Correlated Binary and Count Data

When dealing with correlated data, it is important to account for this dependence structure. Most of the standard methods we have discussed assume a random sample (independent units). If this assumption is violated (as it is for correlated data), these methods will results in incorrect standard errors and type-1 error rates. We looked at linear mixed models last week as a way to handle correlated data for quantitative responses. This week we will discuss how to handle correlated binary and count data. With independent binaray and count data, we have discussed logistic and poisson regression models (generalized linear models). For correlated binary and count data, we have two options

  • GEE - generalized estimating equations (marginal model)
  • GLMM - generlaized linear mixed models

Here we will very briefly discuss these models and learn how to fit them with SAS and R. Let's begin with an example of correlated binary data. This data is from a clinical trial comparing two treatments for a respiratory illness.

  • N=111: 57 placebo (trt=1), 54 active treatment (trt=2)
  • Respiratory status was measured at 4 time points (0=poor, 1=good)
  • Also measured: center, gender, age, baseline status

For this data, the subjects are independent of each other, but the repeated measures on each subject over the 4 times points are correlated.

Summary Measures Analysis

Before we go into GEE, note that we can still do a simple analysis using summary measures analysis. Our goal here is to see if the treatment has an effect on respiratory status. Since the respiratory status is binary, we can compare proportions between the two groups by calculating the proportion of positive (response = 1) status visits for each subject as our summary measure. We can then perform a t-test on the two groups with the response as the proportion of good respiratory status visits.

In [1]:
data resptrial;
 input id center treat sex age bl v1-v4; 
cards;
1   1   1   1   46  0   0   0   0   0
2   1   1   1   28  0   0   0   0   0
3   1   2   1   23  1   1   1   1   1
4   1   1   1   44  1   1   1   1   0
5   1   1   2   13  1   1   1   1   1
6   1   2   1   34  0   0   0   0   0
7   1   1   1   43  0   1   0   1   1
8   1   2   1   28  0   0   0   0   0
9   1   2   1   31  1   1   1   1   1
10  1   1   1   37  1   0   1   1   0
11  1   2   1   30  1   1   1   1   1
12  1   2   1   14  0   1   1   1   0
13  1   1   1   23  1   1   0   0   0
14  1   1   1   30  0   0   0   0   0
15  1   1   1   20  1   1   1   1   1
16  1   2   1   22  0   0   0   0   1
17  1   1   1   25  0   0   0   0   0
18  1   2   2   47  0   0   1   1   1
19  1   1   2   31  0   0   0   0   0
20  1   2   1   20  1   1   0   1   0
21  1   2   1   26  0   1   0   1   0
22  1   2   1   46  1   1   1   1   1
23  1   2   1   32  1   1   1   1   1
24  1   2   1   48  0   1   0   0   0
25  1   1   2   35  0   0   0   0   0
26  1   2   1   26  0   0   0   0   0
27  1   1   1   23  1   1   0   1   1
28  1   1   2   36  0   1   1   0   0
29  1   1   1   19  0   1   1   0   0
30  1   2   1   28  0   0   0   0   0
31  1   1   1   37  0   0   0   0   0
32  1   2   1   23  0   1   1   1   1
33  1   2   1   30  1   1   1   1   0
34  1   1   1   15  0   0   1   1   0
35  1   2   1   26  0   0   0   1   0
36  1   1   2   45  0   0   0   0   0
37  1   2   1   31  0   0   1   0   0
38  1   2   1   50  0   0   0   0   0
39  1   1   1   28  0   0   0   0   0
40  1   1   1   26  0   0   0   0   0
41  1   1   1   14  0   0   0   0   1
42  1   2   1   31  0   0   1   0   0
43  1   1   1   13  1   1   1   1   1
44  1   1   1   27  0   0   0   0   0
45  1   1   1   26  0   1   0   1   1
46  1   1   1   49  0   0   0   0   0
47  1   1   1   63  0   0   0   0   0
48  1   2   1   57  1   1   1   1   1
49  1   1   1   27  1   1   1   1   1
50  1   2   1   22  0   0   1   1   1
51  1   2   1   15  0   0   1   1   1
52  1   1   1   43  0   0   0   1   0
53  1   2   2   32  0   0   0   1   0
54  1   2   1   11  1   1   1   1   0
55  1   1   1   24  1   1   1   1   1
56  1   2   1   25  0   1   1   0   1
57  2   1   2   39  0   0   0   0   0
58  2   2   1   25  0   0   1   1   1
59  2   2   1   58  1   1   1   1   1
60  2   1   2   51  1   1   0   1   1
61  2   1   2   32  1   0   0   1   1
62  2   1   1   45  1   1   0   0   0
63  2   1   2   44  1   1   1   1   1
64  2   1   2   48  0   0   0   0   0
65  2   2   1   26  0   1   1   1   1
66  2   2   1   14  0   1   1   1   1
67  2   1   2   48  0   0   0   0   0
68  2   2   1   13  1   1   1   1   1
69  2   1   1   20  0   1   1   1   1
70  2   2   1   37  1   1   0   0   1
71  2   2   1   25  1   1   1   1   1
72  2   2   1   20  0   0   0   0   0
73  2   1   2   58  0   1   0   0   0
74  2   1   1   38  1   1   0   0   0
75  2   2   1   55  1   1   1   1   1
76  2   2   1   24  1   1   1   1   1
77  2   1   2   36  1   1   0   0   1
78  2   1   1   36  0   1   1   1   1
79  2   2   2   60  1   1   1   1   1
80  2   1   1   15  1   0   0   1   1
81  2   2   1   25  1   1   1   1   0
82  2   2   1   35  1   1   1   1   1
83  2   2   1   19  1   1   0   1   1
84  2   1   2   31  1   1   1   1   1
85  2   2   1   21  1   1   1   1   1
86  2   2   2   37  0   1   1   1   1
87  2   1   1   52  0   1   1   1   1
88  2   2   1   55  0   0   1   1   0
89  2   1   1   19  1   0   0   1   1
90  2   1   1   20  1   0   1   1   1
91  2   1   1   42  1   0   0   0   0
92  2   2   1   41  1   1   1   1   1
93  2   2   1   52  0   0   0   0   0
94  2   1   2   47  0   1   1   0   1
95  2   1   1   11  1   1   1   1   1
96  2   1   1   14  0   0   0   1   0
97  2   1   1   15  1   1   1   1   1
98  2   1   1   66  1   1   1   1   1
99  2   2   1   34  0   1   1   0   1
100 2   1   1   43  0   0   0   0   0
101 2   1   1   33  1   1   1   0   1
102 2   1   1   48  1   1   0   0   0
103 2   2   1   20  0   1   1   1   1
104 2   1   2   39  1   0   1   0   0
105 2   2   1   28  0   1   0   0   0
106 2   1   2   38  0   0   0   0   0
107 2   2   1   43  1   1   1   1   1
108 2   2   2   39  0   1   1   1   1
109 2   2   1   68  0   1   1   1   1
110 2   2   2   63  1   1   1   1   1
111 2   2   1   31  1   1   1   1   1
;
run;

data resp2; set resptrial;
 ngood=sum(of v1-v4);
 visits=4;
 mnstatus=mean(of v1-v4);
 arcsin=arsin(mnstatus);
run;

proc ttest data=resp2;
  class treat;
  var mnstatus arcsin;
run;
SAS Connection established. Subprocess id is 9956

Out[1]:
SAS Output

SAS Output

The TTEST Procedure

mnstatus

The SAS System

The TTEST Procedure

Variable: mnstatus

Statistics

treat N Mean Std Dev Std Err Minimum Maximum
1 57 0.4430 0.3981 0.0527 0 1.0000
2 54 0.6852 0.3704 0.0504 0 1.0000
Diff (1-2)   -0.2422 0.3849 0.0731    

Confidence Limits

treat Method Mean 95% CL Mean Std Dev 95% CL Std Dev
1   0.4430 0.3373 0.5486 0.3981 0.3361 0.4884
2   0.6852 0.5841 0.7863 0.3704 0.3114 0.4573
Diff (1-2) Pooled -0.2422 -0.3871 -0.0973 0.3849 0.3399 0.4438
Diff (1-2) Satterthwaite -0.2422 -0.3868 -0.0976      

T-Tests

Method Variances DF t Value Pr > |t|
Pooled Equal 109 -3.31 0.0013
Satterthwaite Unequal 108.97 -3.32 0.0012

Equality of Variances

Equality of Variances
Method Num DF Den DF F Value Pr > F
Folded F 56 53 1.16 0.5984

Summary Panel

Summary Panel for mnstatus

Q-Q Plots

Q-Q Plots for mnstatus

arcsin

Variable: arcsin

Statistics

treat N Mean Std Dev Std Err Minimum Maximum
1 57 0.5907 0.6082 0.0806 0 1.5708
2 54 0.9715 0.6169 0.0840 0 1.5708
Diff (1-2)   -0.3809 0.6124 0.1163    

Confidence Limits

treat Method Mean 95% CL Mean Std Dev 95% CL Std Dev
1   0.5907 0.4293 0.7520 0.6082 0.5134 0.7460
2   0.9715 0.8031 1.1399 0.6169 0.5186 0.7616
Diff (1-2) Pooled -0.3809 -0.6114 -0.1503 0.6124 0.5408 0.7061
Diff (1-2) Satterthwaite -0.3809 -0.6115 -0.1502      

T-Tests

Method Variances DF t Value Pr > |t|
Pooled Equal 109 -3.27 0.0014
Satterthwaite Unequal 108.48 -3.27 0.0014

Equality of Variances

Equality of Variances
Method Num DF Den DF F Value Pr > F
Folded F 53 56 1.03 0.9141

Summary Panel

Summary Panel for arcsin

Q-Q Plots

Q-Q Plots for arcsin
Procedure

The arscin transformation is used when comparing proportions to improve the normal approximation. In either case, with or without the arscin transform we conclude that the treatment did improve respiratory status.

GEE

GEE is an example of a marginal (or population averaged) model. Marginal models refer to the fact that the mean response depends only on the covariates (rather than within subject correlations/random effects) and can be viewed as repeated cross-sectional GLM analysis at each repeated measure.

  • The within-subject correlation is still accounted for and affects statistical inference (but is considered a nuisance parameter as it is not of primary interest)
  • Parameter interpretations are for population effects

To specify the marginal model, we need three pieces

  • The mean response: Just as in usual GLM, we need to specify a link function and the linear form of the parameters (which covariates)
$$g(\mu)=\beta_0+\beta_1x_1+\cdots +\beta_px_p$$
  • The form of the variance of the response: for example for logistic regression, the variance of a binary response is Var($\mu)=\phi\mu(1-\mu)$. An additional $\phi$ parameter is usuall included to allow for overdispersion.

  • A correlation structure for the within subject correlations: we discussed some such as independence, compound symmetry (exchangeable), and AR(1) last time.

This model formulation does not fit into a suitable likelihood, so an interative methods known as GEE is used. GEE is implemented in PROC GENMOD. Before we look at code, here are a few points about GEE

  • The GEE estimator of $\hat{\beta}$ is consistent (as long as the mean specification is correct) regardless of whether or not the correlation structure is correct.
  • Correct inferences require the correlation structure to be correct for the model to give the correct standard errors. Since specifying the correlation may be difficult, we can instead use robust "sandwich" estimators for the covariance. The sandwich estimator is (asymptotically) correct regardless of whether or not we correctly specify the correlation structure correctly. However, these sandwich estimates require a "large" sample size, and are better if we specify the correlation correctly.
  • Interpretation of parameter for binary data: average change in log odds between treatment and control holding other covariates constant.

Let's fit a model using GEE with different correlation structures.

In [2]:
*Make data into long form;
data respl; set resptrial;
 array vis[4] v1-v4;
 do time=1 to 4;
   status=vis{time};
   output;
 end;
 drop v1 v2 v3 v4;
run;

proc genmod data=respl desc;
 class id;
 model status=center treat sex age time bl /d=b;
repeated subject=id / type=ind; *modelse; *gives nonsandwich ests;
estimate 'treatment' treat 1 /exp;
run;
Out[2]:
SAS Output

SAS Output

The SAS System

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set WORK.RESPL
Distribution Binomial
Link Function Logit
Dependent Variable status

Number of Observations

Number of Observations Read 444
Number of Observations Used 444
Number of Events 249
Number of Trials 444

Class Level Information

Class Level Information
Class Levels Values
id 111 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 ...

Response Profile

Response Profile
Ordered
Value
status Total
Frequency
1 1 249
2 0 195

PROC GENMOD is modeling the probability that status='1'.

Parameter Information

Parameter Information
Parameter Effect
Prm1 Intercept
Prm2 center
Prm3 treat
Prm4 sex
Prm5 age
Prm6 time
Prm7 bl

Convergence Status

Algorithm converged.

GEE Model Information

GEE Model Information
Correlation Structure Independent
Subject Effect id (111 levels)
Number of Clusters 111
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

Convergence Status

Algorithm converged.

Fit Criteria

GEE Fit Criteria
QIC 509.4273
QICu 496.8007

Analysis Of GEE Parameter Estimates - Empirical Std Errors

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates
Parameter Estimate Standard
Error
95% Confidence Limits Z Pr > |Z|
Intercept -2.8327 0.8981 -4.5930 -1.0725 -3.15 0.0016
center 0.6723 0.3572 -0.0278 1.3725 1.88 0.0598
treat 1.3006 0.3510 0.6126 1.9885 3.71 0.0002
sex 0.1194 0.4437 -0.7503 0.9890 0.27 0.7879
age -0.0182 0.0130 -0.0437 0.0073 -1.40 0.1626
time -0.0643 0.0816 -0.2242 0.0957 -0.79 0.4310
bl 1.8841 0.3502 1.1977 2.5704 5.38 <.0001

ESTIMATE Statement Results

Contrast Estimate Results
Label Mean Estimate Mean L'Beta Estimate Standard
Error
Alpha L'Beta Chi-Square Pr > ChiSq
Confidence Limits Confidence Limits
treatment 0.7859 0.6485 0.8796 1.3006 0.3510 0.05 0.6126 1.9885 13.73 0.0002
Exp(treatment)       3.6713 1.2886 0.05 1.8453 7.3043    
In [3]:
proc genmod data=respl desc;
 class id;
 model status=center treat sex age time bl /d=b;
repeated subject=id / type=un; *modelse; *option would give nonsandwich ests;
estimate 'treatment' treat 1 /exp;
run;
Out[3]:
SAS Output

SAS Output

The SAS System

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set WORK.RESPL
Distribution Binomial
Link Function Logit
Dependent Variable status

Number of Observations

Number of Observations Read 444
Number of Observations Used 444
Number of Events 249
Number of Trials 444

Class Level Information

Class Level Information
Class Levels Values
id 111 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 ...

Response Profile

Response Profile
Ordered
Value
status Total
Frequency
1 1 249
2 0 195

PROC GENMOD is modeling the probability that status='1'.

Parameter Information

Parameter Information
Parameter Effect
Prm1 Intercept
Prm2 center
Prm3 treat
Prm4 sex
Prm5 age
Prm6 time
Prm7 bl

Convergence Status

Algorithm converged.

GEE Model Information

GEE Model Information
Correlation Structure Unstructured
Subject Effect id (111 levels)
Number of Clusters 111
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

Convergence Status

Algorithm converged.

Fit Criteria

GEE Fit Criteria
QIC 509.1823
QICu 496.9266

Analysis Of GEE Parameter Estimates - Empirical Std Errors

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates
Parameter Estimate Standard
Error
95% Confidence Limits Z Pr > |Z|
Intercept -2.8113 0.9059 -4.5869 -1.0358 -3.10 0.0019
center 0.6820 0.3545 -0.0129 1.3769 1.92 0.0544
treat 1.2715 0.3489 0.5876 1.9554 3.64 0.0003
sex 0.1024 0.4444 -0.7687 0.9735 0.23 0.8178
age -0.0170 0.0129 -0.0423 0.0083 -1.32 0.1872
time -0.0717 0.0814 -0.2313 0.0878 -0.88 0.3783
bl 1.9364 0.3479 1.2545 2.6184 5.57 <.0001

ESTIMATE Statement Results

Contrast Estimate Results
Label Mean Estimate Mean L'Beta Estimate Standard
Error
Alpha L'Beta Chi-Square Pr > ChiSq
Confidence Limits Confidence Limits
treatment 0.7810 0.6428 0.8760 1.2715 0.3489 0.05 0.5876 1.9554 13.28 0.0003
Exp(treatment)       3.5662 1.2444 0.05 1.7997 7.0667    
In [4]:
proc genmod data=respl desc;
 class id;
 model status=center treat sex age time bl /d=b;
repeated subject=id / type=cs;* modelse; *gives nonsandwich ests;
estimate 'treatment' treat 1 /exp;
run;
Out[4]:
SAS Output

SAS Output

The SAS System

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set WORK.RESPL
Distribution Binomial
Link Function Logit
Dependent Variable status

Number of Observations

Number of Observations Read 444
Number of Observations Used 444
Number of Events 249
Number of Trials 444

Class Level Information

Class Level Information
Class Levels Values
id 111 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 ...

Response Profile

Response Profile
Ordered
Value
status Total
Frequency
1 1 249
2 0 195

PROC GENMOD is modeling the probability that status='1'.

Parameter Information

Parameter Information
Parameter Effect
Prm1 Intercept
Prm2 center
Prm3 treat
Prm4 sex
Prm5 age
Prm6 time
Prm7 bl

Convergence Status

Algorithm converged.

GEE Model Information

GEE Model Information
Correlation Structure Exchangeable
Subject Effect id (111 levels)
Number of Clusters 111
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

Convergence Status

Algorithm converged.

Exchangeable Working Correlation

Exchangeable Working Correlation
Correlation 0.3369121474

Fit Criteria

GEE Fit Criteria
QIC 509.4484
QICu 496.8065

Analysis Of GEE Parameter Estimates - Empirical Std Errors

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates
Parameter Estimate Standard
Error
95% Confidence Limits Z Pr > |Z|
Intercept -2.8371 0.8953 -4.5919 -1.0823 -3.17 0.0015
center 0.6809 0.3568 -0.0183 1.3802 1.91 0.0563
treat 1.2922 0.3505 0.6052 1.9793 3.69 0.0002
sex 0.1308 0.4441 -0.7397 1.0012 0.29 0.7684
age -0.0184 0.0130 -0.0439 0.0071 -1.41 0.1571
time -0.0642 0.0815 -0.2240 0.0956 -0.79 0.4309
bl 1.8778 0.3501 1.1916 2.5640 5.36 <.0001

ESTIMATE Statement Results

Contrast Estimate Results
Label Mean Estimate Mean L'Beta Estimate Standard
Error
Alpha L'Beta Chi-Square Pr > ChiSq
Confidence Limits Confidence Limits
treatment 0.7845 0.6468 0.8786 1.2922 0.3505 0.05 0.6052 1.9793 13.59 0.0002
Exp(treatment)       3.6409 1.2763 0.05 1.8316 7.2374    
In [5]:
proc genmod data=respl descending;
 class id;
 model status=center treat sex age time bl /d=b; * dist=binomial;
repeated subject=id / type=ar(1); *modelse; *option would give nonsandwich ests;
estimate 'treatment' treat 1 /exp;
run;
Out[5]:
SAS Output

SAS Output

The SAS System

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set WORK.RESPL
Distribution Binomial
Link Function Logit
Dependent Variable status

Number of Observations

Number of Observations Read 444
Number of Observations Used 444
Number of Events 249
Number of Trials 444

Class Level Information

Class Level Information
Class Levels Values
id 111 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 ...

Response Profile

Response Profile
Ordered
Value
status Total
Frequency
1 1 249
2 0 195

PROC GENMOD is modeling the probability that status='1'.

Parameter Information

Parameter Information
Parameter Effect
Prm1 Intercept
Prm2 center
Prm3 treat
Prm4 sex
Prm5 age
Prm6 time
Prm7 bl

Convergence Status

Algorithm converged.

GEE Model Information

GEE Model Information
Correlation Structure AR(1)
Subject Effect id (111 levels)
Number of Clusters 111
Correlation Matrix Dimension 4
Maximum Cluster Size 4
Minimum Cluster Size 4

Convergence Status

Algorithm converged.

Fit Criteria

GEE Fit Criteria
QIC 509.8569
QICu 497.1197

Analysis Of GEE Parameter Estimates - Empirical Std Errors

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates
Parameter Estimate Standard
Error
95% Confidence Limits Z Pr > |Z|
Intercept -2.8655 0.9153 -4.6596 -1.0715 -3.13 0.0017
center 0.7477 0.3569 0.0482 1.4473 2.10 0.0362
treat 1.2457 0.3522 0.5555 1.9360 3.54 0.0004
sex 0.1160 0.4504 -0.7668 0.9987 0.26 0.7968
age -0.0170 0.0130 -0.0424 0.0084 -1.31 0.1902
time -0.0831 0.0821 -0.2440 0.0778 -1.01 0.3115
bl 1.9127 0.3504 1.2259 2.5995 5.46 <.0001

ESTIMATE Statement Results

Contrast Estimate Results
Label Mean Estimate Mean L'Beta Estimate Standard
Error
Alpha L'Beta Chi-Square Pr > ChiSq
Confidence Limits Confidence Limits
treatment 0.7766 0.6354 0.8739 1.2457 0.3522 0.05 0.5555 1.9360 12.51 0.0004
Exp(treatment)       3.4755 1.2240 0.05 1.7428 6.9308    

Generalized Linear Mixed Models

With th GLMM approach, we introduce random effects which are allowed to vary from one subject to another. As with linear mixed models, adding random effects to the mean response model to induces correlations, but not in as simple a way since the model is non-linear through the link function. These models are more complicated and sometimes cannot even be fit. We will look at just a simple random intercept model. This model assumes that conditional on the random intercepts, that the data follows a usual logistic regression model. The random intercept is assumed to be normal just as in linear mixed models.

Interpretation of parameters:

  • GEE was population averaged (similar to what we are used to)
  • GLMM: Subject specific estimates
    • What effect can we predict will happen within an individual across time?
    • For non time covaraites (like trt grp): What treatment effect would we assume for an individual or (more awkward) between 2 people with the same covariates and same (unknown) baseline propensity (random effect)?
In [6]:
proc glimmix data=respl noclprint;
 class id;
 model status(desc)=center treat sex age time bl  
                   / d=binary solution ddfm=kr;
 random int / subject=id;
 estimate 'treatment' treat 1 /exp;
run;
Out[6]:
SAS Output

SAS Output

The SAS System

The GLIMMIX Procedure

The GLIMMIX Procedure

Model Information

Model Information
Data Set WORK.RESPL
Response Variable status
Response Distribution Binary
Link Function Logit
Variance Function Default
Variance Matrix Blocked By id
Estimation Technique Residual PL
Degrees of Freedom Method Kenward-Roger
Fixed Effects SE Adjustment Kenward-Roger

Number of Observations

Number of Observations Read 444
Number of Observations Used 444

Response Profiles

Response Profile
Ordered
Value
status Total
Frequency
The GLIMMIX procedure is modeling the probability that status='1'.
1 1 249
2 0 195

Dimensions

Dimensions
G-side Cov. Parameters 1
Columns in X 7
Columns in Z per Subject 1
Subjects (Blocks in V) 111
Max Obs per Subject 4

Optimization Information

Optimization Information
Optimization Technique Newton-Raphson with Ridging
Parameters in Optimization 1
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Profiled
Starting From Data

Iteration History

Iteration History
Iteration Restarts Subiterations Objective
Function
Change Max
Gradient
0 0 4 2006.0074893 0.37823326 1.591E-7
1 0 3 2071.958408 0.16661455 6.979E-6
2 0 3 2098.9940163 0.05552455 1.839E-9
3 0 2 2106.2429348 0.01408368 7.202E-7
4 0 2 2107.9080296 0.00317548 1.91E-9
5 0 1 2108.2717673 0.00069019 7.562E-6
6 0 1 2108.3502005 0.00014931 3.537E-7
7 0 1 2108.3671377 0.00003215 1.64E-8
8 0 1 2108.3707837 0.00000692 7.59E-10
9 0 1 2108.371568 0.00000149 3.51E-11
10 0 0 2108.3717367 0.00000000 4.647E-6

Convergence Status

Convergence criterion (PCONV=1.11022E-8) satisfied.

Fit Statistics

Fit Statistics
-2 Res Log Pseudo-Likelihood 2108.37
Generalized Chi-Square 281.75
Gener. Chi-Square / DF 0.64

Covariance Parameter Estimates

Covariance Parameter Estimates
Cov Parm Subject Estimate Standard
Error
Intercept id 2.0433 0.5305

Solutions for Fixed Effects

Solutions for Fixed Effects
Effect Estimate Standard
Error
DF t Value Pr > |t|
Intercept -3.3772 1.1122 124.6 -3.04 0.0029
center 0.7563 0.4118 101.4 1.84 0.0692
treat 1.5350 0.3974 107.9 3.86 0.0002
sex 0.1426 0.5114 99.62 0.28 0.7809
age -0.01891 0.01535 110.2 -1.23 0.2206
time -0.08012 0.1111 437 -0.72 0.4714
bl 2.1967 0.4048 108.2 5.43 <.0001

Type III Tests of Fixed Effects

Type III Tests of Fixed Effects
Effect Num DF Den DF F Value Pr > F
center 1 101.4 3.37 0.0692
treat 1 107.9 14.92 0.0002
sex 1 99.62 0.08 0.7809
age 1 110.2 1.52 0.2206
time 1 437 0.52 0.4714
bl 1 108.2 29.45 <.0001

Estimates

Estimates
Label Estimate Standard
Error
DF t Value Pr > |t| Exponentiated
Estimate
treatment 1.5350 0.3974 107.9 3.86 0.0002 4.6415
In [ ]: