library(readr)
## Warning: package 'readr' was built under R version 3.4.1
bladder.dat <- read_csv("~/BiostatCourses/PublicHealthComputing/Lectures/Week10GLM/R/bladder.csv")
## Parsed with column specification:
## cols(
## time = col_integer(),
## x = col_integer(),
## n = col_integer()
## )
head(bladder.dat)
## # A tibble: 6 x 3
## time x n
## <int> <int> <int>
## 1 2 0 1
## 2 3 0 1
## 3 6 0 1
## 4 8 0 1
## 5 9 0 1
## 6 10 0 1
bladder.mod1 <- glm(n ~ x + offset(log(time)),data=bladder.dat,family=poisson(link="log"))
summary(bladder.mod1)
##
## Call:
## glm(formula = n ~ x + offset(log(time)), family = poisson(link = "log"),
## data = bladder.dat)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.35767 -0.71501 0.03659 0.66352 2.43000
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.3394 0.1768 -13.234 <2e-16 ***
## x 0.2292 0.3062 0.749 0.454
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 25.964 on 30 degrees of freedom
## Residual deviance: 25.419 on 29 degrees of freedom
## AIC: 100.23
##
## Number of Fisher Scoring iterations: 5