = h(s).

Proposition 6.7. Suppose cn ≥ 0 for all n ≥ 1,
∑∞

n=1 cn converges, (tn)n is sequence of
distinct points in (a, b), and

F (x) =

∞∑
n=1

cnI(x ≥ tn).

If h is continuous on [a, b], the ∫ b

a

h dF =

∞∑
n=1

cnh(tn).
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Proof. First, note that ∣∣∣∣∣
∞∑

n=1

cnI(x ≥ tn)

∣∣∣∣∣ ≤
∞∑

n=1

cn < ∞,

so F (x) converges for all x ∈ [a, b] by the comparison test. Furthermore, F is clearly in-
creasing with F (a) = 0 and F (b) =

∑∞
n=1 cn. Also, h continuous on [a, b] implies that h is

bounded on [a, b]. Let M = supx∈[a,b] |h(x)|. Now, let ε > 0. Choose an N ∈ N such that

∞∑
n=N+1

cn <
ε

M
.

Put

F1(x) =

N∑
n=1

cnI(x ≥ tn) and F2(x) =

∞∑
n=N+1

cnI(x ≥ tn).

Then F = F1 + F2, and by Propositions 6.4c) and 6.6,∫ b

a

h dF1 =

N∑
n=1

cnh(tn).

Since F2(b)− F2(a) = F2(b) =
∑∞

n=N+1 cn < ε
M , we have∣∣∣∣∣

∫ b

a

h dF2

∣∣∣∣∣ ≤ M [F2(b)− F2(a)] < M
ε

M
= ε.

Thus, by Proposition 6.4 d),∣∣∣∣∣
∫ b

a

h dF −
N∑

n=1

cnh(tn)

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

h dF1 +

∫ b

a

h dF2 −
N∑

n=1

cnh(tn)

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

h dF2

∣∣∣∣∣ < ε.

Since ε > 0 was arbitrary, we obtain that

∞∑
n=1

cnh(tn) = lim
N→∞

N∑
n=1

cnh(tn) =

∫ b

a

h dF.

Proposition 6.8. Suppose that F : [a, b] 7→ R is monotonically increasing and differen-
tiable on [a, b] with F (a) and F (b) finite. Let h : [a, b] 7→ R be bounded. If F ′ ∈ R([a, b]),
then h ∈ R(F, [a, b]) if and only if hF ′ ∈ R([a, b]). In this case,∫ b

a

h dF =

∫ b

a

hF ′ dt.

Proof. Let ε > 0. Put M = supx∈[a,b] |h(x)|. Since F ′ ∈ R([a, b]), there exists a partition
P = {t0, t1, . . . , tn} such that

U(F ′, P )− L(F ′, P ) <
ε

M
.
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By the MVT, for each j = 1, 2, . . . , n, there exists an sj ∈ [tj−1, tj ] such that ∆Fj =
F ′(sj)∆tj . Let xj ∈ [tj−1, tj ]. Then

n∑
k=1

|F ′(sj)− F ′(xj)|∆tj ≤ U(F ′, P )− L(F ′, P ) <
ε

M
.

Since ∆Fj = F ′(sj)∆tj , it follows that∣∣∣∣∣∣
n∑

j=1

h(xj)∆Fj −
n∑

j=1

h(xj)F
′(xj)∆tj

∣∣∣∣∣∣ ≤ M

n∑
k=1

|F ′(sj)− F ′(xj)|∆tj < ε.

In particular,

n∑
j=1

h(xj)∆Fj ≤ U(hF ′, P ) + ε and

n∑
j=1

h(xj)F
′(xj)∆tj ≤ U(h, P, F ) + ε.

Since xj ∈ [tj−1, tj ] was arbitrary, this implies that

U(h, P, F ≤ U(hF ′, P ) + ε and U(hF ′, P ) ≤ U(h, P, F ) + ε,

and hence that ∫̄ b

a

h dF ≤ U(hF ′, P ) + ε and

∫̄ b

a

hF ′ dt ≤ U(h, P, F ) + ε.

Note that if Q is another partition of [a, b], then our entire argument so far also holds us-
ing the refinement P ∪Q. In particular, we obtain∫̄ b

a

h dF ≤ U(hF ′, P∪Q)+ε ≤ U(hF ′, Q)+ε and

∫̄ b

a

hF ′ dt ≤ U(h, P∪Q,F )+ε ≤ U(h,Q, F )+ε.

Since Q was an arbitrary partition, the previous inequalities imply∫̄ b

a

h dF ≤
∫̄ b

a

hF ′ dt+ ε and

∫̄ b

a

hF ′ dt ≤
∫̄ b

a

h dF + ε.

Since ε > 0 was arbitrary, this implies that∫̄ b

a

h dF =

∫̄ b

a

hF ′ dt.

The equality
∫̄ b

a
h dF =

∫̄ b

a
h′ dF follows in exactly the same manner. Hence, the theorem

follows.

Theorem 6.6 (Change of Variables). Suppose F : [a, b] 7→ R is monotonically increasing
with F (b) and F (a) finite. Let ϕ : [A,B] 7→ [a, b] be strictly increasing and continuous, and
let h ∈ R(F, [a, b]). Define β, g : [A,B] 7→ R by

β(y) = F (ϕ(y)) and g(y) = h(ϕ(y)).

Then g ∈ R(β, [A,B]) and ∫ B

A

g dβ =

∫ b

a

h dF.
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Proof. To each partition P = {t0, t1, . . . , tn} of [a, b], there exists a unique partition Q =
{y0, y1, . . . , yn} such that tj = ϕ(yj), and vice versa. Then

∆Fj = F (tj)− F (tj−1) = F (ϕ(yj))− F (ϕ(yj−1)) = β(yj)− β(yj−1) = ∆βj ,

for each j = 1, 2, . . . , n. Since the values taken by h on [tj−1, tj ] are the same as those
taken by g on [yj−1, yj ], we see that

U(g,Q, β) = U(h, P, F ) and L(g,Q, β) = L(h, P, F ).

Let ε > 0. Since h ∈ R(F, [a, b]), ∃ a partition P of [a, b] such that

U(h, P, F )− L(h, P, F ) < ε.

Then
U(g,Q, β)− L(g,Q, β) < ε

where Q is the unique partition of [A,B] corresponding to P described above. Thus, g ∈
R(β, [A,B]) by the Cauchy criterion for integrability and∫ B

A

g dβ = inf
Q

U(g,Q, β) = inf
P

U(h, P, F ) =

∫ b

a

h dF.

The change of variables formula for Riemann integrals follows by combining the previous
two results.

Corollary 6.2 (Change of Variable for Riemann Integral). If h ∈ R([a, b]) and if ϕ :
[A,B] 7→ [a, b] is strictly increasing and differentiable with ϕ′ ∈ R([A,B]), then∫ b

a

f(x) dx =

∫ B

A

f(ϕ(y))ϕ′(y) dy,

where a = ϕ(A) and b = ϕ(B).

6.3 Integration and Differentiation

Theorem 6.7. Let f ∈ R([a, b]). Define

F (x) =

∫ x

a

f(t) dt, x ∈ [a, b].

Then F is continuous on [a, b]. Furthermore, if f is continuous at c ∈ [a, b], then F is
differentiable at c with F ′(c) = f(c).

Proof. Let M = supx∈[a,b] |f(x)| < ∞. If a ≤ x < y ≤ b, then

|F (y)− F (x)| =
∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ ≤ M |y − x|.
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Hence, F is uniformly continuous on [a, b] (and so also continuous). Now, suppose f is
continuous c ∈ [a, b]. Let ε > 0. Choose δ > 0 such that

|f(t)− f(c)| < ε, ∀t ∈ [a, b], |t− c| < δ.

Then, for any x ∈ [a, b] such that c− δ < x < c∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ = 1

x− c

∣∣∣∣∫ c

x

(f(t)− f(c)) dt

∣∣∣∣ < ε.

Similarly, for x ∈ [a, b] such that c < x < c+ δ,∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ = 1

c− x

∣∣∣∣∫ x

c

(f(t)− f(c)) dt

∣∣∣∣ < ε.

Hence, for all x ∈ [a, b] such that 0 < |x− c| < δ∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ < ε.

Since ε > 0 was arbitrary, F ′(c) = f(c).

Theorem 6.8 (Fundamental Theorem of Calculus). If f ∈ R([a, b]), and if there exists a
differentiable functions F on [a, b] such that F ′ = f , then∫ b

a

f(x) dx = F (b)− F (a).

Proof. Let ε > 0. Choose a partition P = {t0, t1, . . . , tn} of [a, b] such that U(f, P ) −
L(f, P ) < ε. By the MVT, ∃xj ∈ [tj−1, tj ] such that

F (tj)− F (tj−1) = f(xj)∆tj , j = 1, 2 . . . , n.

Then
n∑

j=1

f(xj)∆tj =

n∑
j=1

[F (tj)− F (tj−1)] = F (b)− F (a).

But,

L(f, P ) ≤
n∑

j=1

f(xj)∆tj ≤ U(f, P ) and L(f, P ) ≤
∫ b

a

f(x) dx ≤ U(f, P ).

Hence, ∣∣∣∣∣F (b)− F (a)−
∫ b

a

f(x) dx

∣∣∣∣∣ < ε.

Since ε > 0 was arbitrary, this completes the proof.

Theorem 6.9 (Integration by Parts). Suppose that F,G : [a, b] 7→ R are differentiable on
[a, b] with F ′ = f ∈ R([a, b]) and G′ = g ∈ R([a, b]). Then∫ b

a

F (x)g(x) dx = F (b)G(b)− F (a)G(a)−
∫ b

a

f(x)G(x) dx.
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Proof. Since F and G are differentiable on [a, b], they are continuous on [a, b], and hence,
F,G ∈ R([a, b]). Thus, Fg ∈ R([a, b]) and fG ∈ R([a, b]). Let H(x) = F (x)G(x) on [a, b].
Then H ′(x) = f(x)G(x) + F (x)g(x), so H ′ ∈ R([a, b]). Therefore, by the Fundamental
Theorem of Calculus

F (b)G(b)− F (a)G(a) = H(b)−H(a) =

∫ b

a

H ′(x) dx =

∫ b

a

f(x)G(x) dx+

∫ b

a

F (x)g(x) dx,

completing the proof.

6.4 Improper Riemann-Stieltjes Integrals

Throughout let F : R 7→ R be a monotonically increasing function with F (b−) = limt→b− F (t)
and F (a+) = limt→a+ F (t) finite.

Definition 6.6. Let (a, b) ⊆ R, where −∞ ≤ a < b ≤ ∞, and h : (a, b) 7→ R. We
say that h is locally Riemann-Stieltjes integrable on (a, b) if h ∈ R(F, [c, d]) for all
[c, d] ⊂ (a, b). We say that h is improperly Riemann-Stieltjes integrable on (a, b) if h
is locally integrable on (a, b) and the limit∫ b

a

h dF = lim
c→a+

lim
d→b−

∫ d

c

h dF (⋆)

exists and is finite. In this case, the limit is called the improper Riemann-Stieltjes
integral of h on (a, b).

Lemma 6.4. The order of the limits in (⋆) does not matter. In particular, if the limit in
(⋆) exists and is finite, then the limit

lim
d→b−

lim
c→a+

∫ d

c

h dF

exists and is finite and is equal to the limit in (star).

Proof. Let x0 ∈ (a, b). Then

lim
c→a+

lim
d→b−

∫ d

c

h dF = lim
c→a+

∫ x0

c

h dF + lim
d→b−

∫ d

x0

h dF.

Since for each c ∈ (a, b), limd→b−
∫ d

c
h dF exists, we have

lim
x0→b−

lim
d→b−

∫ d

x0

h dF = lim
x0→b−

[
lim

d→b−

(∫ d

c

h dF −
∫ x0

c

h dF

)]

= lim
x0→b−

[
lim

d→b−

∫ d

c

h dF −
∫ x0

c

h dF

]

= lim
d→b−

∫ d

c

h dF − lim
x0→b−

∫ x0

c

h dF

= 0.
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Thus,

lim
x0→b−

lim
c→a+

∫ x0

c

h dF = lim
x0→b−

[
lim

c→a+
lim

d→b−

∫ d

c

h dF − lim
d→b−

∫ d

x0

h dF

]
= lim

c→a+
lim

d→b−

∫ d

c

h dF.

Note 6.5. If h is integrable with respect to F on [c, b] for all c ∈ (a, b), then the improper
Riemann-Stieltjes integral of h on (a, b] is also given by∫ b

a

h dF = lim
c→a+

∫ b

c

h dF.

If this limit exists and is finite, then we also say that h is improperly Riemann-Stieltjes
integrable with respect to F on (a, b]. A similar situation applies at the endpoint b,
in which we can say that h is improperly Riemann-Stieltjes integrable with re-
spect to F on [a, b).

It is easily seen that h is improperly integrable with respect to F on (a, b) if and only if h
is imporperly integrable with respect to F on (a, c] and on [c, b) for all c ∈ (a, b). In this
case, we have ∫ b

a

h dF =

∫ c

a

h dF +

∫ b

c

h dF.

Proposition 6.9. The function h(x) = 1/xp is improperly Riemann integrable on (0, 1] if
and only if p < 1, and is improperly Riemann integrable on [1,∞) if and only if p > 1.

Proof. Exercise.

Proposition 6.10 (Linearity). Let k, l ∈ R. If g, h are improperly Riemann-Stieltjes in-
tegrable with respect to F on (a, b), then kh+ lg is improperly Riemann-Stieltjes integrable
with respect to F on (a, b), and∫ b

a

[kh+ lg] dF = k

∫ b

a

h dF + l

∫ b

a

g dF.

Proof. This follows immediately from the linearity property on each subinterval [c, d] of
(a, b).

Proposition 6.11 (Comparison Theorem for Improper Integrals). Suppose that h, g are
locally integrable with respect to F on (a, b), and 0 ≤ h(x) ≤ g(x) for all x ∈ (a, b). If g is
improperly Riemann-Stieltjes integrable with respect to F on (a, b), then so is h and∫ b

a

h dF ≤
∫ b

a

g dF.

Proof. Fix c ∈ (a, b). Define H(d) =
∫ d

c
h dF and G(d) =

∫ d

c
g dF for d ∈ [c, b). Then by

the order property for proper Riemann-Stieltjes integrals, H(d) ≤ G(d) for d ∈ [c, b). Note
that both H and G are increasing on [c, b), and G(b−) exists and is finite. Hence, H is
increasing and bounded above, so H(b−) exists and is finite. This shows that h is improp-
erly Riemann-Stieltjes integrable with repsect to F on [c, b) for all c ∈ (a, b). A similar
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argument shows that h is improperly Riemann-Stieltjes integrable with repsect to F on
(a, c] for all c ∈ (a, b), so h is improperly Riemann-Stieltjes integrable with repsect to F
on (a, b). The order property follows easily from the order property of proper integrals on
all subintervals [c, d] of (a, b).

Example 6.2. Show that h(x) = (sinx)/x3/2 is improperly Riemann integrable on (0, 1].

Solution. Since 0 ≤ sinx ≤ x for all x ∈ [0, 1] (you can use elementary calculus to prove
it!), it follows that

0 ≤ h(x) ≤ x · x−3/2 = x−1/2, ∀x ∈ (0, 1].

Since x−1/2 is improperly Riemann integrable on (0, 1], h is also improperly Riemann in-
tegrable on (0, 1] by the comparison theorem.

Example 6.3. Show that h(x) = (lnx)/x5/2 is improperly Riemann integrable on [1,∞).

Solution. Since 0 ≤ lnx ≤ x for x ∈ [1,∞), it follows that

0 ≤ h(x) ≤ x · x−5/2 = x−3/2, ∀x ∈ [1,∞).

Since x−3/2 is improperly Riemann integrable on [1,∞), h is also by the comparison theo-
rem.

Corollary 6.3. If h is bounded and locally integrable with respect to F on (a, b), and |g|
is improperly Riemann-Stieltjes integrable with respect to F on (a, b), then |hg| is improp-
erly Riemann-Stieltjes integrable with respect to F on (a, b).

Proof. Note that 0 ≤ |hg| ≤ M |g|. The result follows by the comparison theorem.

Definition 6.7. Let h : (a, b) 7→ R. We say that h is absolutely integrable with
respect to F on (a, b) if h is locally integrable with respect to F on (a, b) and |h| is im-
properly integrable with respect to F on (a, b). We say that h is conditionally improp-
erly integrable with respect to F on (a, b) if h is improperly integrable on (a, b) but
|h| is not improperly integrable on (a, b).

Proposition 6.12. If h is absolutely integrable with respect to F on (a, b), then h is im-
properly integrable with respect to F on (a, b), and∣∣∣∣∣

∫ b

a

h dF

∣∣∣∣∣ ≤
∫ b

a

|h| dF.

Proof. Since 0 ≤ |h| + h ≤ 2|h|, |h| + h is improperly integrable with respect to F on
(a, b) by the comparison theorem. Hence, by linearity of the integral, h = (|h|+ h)− |h| is
improperly integrable with respect to F on (a, b). Furthermore, for every subinterval [c, d]
of (a, b), we have ∣∣∣∣∣

∫ d

c

h dF

∣∣∣∣∣ ≤
∫ d

c

|h| dF.

The result then follows by letting c → a+ and d → b−.

The converse of Proposition 6.12 is false as the following example shows.
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Example 6.4. Integrating by parts, we have for all d > 1∫ d

1

sinx

x
dx = − cosx

x

∣∣∣d
1
−
∫ d

1

cosx

x2
dx.

Since 1/x2 is improperly integrable on [1,∞), we have that cosx/x2 is absolutely inte-
grable on [1,∞), and hence, it is improperly integrable on [1,∞). Taking the limit as
d → ∞, we have ∫ ∞

1

sinx

x
dx = − cos(1)−

∫ ∞

1

cosx

x2
dx

exists and is finite. This proves that sinx/x is improperly integrable on [1,∞).

We now show that | sinx|/x is not improperly integrable on [1,∞), which proves that
sinx/x is conditionally integrable on [1,∞). Note that if n ∈ N and n ≥ 2, then∫ nπ

1

| sinx|
x

dx ≥
n∑

k=2

∫ kπ

(k−1)π

| sinx|
x

dx ≥
n∑

k=2

1

kπ

∫ kπ

(k−1)π

| sinx| dx =
2

π

n∑
k=2

1

k
.

Hence,

lim
n→∞

∫ nπ

1

| sinx|
x

dx = ∞.

We now turn to expectations of discrete and continuous random variables.

Example 6.5. Suppose that X is a discrete random variable with CDF F . Let {xn, n ≥
1} be the support of X and let pn = F (xn) − F (xn−) = P (X = xn), and suppose
that E|X| =

∑∞
n=1 |xn|pn < ∞. Since F is a CDF, it is monotonically increasing with

F (∞) = 1 and F (−∞) = 0. Furthermore, note that

F (x) =

∞∑
n=1

pnI(x ≥ xn), pn ≥ 0, ∀n ≥ 1 and

∞∑
n=1

pn = 1 < ∞.

Let h : R → R be defined by h(x) = x. Then |h| is continuous on [a, b] for all −∞ < a <
b < ∞, so for all −∞ < a < b < ∞∫ b

a

|h| dF =

∞∑
n=1

|h(xn)|I(a ≤ xn ≤ b)pn

by Proposition 6.7. Since

∞∑
n=1

|h(xn)|I(a ≤ xn ≤ b)pn ≤
∞∑

n=1

|xn|pn < ∞,

the series converges uniformly in a and b over R by the M-test. By applying Theorem 4.3
twice, we have

lim
a→−∞

lim
b→∞

∫ b

a

|h| dF = lim
a→−∞

lim
b→∞

∞∑
n=1

|h(xn)|I(a ≤ xn ≤ b)pn

=

∞∑
n=1

lim
a→−∞

lim
b→∞

|h(xn)|I(a ≤ xn ≤ b)pn
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=

∞∑
n=1

|xn|pn

= E|X| < ∞.

Thus, h is improperly Riemann-Stieltjes integrable on R and by a similar argument∫ ∞

−∞
h dF =

∞∑
n=1

xnpn = EX.

Example 6.6. Suppose that X is a continuous random variable with CDF F and pdf
f = F ′. Suppose that

E|X| =
∫ ∞

−∞
|x|f(x) dx < ∞.

Let h(x) = x. Since F is a CDF it is monotonically increasing with F (∞) = 1 and
F (−∞) = 0. Furthermore, f = F ′ is a continuous function which is improperly Riemann
integrable on R with ∫ ∞

−∞
f(x) dx = 1 and F (x) =

∫ x

−∞
f(t) dt.

In particular, |h|f is absolutely integrable on R by assumption, so by Proposition 6.8∫ ∞

−∞
|x| dF = lim

a→−∞
lim
b→∞

∫ b

a

|x| dF

= lim
a→−∞

lim
b→∞

∫ b

a

|x|f(x) dx

=

∫ ∞

−∞
|x|f(x) dx < ∞.

Thus, h(x) = x is absolutely integrable with respect to F on R, and hence improperly
integrable with respect to F over R. Again, by Proposition 6.8,∫ ∞

−∞
x dF = lim

a→−∞
lim
b→∞

∫ b

a

x dF

= lim
a→−∞

lim
b→∞

∫ b

a

xf(x) dx

=

∫ ∞

−∞
xf(x) dx

= EX.

6.5 Uniform Convergence and Integration

Proposition 6.13. Let F : [a, b] 7→ R is monotonically increasing with F (b) and F (a)
finite. Suppose that hn ∈ R(F, [a, b]), n ≥ 1, and suppose that hn → h uniformly on [a, b].
Then h ∈ R(F, [a, b]), and ∫ b

a

h dF = lim
n→∞

∫ b

a

hn dF.
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Proof. Let
εn = sup

x∈[a,b]

|hn(x)− h(x)|.

Then, for all x ∈ [a, b],
hn − εn ≤ h ≤ hn + εn,

so for any partition P of [a, b]

L(hn + εn, P, F ) ≤ L(h, P, F ) ≤ U(h, P, F ) ≤ U(hn + εn, P, F ).

Thus, ∫ b

a

(hn + εn) dF ≤
¯

∫ b

a

h dF ≤
∫̄ b

a

h dF ≤
∫ b

a

(hn + εn) dF. (⋆)

This implies that

0 ≤
∫̄ b

a

h dF −
¯

∫ b

a

h dF ≤ 2εn[F (b)− F (a)].

Since εn → 0,
∫̄ b

a
h dF =

∫̄ b

a
h dF , so h ∈ R(F, [a, b]). By two more applications of (⋆),

have ∣∣∣∣∣
∫ b

a

h dF −
∫ b

a

hn dF

∣∣∣∣∣ ≤ εn[F (b)− F (a)].

Again, εn → 0, so
∫ b

a
h dF = limn→∞

∫ b

a
hn dF .

6.6 Applications in Probability and Statistics

� Expectation in terms of integral for both discrete and continuous cases.

� Integral inequalities: e.g. Holder, Jensen, Cauchy-Schwarz

� Convergence of moments and Helly-Bray Theorem



Chapter 7

Measure Theory and the Lebesgue
Integral

7.1 Measurable Spaces

7.2 Lebesgue-Stieltjes Measures

7.3 Measurable Mappings

7.4 Modes of Convergence

7.5 Lebesgue Integration
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